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Genome sequencing is now advancing at a
frenetic pace, which has the consequence that
many organisms now being sequenced have
not had their biochemistry extensively stud-
ied. Thus, the metabolic phenotype of these
organisms has to be determined using anno-
tated genome sequence data. Ideally, this
determination should be automated, but that
would require clear criteria and algorithms
for identifying and classifying metabolism.
Also, traditional textbook representations of
metabolic pathways may neither capture the
full number of potential network functions
nor the network’s resilience to disruption1–3.
Whereas algorithmic approaches to these lat-
ter problems have been proposed, many
aspects of metabolic network function
remain to be clearly delineated. For example,
in stoichiometric network analysis4, it is con-
venient to define a subset of central metabol-
ic intermediates that represent the products
of catabolism that are used to initiate
anabolism. However, even for Escherichia
coli, there is no agreement on the identity of
this subset5,6.

In seeking to establish a firm basis for
identifying a set of central metabolites defin-
ing the core of metabolism7,8, we have taken
advantage of analysis tools used by mathe-
maticians to understand the structure of
sociological networks. These include net-
works of personal and professional relations,
such as collaboration networks of film actors
or scientists. The aspect of such analyses ger-
mane to our endeavor is best illustrated with
the example of the prolific Hungarian graph
theorist Paul Erdös. He is the center of a
graph of mathematical collaboration.
Coauthors of a paper with Erdös are one step
from Erdös himself, and have Erdös number
1. Coauthors of mathematicians with Erdös
number 1 have Erdös number 2, and so on.
Most mathematicians active this century can
be connected to Erdös in a small number of
steps. In this sense, he is the undisputed cen-
ter of the mathematical world9.

A similar principle underlies the Kevin
Bacon game, which has the aim of connect-

ing an arbitrarily chosen movie actor with
the actor Kevin Bacon by the shortest
sequence of actor-pairs who have appeared
together in a film. The average Bacon num-
ber of a randomly chosen actor, representing
the mean minimum number of actors con-
necting the actor to Kevin Bacon is only 2.87
(ref. 10). (However, Kevin Bacon is not even
the center of this small world of film actor
collaborations, defined as having on average
the shortest distance to all the other stars.
This center is Christopher Lee, with a mean
path length of 2.60.)

We recently have analyzed the structure of
the E. coli core metabolism with the follow-
ing goal in mind: to identify metabolites cen-
tral to metabolism in this sense, without rely-
ing on subjective criteria. To this end, we
assembled a list of 317 stoichiometric equa-
tions involving 275 substrates that represent
the central routes of energy metabolism and
small-molecule building block synthesis in E.
coli11–15 under aerobic growth, with glucose as
sole carbon source and O2 as electron accep-
tor. From these reaction equations, we gener-
ated a connection matrix where two metabo-
lites were regarded as connected if they
appeared in the same reaction, whether as
substrate or product. We did not include the
common coenzymes, such as ATP, ADP, or
NAD, because they are evidently ubiquitous.
On this basis, the center of the E. coli meta-
bolic map is glutamate, with a mean path
length of 2.46, followed by pyruvate with a
value of 2.59.

The analogy between metabolism and the
collaboration networks of mathematicians
and film stars does not end there. The ques-
tion of how networks that are both large and
sparse can nevertheless be traversed in very
few steps (cf. “six degrees of separation”16)
has been analyzed by Watts and Strogatz17.
Uniform, latticelike networks tend to have
long path lengths because pairs that are con-
nected tend to be connected to the same
other members of the set, that is, they are
clustered. Randomly generated networks can
have short path lengths, but also show little
clustering because connected pairs show little
similarity in their other connections.
However, a number of the sparse, natural
networks studied by Watts and Strogatz
showed short path lengths but high cluster-
ing. They named such networks “small-
world” networks. The friendship networks
studied in sociology as well as mathematical
and acting collaboration networks are of this
type. We found that the E. coli metabolic net-
work falls into the same category7,8. This

implies that, in modeling the properties of
metabolism, neither very regular structures
nor completely random networks would be
very faithful representations of metabolism
in general.

What is the biological relevance of the
“small-worldness” of the E. coli metabo-
lism? One way to generate a small-world
network is to take a regular network and
randomly reassign some of the connec-
tions. Another way is by accretion, where
new members are added by preferentially
making connections to existing members
that already have large numbers of connec-
tions. Barabási and Albert18 have shown
that the latter led to a small-world network
where the number of connections of the
members fell off in a power–law relation-
ship (i.e., a small number of members have
a large number of connections, and this
falls off smoothly so that the larger number
of members has few connections).
Randomly reassigned regular networks in
contrast have a notably peaked distribution
of connections. Film collaborations, hyper-
links in the worldwide web, and the US
power grid all show the power–law connec-
tivity18.

The E. coli network does so as well7,8.
Here, glutamate followed by pyruvate were
the most connected metabolites (again
omitting common coenzymes). After that,
the lists of metabolites ranked by their
number of connections and by their mini-
mum mean path length to other metabo-
lites were not exactly congruent, although
both lists featured tricarboxylic acid cycle
intermediates, and associated amino acids,
in highly ranked positions. Recently, Jeong
et al.19 have reached a similar conclusion for
the metabolic networks of a number of
microorganisms by a related though slight-
ly different analysis.

If, early in the evolution of life, metabolic
networks grew by adding new metabolites,
then the most highly connected metabolites
should also be the phylogenetically oldest.
Glycolysis and the tricarboxylic acid cycle are
perhaps the most ancient metabolic path-
ways, and various of their intermediates
(e.g., 2-oxoglutarate, succinate, pyruvate,
and 3-phosphoglycerate) occur near the top
of our lists, along with the amino acids
thought to be used earliest (glutamine, gluta-
mate, aspartate, and serine). This potential
link with evolutionary history is consistent
with Morowitz’s20 claim that intermediary
metabolism recapitulates the evolution of
biochemistry.
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Of course, metabolism might have
evolved small-world characteristics to opti-
mize metabolic function in some way. Watts
and Strogatz17 have studied how fast pertur-
bations spread through small-world net-
works. They concluded that the time
required for spreading of a perturbation in a
small-world network is close to the theoreti-
cally possible minimum. The importance of
minimizing the transition time between
metabolic states is recognized21,22, and small-
worldness may be a factor in allowing a
metabolism to react rapidly to perturbations,
although this requires further investigation
because metabolic dynamics are more com-
plicated than the simple kinetics used by
Watts and Strogatz.

In conclusion, a purely structural analysis
of a metabolic network may be able to teach
us about the network’s evolutionary history
and design principles. Some of our proposi-
tions are speculative at this stage, but our
analysis has revealed aspects of the network
structure that were not previously apparent.
The wealth of metabolic information about
to become available from the genomes of
ecologically diverse microbes will undoubt-
edly help to test these propositions.
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