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ABSTRACT

We present a publicly available software tool (http://
www.unm.edu/~compbio/software/GenomeHistory)
that identi®es all pairs of duplicate genes in a gen-
ome and then determines the degree of synonym-
ous and non-synonymous divergence between each
duplicate pair. Using this tool, we analyze the rela-
tions between (i) gene function and the propensity
of a gene to duplicate and (ii) the number of genes
in a gene family and the family's rate of sequence
evolution. We do so for the complete genomes of
four eukaryotes (®ssion and budding yeast, fruit ¯y
and nematode) and one prokaryote (Escherichia
coli ). For some classes of genes we observe a
strong relationship between gene function and a
gene's propensity to undergo duplication. Most
notably, ribosomal genes and transcription factors
appear less likely to undergo gene duplication than
other genes. In both ®ssion and budding yeast, we
see a strong positive correlation between the select-
ive constraint on a gene and the size of the gene
family of which this gene is a member. In contrast, a
weakly negative such correlation is seen in multi-
cellular eukaryotes.

INTRODUCTION

That gene duplication is a major force in genome evolution
was ®rst pointed out forcefully in Ohno's pioneering book (1).
Since then, considerable progress has been made in determin-
ing how gene duplicates evolve and what role they play in
organismal evolution (2±8). The availability of complete
genome sequences has not only made it clear that genomes are
replete with duplicate genes, but it has also spawned new and
varied avenues of research. These include studies of the fate of
gene duplicates produced in a genome duplication (9) and of
the production and distribution of pseudogenes (10,11).
Further research has focused on estimates of the rate at
which gene duplications occur (12) and on the distribution of
gene family sizes in genomes (13±15), which was found to
obey a power law.

Through this report and through an accompanying web site
(http://www.unm.edu/~compbio/software/GenomeHistory),
we make public a ¯exible and portable tool that allows one to

extract the number of non-synonymous nucleotide substitu-
tions per nucleotide site (Ka) and the number of synonymous
nucleotide substitutions per nucleotide site (Ks) for all gene
duplicates in a genome from information on coding regions
contained in FASTA ®les. With suitable precautions, Ks can
be used to estimate the time that has elapsed since a gene
duplication. The ratio Ka/Ks is an enormously useful quantity
in gauging the selective constraint a given sequence pair is
subject to (16). We have named our tool GenomeHistory. It
relies on existing algorithms, but uses user-con®gurable
parameters to automate the analysis of large datasets with
minimal user input.

Below, we use GenomeHistory to examine patterns of gene
duplication in ®ve fully sequenced genomes. Several genome
sequencing consortia have begun this task in their original
reports published with the genome sequences (17,18). Extend-
ing this and other work (12,19), we here address three
questions: (i) do genes of different functions differ in their
propensity to undergo duplication; (ii) do selective constraints
differ among duplicate genes with different functions; (iii)
does the selective pressure acting on a gene depend on the
number of its duplicates?

MATERIALS AND METHODS

Sequence analysis

GenomeHistory pre-screens a genome for similar amino acid
sequences using gapped BLASTP (20), then carries out a local
alignment of promising candidates using CLUSTAL (21) and
subsequently estimates Ka and Ks, the number of non-
synonymous and synonymous mutations per non-synonymous
and synonymous site on DNA, respectively (16). We analyzed
®ve genomes with GenomeHistory: those of the yeasts
Saccharomyces cerevisiae (22) and Schizosaccharomyces
pombe (23), the fruit ¯y Drosophila melanogaster (24), the
nematode Caenorhabditis elegans (25) and the bacterium
Escherichia coli (26). For each genome, we obtained the
complete set of protein sequences and corresponding nucle-
otide sequences from sources listed in the above references.
We considered protein pairs for further analysis if their
similarity was greater than indicated by the following BLAST
E-value thresholds: yeasts, E < 10±8; Drosophila, E < 10±10;
C.elegans, E < 10±10; E.coli, E < 10±7. The differences in
E-value thresholds re¯ect a correction accounting for varying
numbers of pairwise comparisons due to different genome
sizes. After globally aligning candidate duplicates, we
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retained all gene pairs with >40% amino acid similarity over
the entire alignment. In addition, we required at least 100
aligned amino acid residues for S.cerevisiae, S.pombe,
Drosophila and C.elegans and 70 aligned residues for E.coli.

For each of the retained gene pairs, we calculated Ka and Ks.
This calculation is performed in GenomeHistory by maximum
likelihood estimation using our own implementation of the
codon-based models of sequence evolution proposed by Muse
and Gaut (27) and Goldman and Yang (28). The computation
is often referred to as the Yang and Nielsen method (29). Our
routine produces results very similar to Yang and Nielsen's
implementation of the model in the PAML package. For
reasons of computational convenience the method estimates
raw divergence time (t) and the ratio Ka/Ks, rather than Ks and
Ka. The likelihood maximization is performed using two
different computational methods: Powell's routine (30) to ®nd
the ratio Ka/Ks and the transition/transversion ratio and Yang's
method (31) to ®nd the value of t. The latter uses a
modi®cation of the Newton method (30).

To increase the proportion of true duplicates in our analysis,
we report results only for gene pairs where Ka < 0.75. In our
analysis of evolutionary rates, we further restrict ourselves to
duplicates with Ks < 3 (in addition to Ka < 0.75) and Ka/Ks < 1.
In addition, we excluded all pairs with Ka < 10±4 or Ks < 10±4.
(Such pairs had either no non-synonymous or no synonymous
substitutions.)

Because of their potentially unusual pattern of sequence
evolution, we also wished to highlight and exclude trans-
poson-related genes from our analysis. In E.coli this is easily
done because such genes carry a distinct annotation. In
S.cerevisiae we screened for transposon-related genes (see
Fig. 3A) by using BLASTP to identify all genes similar at
E < 10±17 to reverse transcriptase (GenBank protein sequence
ID AAA91746.1) or the GAG/POL family (based on
similarity to gene YFL002W-B). For S.pombe we used
GenBank gene descriptions to ®lter transposon-related
genes. In C.elegans we used similarity to the sequence with
GenBank sequence ID NP_502686.1 as the criterion. (In this
case we excluded only genes with BLASTP E < 10±77, because
lowering this threshold led to inclusion of genes with other
annotations.) Available Drosophila genes are already ®ltered
for transposons; only one annotation indicated transposase
activity and there were no large (>20 member) gene families
related to transposable elements, as in other organisms. We
used the list of Drosophila transposons from http://¯ybase.
bio.indiana.edu/transposons/lk/melanogaster-transposon.html
as a ®nal ®lter, which removed only a single gene pair.

Annotations

For genome-scale analyses, manual assignment of genes to
functional categories based on their annotations is possible in
principal (18), but prohibitive in cost. We thus took to an
automated approach. To study the distribution of gene
duplicates in different functional categories, we obtained
annotations for the yeasts, fruit ¯y and nematode genomes
from the Gene Ontology (GO) database (32; http://www.
geneontology.org/). The GO database is divided into three
high level annotation groups: Cellular Component, Biological
Process and Molecular Function. We selected 10 functional
categories from different levels of the GO hierarchy, mainly
from the `Biological Process' annotation group (ribosomal

proteins and transcription factors were identi®ed from the
Molecular Function group and the cytoskeletal genes from the
Cellular Component group). We therefore ®nd it helpful to
view these annotations as primarily `pathway-based', as
opposed to the more biochemical `Molecular Function'
annotations.

To prevent single genes from falling into multiple categor-
ies, we used an exclusion scheme, whereby genes assigned to
speci®c categories (such as transcription factors and ribosomal
proteins) were excluded from more general categories (such as
metabolism). Although requiring genes to fall only into a
single pathway does not always match the more complex
realities of gene function, we impose this requirement for two
reasons. Firstly, we chose annotations at a high enough level
that most genes would be seen as ®tting best into a single
category. For instance, although some actin genes can be
placed in the cell cycle category due to their role in
cytokinesis, they ®t better into the cytoskeletal category.
Secondly, allowing genes to occur in more than one category
can result in the artefact of observing that different functional
classes of genes show different propensities to undergo
duplication, when these differences are due to a single
underlying cause. For instance, genes encoding transcription
factors are less likely to have multiple duplicates than other
genes. Including transcription factors in the `cell cycle'
category could then falsely indicate that all genes important
for the cell cycle also have a reduced propensity to duplicate.

Instead of allowing genes to occur in multiple categories,
we have used the `Molecular Function' annotations in the GO
database to ask whether genes with multiple molecular
functions differ from those with a single molecular function
in their propensity to duplicate. Using the 34 top level
`Molecular Function' annotations, we divided the genes of the
four eukaryotes into two categories: those with a single top
level function annotation and those with more than one such
annotation. While this approach has many obvious imperfec-
tions, it serves as an automatable ®rst approximation to
address the above question. We then divided all duplicate
genes into those with a single duplicate and those with more
than one duplicate. For each of these two groups we
determined the proportion of genes that had only one
functional annotation. Although the multiply duplicated
Drosophila and C.elegans genes were more likely to have
single annotations than expected by chance (P < 0.01), the
difference was small (for the Drosophila fraction of genes
with single functional annotations, all genes/multiply dupli-
cated genes = 0.71/0.75; for the C.elegans fraction of genes
with single functional annotations, all genes/multiply dupli-
cated genes = 0.66/0.70). No such difference was observed for
multiply duplicated genes in the other genomes or for any
singly duplicated genes (results not shown). This suggests that
our strategy of restricting each gene to only one functional
pathway did not substantially bias our results.

For S.pombe, transcription factors and ribosomal proteins
were not speci®cally annotated in GO. We therefore used the
GenBank gene description tables (http://www.ncbi.nlm.nih.
gov/PMGifs/Genomes/euk.html) to identify these genes.
Genes were not speci®cally annotated as cytoskeletal elements
in either set of annotations used for this organism and this
annotation category is thus not included in our analysis of
S.pombe.
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The K12 strain of E.coli is not included in the GO database.
We thus obtained annotations from the University of
Wisconsin website (http://www.genome.wisc.edu/sequencing/
k12.htm#gen) and slightly modi®ed the 23 categories used by
the sequencing center to yield 19 functional categories (see
Fig. 1E).

Availability, implementation and validation of
GenomeHistory

GenomeHistory is available from our website (http://www.
unm.edu/~compbio/software/GenomeHistory) and includes
HTML documentation (also available online at http://
www.unm.edu/~compbio/software/GenomeHistory/Genome
History.html). The tool was developed under RedHat Linux
7.1 (kernel v.2.4 and compiler v.2.96). Although we have no
reason to expect dif®culties on other UNIX platforms, we
cannot guarantee that our code will work on untested
platforms. However, we expect portability to other operating
systems, as long as they support Perl and stand-alone BLAST.
To facilitate modi®cation of the tool by those wishing to
overcome platform incompatibilities, we also make public the
source code of the routines estimating divergence.

We have compared data obtained with GenomeHistory to
data from published work and found the results qualitatively
identical. For example, we calculated a `survivorship' curve of
youngest duplicates in S.cerevisiae and compared the results
to those of Lynch and Conery (12). The rate of duplication loss
was statistically identical (exponential decay coef®cient d = 7.5
for Lynch and Conery versus 7.23 for GenomeHistory).

To analyze the approximately 6000 genes of the
S.cerevisiae genome at a BLASTP E-value of 1 3 10±6, a
dual 800 Mhz Pentium system (RedHat Linux 7.1) needs
~17.5 h. BLAST is able to use multiple processors, so this time
would be somewhat longer on an equivalent single processor
machine. Which step in the analysis is most time consuming
depends on the BLAST threshold selected: if this threshold is
very stringent (E < 10±15), the maximum likelihood estima-
tions in step 3 dominate, but for more permissive thresholds
the pairwise sequence alignments by CLUSTALW (step 2)
dominate.

The input to GenomeHistory consists of two ®les in FASTA
format, one containing all protein sequences to be analyzed
and the other the nucleotide sequences corresponding to these
proteins. GenomeHistory produces an output ®le (in tab-
delimited text format) that contains Ks and Ka estimates for
each sequence pair that meets the analysis criteria.
GenomeHistory also generates an error ®le logging unex-
pected results that inevitably occur when comparing millions
of gene pairs.

To allow testing of a GenomeHistory installation, the
GenomeHistory website includes a small test dataset contain-
ing the ®rst few dozen genes of the S.cerevisiae nuclear
genome, as well as sample output from our installation.

RESULTS

What does GenomeHistory do?

Comparing all gene pairs in a genome requires considerable
computational effort. To eliminate obviously unrelated genes
rapidly and to restrict computationally costly divergence

estimates only to similar genes, our tool analyses genomes in
three distinct stages: (i) identi®cation of potentially interesting
gene pairs using the BLAST sequence similarity search
algorithm (33); (ii) alignment of the pairs identi®ed in (i) using
an exact alignment program (CLUSTAL-W; 21); (iii) calcu-
lation of the Ks and Ka values for those aligned sequences
whose pairwise sequence identity is above a user-speci®ed
threshold.

For the ®rst step, BLAST analysis, GenomeHistory uses the
Washington University implementation of gapped BLASTP
(available from http://blast.wustl.edu/) for an initial compari-
son of protein sequences provided in a FASTA ®le. BLASTP
compares sequences very quickly, allowing us to rapidly
eliminate highly dissimilar gene pairs. This reduces the
number of further comparisons to a manageable value.
Through the BLASTP E-value (20,33) we allow the user to
tune the similarity threshold below which gene pairs are
eliminated. We suggest a relatively liberal threshold choice,
such as E > 1 3 10±7, deferring the stringent removal of
sequence pairs to step two.

In this second step, any two protein sequences deemed
promising by the BLAST analysis are aligned using
CLUSTAL-W (ftp://ftp-igbmc.u-strasbg.fr/pub/ClustalW/)
and the default BLOSUM 62 matrix. Since only pairs of
sequences are compared, each alignment will be computa-
tionally exact. Using these alignments, sequence pairs go
through an additional step of screening before Ks and Ka are
estimated. They must have (i) sequence identity in a minimal,
user-speci®ed number of residues, (ii) a minimal user-
speci®ed length for each sequence and (iii) a minimal user-
speci®ed number of residues aligned at non-gap positions.
This ®nal criterion is required because it is possible to align
even two long sequences such that each sequence has very few
residues aligned with non-gap residues in the other sequence.

In the third step, GenomeHistory calculates a nucleotide
alignment corresponding to the obtained protein alignment for
the sequence pairs left after steps 1 and 2. The required DNA
sequence information is obtained from a sequence ®le
containing nucleotide sequences for all analyzed genes in
FASTA format. This alignment is then used to calculate Ks

and Ka via a computationally costly but unbiased maximum
likelihood algorithm.

Distribution of duplicates by function

The most basic questions about the distribution of gene
duplicates with respect to gene functions are these: are genes
with one duplicate over-represented or under-represented in
any of the major functional annotation categories; does the
same hold for genes with multiple duplicates? The simplest
and crudest way to address these questions is via c2 goodness-
of-®t tests to evaluate the null hypothesis that the proportion of
genes with single (multiple) duplicates in different functional
categories is identical to the overall number of genes in these
categories. Except for genes with single duplicates in
Drosophila (P = 0.040) and in C.elegans (P = 0.133), this
null hypothesis must be rejected at P < 0.01 for singly and
multiply duplicated genes in all genomes studied. Genes in
different functional categories are thus not equally likely to
undergo duplication. We now analyze the observed patterns of
deviation in detail.
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To determine which functional categories had an over- or
under-abundance of duplicates, we applied a two-tailed
binomial (`exact') test. To perform this test, we ®rst calculated
the number ni and fraction pi of all annotated genes that fell
into each functional category i. For each i, we then tested the
null hypothesis that the observed number of (singly or
multiply) duplicated genes in functional category i follows a
binomial distribution with the same parameter pi. For the
yeasts, fruit ¯y and nematode, the analysis involved making
10 hypothesis tests (one per category). Escherichia coli has 19
functional categories making 19 such tests necessary. We used
a Bonferroni correction to ensure an overall type I error rate
(false rejection of the null hypothesis) of 5%. Proportions
signi®cantly different from the overall distribution are marked
with arrows in Figure 1.

In the yeasts, fruit ¯y and nematode, the most conspicuous
patterns are with regard to ribosomal protein genes. (The
E.coli genome is not annotated in a directly comparable way.)
Ribosomal genes with multiple duplicates are under-repre-
sented (P < 0.0028) in all but the S.pombe genome (P = 0.24).
We speculate that this general pattern is due to the high
expression level of these genes and the resulting strong
deleterious effects of changes in gene dosage. In contrast to
this pattern, ribosomal protein genes with one duplicate are
over-represented in both yeasts. For S.cerevisiae, this obser-
vation, which has also been reported by Planta and Mager
(34), is probably due to an ancient genome duplication that
occurred ~100 000 000 years ago (9). Gene dosage effects may
have prevented the elimination of these duplicates from the
budding yeast genome. Because the common ancestor of
budding and ®ssion yeast probably lived before the
S.cerevisiae genome duplication (23), it is unlikely that
over-representation of ribosomal duplicates in ®ssion yeast
re¯ects the same genome duplication. However, it is tempting
to speculate that ®ssion yeast has undergone its own genome
duplication.

Energy metabolism (in S.cerevisiae and E.coli) and trans-
port genes (in both yeasts and E.coli) show markedly higher
proportions of duplicates, which may re¯ect an historical
imprint of the chemically diverse environments these
microbes have encountered in their evolutionary history. In
S.cerevisiae, the presence of a large gene family of 17
annotated hexose transporters partly accounts for the expan-
sion of transport-related genes. Budding yeast grown in a
glucose-limited laboratory environment can undergo multiple
duplications of hexose transporters in as few as 450 gener-
ations (35). This raises the question whether the observed
duplicates in the yeast genome are due to the long history of
cultivating yeast in the laboratory under similar conditions.
This seems unlikely, however, because only six of these
transporters seem to have been duplicated within the last
10 000 000 years (Ks < 0.11) (36).

Several patterns of duplication are speci®c to only one of
the taxa we analyzed. The largest deviation from expected
frequencies of duplicates in Drosophila is the over-abundance
of protein metabolism genes with many duplicates. Twenty-

eight of the 64 genes in this group, suf®cient to explain the
deviation, have kinase activity. The presence of many
duplicated protein kinases in Drosophila and other metazoans
has been previously described by other authors (17,18,37).

Caenorhabditis elegans shows an over-abundance of
proteins with multiple duplicates annotated as cell cycle
proteins. This appears to be the result of numerous duplicates
of histone genes (38). For instance, there are more than 20
gene duplicates with strong similarity to histone H3 in
C.elegans, but only two in Drosophila, three in S.cerevisiae
and ®ve in S.pombe.

Do genes with different functions show different
evolutionary constraints?

To address this question, we determined the average ratios of
Ka/Ks for all duplicates in an annotation class and assessed
signi®cant differences via a one sample t-test. In neither
E.coli, C.elegans nor Drosophila did any functional categories
evolve at rates signi®cantly different from the average. In
S.cerevisiae, the metabolism genes showed signi®cantly
slower evolution (P = 0.003), while in S.pombe the ribosomal
protein genes evolved signi®cantly more slowly (P = 0.0006).
This paucity of signi®cant results is unsurprising when one
considers the high levels of variance in Ka/Ks within categor-
ies. Most variation in Ka/Ks occurs within categories, not
among them. Interestingly, the average Ka/Ks ratio in
Drosophila and C.elegans duplicates is higher in almost all
categories than in the yeasts (Fig. 2).

Do evolutionary constraints correlate with gene family
size?

Figure 3 shows Ka/Ks (averaged over members of a gene
family) plotted against the number of duplicates a gene has.
Both yeasts show a positive correlation between Ka/Ks and the
number of duplicates (S.cerevisiae, Pearson's r = 0.397,
Spearman's s = 0.508, P < 0.0001; S.pombe, Pearson's r =
0.533, Spearman's s = 0.511, P < 0.0001 for both). In
S.cerevisiae, removing the seripauperins, a poorly character-
ized but very large gene family (39), further increases the
magnitude of these associations (Pearson's r = 0.591,
Spearman's s = 0.561).

Perhaps surprisingly, both C.elegans and Drosophila show
a negative correlation between the number of duplicates and
the Ka/Ks ratio (C.elegans, Pearson's r = ±0.122, Spearman's s
= ±0.073, P < 0.0001; Drosophila, Pearson's r = ±0.116, P <
0.0001, Spearman's s = ±0.061, P = 0.017). Both associations
are weak in magnitude but signi®cant because of the sheer
number of observations. Finally, E.coli shows no signi®cant
association between Ka/Ks and the number of gene duplicates.

DISCUSSION

Caution is necessary in applying any automated software tool
to analyze the evolutionary history of genomes. The reason is
that choice of analysis parameters by an investigator can
critically in¯uence results. We had to make such choices not

Figure 1. (Following page) Distribution of genes among functional categories for ®ve organisms. Genes were divided into three groups: single copy genes,
genes with one duplicate and genes with more than one duplicate. Proportions signi®cantly different from the overall distribution at a Bonferroni signi®cance
level of 0.05 are marked with arrows. (A) Saccharomyces cerevisiae (2077 total genes); (B) S.pombe (2298 total genes); (C) D.melanogaster (2181 total
genes); (D) C.elegans (3417 total genes); (E) E.coli (2609 total genes).
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only in the assignment of genes to categories, but also in
setting similarity thresholds for including gene pairs. For
instance, we deliberately chose a conservative approach,
admitting only highly similar gene pairs to our analysis. This
may explain why some statistical patterns detected in other
analyses, e.g. the expansion of certain regulatory gene families
in fruit ¯y and nematode (17,18), have not been detected here.
Their expansion occurred so long ago that individual gene
family members may have become too dissimilar to be
detected in a conservative assay. On the other hand, the
advantage of our conservative approach is that detected
patterns are less likely to be spurious.

A number of evolutionary patterns found here may be easily
explained. They include the over-representation of duplicates
in transport and metabolic genes in the microbial genomes as
well as a general under-representation of ribosomal protein
genes with multiple duplicates. Dosage effects may make it
dif®cult to maintain duplicate ribosomal proteins in a genome,
unless, as in budding yeast, a whole-genome duplication has
duplicated all of the proteins at once. Some of the patterns we
see have been observed independently by others, which adds
to our con®dence in them. They include the ampli®cation of
duplicates related to hexose transport in budding yeast (35), as
well as ampli®cation of the histone gene family in C.elegans
(38) and the kinase gene family in Drosophila (17,18,37).
Such patterns suggest that the rate of gene duplication is by no
means homogeneous across the genome. Rather, this rate is
affected by both biochemistry and cell biology (as illustrated
by how dosage effects of highly expressed genes in¯uence
duplication probability), as well as by conditions speci®c to
particular organisms and their environments (for instance in
the case of the yeast hexose transporters).

Our analysis also considered selective constraints speci®c to
gene families, as indicated by the ratio Ka/Ks. While very few
signi®cant differences occur among functional categories, we
observed higher Ka/Ks ratios (weaker constraints) in the two
multicellular eukaryotes relative to the microbial eukaryotes.
This trend might re¯ect a previously reported stronger

relaxation of Ka/Ks shortly after duplication in higher organ-
isms (12).

Striking taxon-speci®c differences exist in the association
between selective constraint (Ka/Ks) and gene family size.
Escherichia coli shows no such association, the microbial
eukaryotes show a highly positive association and the higher
eukaryotes show a weakly negative (but highly signi®cant)
association. The most straightforward explanation of the
correlation seen in the yeasts is that large gene families
`buffer' the effect of mutations in one of their members and
thus allow a higher amino acid substitution rate. That this
pattern is not observed in the many-celled eukaryotes is in line
with population genetics arguments showing that only very
large populations (as are likely to occur in yeasts) can sustain
such buffering through redundancy (40). In addition, the
manifold greater possibilities for tissue-speci®c expression of
duplicates in the multicellular organisms may prevent dupli-
cates in large families from experiencing relaxed constraints.

Complementary data further support a relation between
gene family size and buffering for budding yeast. Among 540
genes with one or more duplicates that meet our criteria (Ks < 3,
Ka < 0.75, Ka/Ks < 1), only 18 are known to be essential in
yeast (as indicated by the lethality of a synthetic null
mutation). Moreover, none of these 18 genes have more
than ®ve duplicates. (Previous analysis had found four
essential genes with duplicates; 41.) We also observe,
anecdotally, that no budding yeast gene with more than nine
duplicates has a functional annotation in the GO database (32).
This indicates the well known dif®culty of identifying gene
functions in large gene families by genetic means. However,
while such evidence may suggest a simple explanation for an
observed statistical pattern, caution is appropriate. First,
perhaps as many as half of all yeast gene deletions with no
phenotypic effect affect single copy genes, showing that
redundancy through gene duplication is not all there is to
buffering of mutational effects (42). Also, highly similar
duplicates do not generally show weaker effects in synthetic
null mutations. Finally, and most importantly, the lack of an

Figure 2. Average Ka/Ks for genes in different functional categories for S.cerevisiae, S.pombe, D.melanogaster and C.elegans. Blanks indicate cases where no
duplicates met the selection criteria (Ks < 3, Ka < 0.75, Ka/Ks < 1).

Nucleic Acids Research, 2002, Vol. 30 No. 15 3383



3384 Nucleic Acids Research, 2002, Vol. 30 No. 15



association between gene family size and evolutionary
constraint in E.coli is squarely at odds with the above
interpretation.

The negative correlation between gene family size and
Ka/Ks in the two multicellular eukaryotes is more dif®cult to
understand. We suspect that the Drosophila correlation is
largely a result of the very small number of large gene
families, which simply do not show the variation in Ka/Ks that
the small gene families do. Figure 3C indicates this, with the
very high and low Ka/Ks values all being located among small
gene families. The correlation in C.elegans is stronger and we
suspect that there are one or more large gene families with
speci®c functions that are driving the relationship. In particu-
lar, removing the major sperm protein family (43) (which

functions both in sperm motility and in oocyte signaling;
44,45) reduces Pearson's r from ±0.122 to ±0.093 and
Spearman's s from ±0.073 to ±0.058, although the signi®cance
in each case is unchanged at P < 0.0001 (Fig. 3D).

Unfortunately, dif®cult to explain patterns are still the norm
rather than exception in analyzing genome evolution. Other
such patterns include an under-representation of duplicated
transcription factor genes (Fig. 1), a large difference in
numbers of histone genes between nematode and fruit ¯y and
the disproportionately large major sperm protein family of the
nematode. However, such unexplained patterns make clear
that genome sequencing projects have accomplished some-
thing very important. They have opened new frontiers of
inquiry.

Figure 3. (Opposite and above) Statistical association between the number of members of a gene family and selective constraints on sequence evolution, as
indicated by the ratio Ka/Ks averaged over all family members. (A) Saccharomyces cerevisiae. Seripauperin genes are highlighted based on their sequence
similarity (BLASTP E < 10±17) to ORF YJL223C. (B) Schizosaccharomyces pombe. (C) Drosophila melanogaster. (D) Caenorhabditis elegans. Major sperm
family proteins highlighted based on similarity to gene MSP-36 (C04G2.4) (BLASTP E < 10±6). (E) Escherichia coli.
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Supplemental information

The numbers of duplicate genes in each category for each of
the ®ve genomes studied as well as our annotations for all
genes are available from our website (http://www.unm.edu/
~compbio/software/GenomeHistory/NAR_sup).
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