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DOES EVOLUTIONARY PLASTICITY EVOLVE?
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Abstract.—During the development of a multicellular organism from a zygote, a large number of epigenetic interactions
take place on every level of suborganismal organization. This raises the possibility that the system of epigenetic
interactions may compensate or “‘buffer”” some of the changes that occur as mutations on its lowest levels, and thus
stabilize the phenotype with respect to mutations. This hypothetical phenomenon will be called ‘“‘epigenetic stability.”
Its potential importance stems from the fact that phenotypic variation with a genetic basis is an essential prerequisite
for evolution. Thus, variation in epigenetic stability might profoundly affect attainable rates of evolution. While
representing a systemic property of a developmental system, epigenetic stability might itself be genetically determined
and thus be subject to evolutionary change. Whether or not this is the case should ideally be answered directly, that
is, by experimentation. The time scale involved and our insufficient quantitative understanding of developmental
pathways will probably preclude such an approach in the foreseeable future. Preliminary answers are sought here by
using a biochemically motivated model of a small but central part of a developmental pathway. Modeled are sets of
transcriptional regulators that mutually regulate each other’s expression and thereby form stable gene expression
patterns. Such gene-expression patterns, crucially involved in determining developmental pattern formation events,
are most likely subject to strong stabilizing natural selection. After long periods of stabilizing selection, the fraction
of mutations causing changes in gene-expression patterns is substantially reduced in the model. Epigenetic stability
has increased. This phenomenon is found for widely varying regulatory scenarios among transcription factor genes.
It is discussed that only epistatic (nonlinear) gene interactions can cause such change in epigenetic stability. Evidence
from paleontology, molecular evolution, development, and genetics, consistent with the existence of variation in
epigenetic stability, is discussed. The relation of epigenetic stability to developmental canalization is outlined. Ex-
perimental scenarios are suggested that may provide further evidence.
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The pathway from a zygote to an adult multicellular or-
ganism involves an immense number of components and in-
teractions on each of several levels of suborganismal orga-
nization. There are thousands of genes, each of which may
express a spectrum of biologically active molecules, a mul-
titude of regulatory interactions among those molecules,
which jointly build the web of cellular organization, and fi-
nally an immense number of intercellular communication
processes, which create the developmental coordination that
produces a finely integrated adult organism. Taken together,
they constitute the intricate fabric of the epigenetic system.
This complexity invites the question of how changes on the
lowest, submicroscopical levels of this production system are
translated onto the macroscopic level of the phenotype. How
do epigenetic interactions influence the effect of mutant genes
and their gene products on the phenotype? Can they absorb
or buffer some such effects? If yes, can such an ability to
“protect” the phenotype from mutations be subject to evo-
lutionary change? What direction would such change take?
These and similar questions shall be addressed here. But why
are they relevant in the first place? An essential prerequisite
for evolution is (heritable) phenotypic variation, and the evo-
lutionary potential of a group of organisms may often be tied
to the availability of such variation. A large amount of phe-
notypic variation may increase the chances for the rare oc-
currence of superior phenotypes. The architecture of the epi-
genetic system will have to be recognized as an important
determinant, facilitating or inhibiting, enabling or preventing
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organismal evolution, if it is found that different epigenetic
architectures allow for different amounts of phenotypic vari-
ation. Related are many prominent issues, including those
regarding the nature and frequency of neutral mutations, as
well as the enigmatic maintenance of high amounts of her-
itable variation in natural populations. Some of them will be
discussed in relation to the findings reported below.

Why are these questions not ranked prominently in current
evolutionary biology? Methodological reasons may be re-
sponsible. Essential for any buffering of mutation effects is
a certain type of epigenetic interactions, namely nonlinear
(epistatic) interactions, as will be discussed in greater detail
below. This type of interaction is most likely pervasive in
nature, as Wright (1968) already notes. It represents the rule
rather than the exception. However, its analysis and, in fact,
the analysis of polygenic systems in general is notoriously
difficult. Formal genetic studies of polygenic systems (for an
example, see Milkman 1960) provide invaluable information
about patterns of gene interaction, but they may not have the
resolving power required for the task at issue. Desirable
would be a qualitative and quantitative understanding of all
the steps involved in the developmental pathway leading to
a phenotypic character of some model organism, an under-
standing that would require quantitative biochemical data of
high accuracy. From such a system, a model could be for-
mulated that allows to answer some of the above questions.
Given available biochemical methods, such a model is un-
likely to be available soon. An added complication of non-
linear models is that crucial properties of a model may change
with subtle alterations in it. Robustness of results, for ex-
ample to changes in model parameters, becomes a major is-
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sue. In spite of all these obstacles, it seems worthwhile to
seek a reference point for discussion, if one considers the
importance of the above questions. To provide preliminary
answers, I present a biochemically motivated model of an
epigenetic process central to development.

The terms “‘stability of the epigenetic system to mutations”’
or simply ‘“‘epigenetic stability’’ will be used to denote the
kind of resilience considered here. Their intended meaning
is that a system with high epigenetic stability buffers the
phenotype effectively against mutations. The same amount
of genetic variation leads to less phenotypic variation in a
system with high stability than in one with low stability. It
is thus clearly related to ‘‘developmental canalization” in
“‘epigenetic landscapes” (Waddington 1957), representing
the genetic aspect of canalization, as will be discussed in
greater detail below. However, the term ‘‘epigenetic stabili-
ty”” will here be given preference over “‘genetic canaliza-
tion,”” because it emphasizes the epigenetic nature of the
phenomenon. It should be clearly distinguished from ‘‘phe-
notypic plasticity,” the environmental aspect of canalization
(e.g., Scheiner 1993), as well as from ‘‘genomic plasticity,”
the spatiotemporal variability of genome structure (e.g., Gut-
man et al. 1987, Leblond et al. 1991).

Basic pattern-formation phenomena in organismal devel-
opment involve evolutionarily highly conserved proteins that
regulate gene expression on the transcriptional level. Em-
pirical evidence suggests that these transcriptional regulators
frequently interact in a networklike fashion to establish pat-
terns of gene expression that, in turn, determine basic Bau-
plan features of the organism (Ingham 1988; McGinnis and
Krumlauf 1992). Their central role makes such networks and
their constituent genes an important and popular subject of
research in evolutionary and developmental biology (Ingham
1988; Kappen et al. 1989; Krumlauf 1994; Lawrence and
Morata 1994; McGinnis et al. 1990; McGinnis and Krumlauf
1992; Olson 1990; Rosenfeld 1991). The establishment of a
gene-expression pattern by crossregulatory interactions with-
in a network can be viewed as a small segment of a devel-
opmental pathway, and there may be many different ways by
which regulatory interactions could establish one specific
gene-expression pattern (Carroll 1990; Akam 1989). The
likelihood that a mutation affecting regulatory interactions
changes the network’s gene-expression pattern can be viewed
as a measure for the epigenetic stability of that segment of
a developmental pathway. With this perspective in mind, a
mathematical model for the regulatory interactions within
gene networks is formulated and used below to address the
following two questions. Are there differences in epigenetic
stability among networks that produce the same gene-ex-
pression pattern. If so, can natural selection act on this vari-
ation? In other words, could epigenetic stability be an evolv-
ing rather than an inherent feature of a developmental path-
way? The result is unambiguous and robust to changes in all
model parameters: evolution towards high stability occurs if
the gene-expression pattern that a network produces is subject
to stabilizing selection. Whether or not such a gain of epi-
genetic stability is a phenomenon of general biological im-
portance is ultimately an empirical question. Potentially rel-
evant paleontological, genetic, and developmental evidence
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is discussed. General experimental scenarios are suggested
that may provide further evidence.

THE MODEL

Only a fraction of the genes encoding transcriptional reg-
ulators are likely to be expressed in any given cell and during
any given ontogenetic stage of an organism. Moreover, ex-
pression patterns of these genes may vary from cell to cell
and from stage to stage. The model to be used here refers to
the expression pattern of transcription factor genes only in
one developmental stage and only in one cell or a body region
that shares an expression pattern, such as, for example, a set
of nuclei in a part of a Drosophila blastoderm expressing a
specific subset of segmentation genes (Ingham 1988). A sub-
set of NV such genes, denoted as (Gy, . . ., Gy), whose products
mutually regulate each other’s expression on the transcrip-
tional level will be referred to as a ‘““network.”” Due to cross-
coupling between regulatory pathways (Schiile and Evans
1991), the number of regulatory proteins (transcriptional reg-
ulators and others) involved in most intracellular regulatory
circuits is probably large. However, those circuits presumably
relying to a large extent on transcriptional regulation may be
quite small, involving 10 to 100 or fewer genes, according
to the available circumstantial evidence (Ingham 1988; He
et al. 1989; McGinnis and Krumlauf 1992).

Regulation of transcription from RNA Polymerase II pro-
moters in eukaryotes is a process in which DNA interacts
with multiprotein complexes (Johnson and McKnight 1989;
Mermelstein et al. 1989). Many of the protein-protein and
protein-DNA interactions involved are poorly understood,
and a considerable number of genes important for the process
are probably not even cloned and characterized (Weinzierl et
al. 1993). Based on the available empirical data, it seems
therefore unlikely that a good qualitative model—Iet alone
a quantitative theory—of transcriptional regulation will be
available in the near future. For these reasons and in order
to arrive at an analytically and computationally tractable for-
malism, a number of simplifying assumptions will be used
in the model presented here. It is assumed, (1) that expression
of the genes in the network is regulated exclusively on the
transcriptional level, (2) that each gene of the network pro-
duces one and only one species of an active transcriptional
regulator, and (3) that enbhancer elements mediating one re-
gulator’s effect on expression of the target gene act inde-
pendently from enhancer elements for other regulators of the
same gene.

In the model used here and motivated in a more formal
way by Wagner (1994), a gene network is represented by a
dynamical system whose state variables correspond to ex-
pression states of the network’s genes. They are denoted as

S@) = (S,(1), . . ., SM(D), (1)

where S;(r) is the expression state of the ith gene at some
time ¢ = 0 during some developmental process in which the
network acts. For reasons of computational simplicity, it is
assumed that S,(¢) can assume only two values, namely (+1)
and (—1), corresponding to a situation in which the gene G;
is expressed or not expressed, respectively, at time f. The
gene expression state S(0) at time ¢ = 0 is called the initial
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expression state. It can be conceptualized as being imposed
onto the network by the products of one or more ‘‘upstream”’
genes that are not themselves part of the network. Such prod-
ucts might be extracellular signaling molecules, such as
growth factors or differentiation signals, but also transcrip-
tional regulators, for example, a retinoic acid receptor acting
on homeobox genes in a developing vertebrate limb. The
boundary of a network is therefore somewhat arbitrary: a
gene is defined as “‘upstream’ by virtue of the fact that it
regulates the expression of network genes, but is not regu-
lated by these genes. .

Starting from the initial gene-expression pattern, S(0),
cross- and autoregulatory interactions among network genes
cause the expression state to change. These changes are mod-
eled by the set of difference equations

Sl(t + T) i j(t) = U[ht(t)] (2)

Here, the expression state of gene G, at time ¢ + 7, S,(t +
7), is a function of a weighted sum, 4;(¢), of the expression
state of all network genes at time . h,(r) represents the sum
of the regulatory effects of all network genes on gene G;.
o(x) is the sign function (o(x) = —1 for x < 0, o(x) =
for x > 0 and ¢(0) = 0), and 7 is a time-constant characteristic
for the process under consideration. Its value will depend on
biochemical parameters such as the rate of transcription, or
the time necessary to export mRNA into the cytoplasm for
translation. The real constants w;; represent the ‘‘strength”
of regulatory interaction of the product of G; with G, that
is, the degree of transcriptional activation (w > 0) or re-
pression (w;; < 0) that the transcriptional regulator produced
by gene G, has on gene G;. Such regulatory interactions are
known to be mediated by regulatory (enhancer) DNA ele-
ments. In biological terms, individual w;;’s can be thought of
as some compound measure of the binding constant and the
transcriptional activation (repression) ability of the factor
produced by G, at the enhancer element that mediates its
interaction with G,. Alternatively, and in line with the struc-
ture of (2), w;; can be thought of as a measure of the influence
that the product of G, has on G, relative to other gene prod-
ucts. In this sense, it is the relative size of these constants
that is relevant to the dynamics of (2). The ith row of w, w,

= {w,~j|1 = j = N} corresponds to the entire enhancer of
gene G, with all regulatory DNA elements that affect the
expression of G,. The “‘connectivity matrix” w = (wyj) that
the constants w,, define corresponds to all regulatory DNA
elements relevant to regulatory interactions among network
genes. Any non-zero diagonal element, w;; # 0, corresponds
to autoregulation of G; by its own gene product (e.g., Regulski
et al. 1991; Sucov et al. 1990). Some (or most) entries of w
may be 0. The fewer non-zero entries w has, the fewer reg-
ulatory interactions exist among network genes. An important
model parameter is therefore the fraction of entries different
from 0, denoted by ¢ (¢ € (0, 1)), which will be called the
“connectivity density” of the network. The discrete-time dy-
namical system (2) can also be viewed as the limiting case
of a system of differential equations, in which concentrations
of gene products, rather than binary (on-off) gene expression
states change (Wagner 1994), but computational limitations
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prohibited the use of such a system here. It should be noted
that the structure of (2) is similar to “‘spin glass’’ (Binder
and Young 1986) or neural-net (Amit 1989; Hopfield and
Tank 1986) type models of gene networks first introduced by
Kauffman (1969, 1993). However, (2) is conceptually dif-
ferent from Kauffman’s models in that a specific type of gene
interaction, namely transcriptional regulation, is considered.
Recently, models conceptually similar to (2) have been suc-
cessfully used to describe and predict regulatory gene inter-
actions in early Drosophila embryogenesis (Mjolsness et al.
1991; Reinitz et al. 1995; Reinitz and Sharp 1995).

The dynamics of (2) will lead to the attainment of an equi-
librium gene expression state, which may be a fixed point of
(2) or a limit cycle. For reasons of tractability, only fixed-
point equilibria will be considered here. They are denoted by
S(OO) Below, the amount of time that a network takes to reach
such an equilibrium when starting from S(O) will be of im-
portance. This amount of time is also indicative of the length
of the path to equilibrium in the space of all possible gene-
expression states. It will therefore be referred to as the path
length to equilibrium. The genes expressed in the equilibrium
state will affect the expression of genes outside (‘‘down-
stream”) of the network. Possible downstream genes may
include structural genes or genes encoding proteins involved
in signal transduction processes, but also transcriptional reg-
ulators that do not themselves regulate the expression of
genes within the network (Budd and Jackson 1991). Many
experimental genetic studies (e.g., McGinnis and Krumlauf
1992) suggest that deviations in the expression pattern of a
gene network from the wild-type pattern causes develop-
mental perturbations that often lead to deleterious effects on
the adult phenotype. In a biological population, such indi-
viduals would be eliminated by natural selection. These ob-
servations motivate the assumption that an optimal equilib-
rium gene-expression state, denoted as S°P(), exists for net-
works acting in a developmental process. If a network attains
an equilibrium state S(OO) that is different from this optimal
state, developmental perturbations will result and the fitness
of the respective adult organism will be reduced. A network’s
equilibrium expression pattern may deviate from an optimal
pattern for a variety of reasons, one of them being mutations.
Mutations may affect a network in various ways. Mutations
in downstream genes may alter the effect that a network’s
gene-expression pattern has on these genes. Mutations in up-
stream genes may influence the initial state 3‘(0), and muta-
tions in transcription units of network genes will change the
interaction pattern inside the network in a global and drastic
way. It is, however, the matrix w defining the regulatory
interactions within the network that represents its most in-
teresting ‘‘organizational’’ properties, and thus mutations in
regulatory DNA regions, represented by changes in this ma-
trix, will be the focus of this study.

The evolutionary scenario envisioned here involves a gene
network acting in an ontogenetic process in each of the mem-
bers of a population of organisms. It is assumed that both
the initial gene-expression pattern, $(0), and the optimal equi-
librium gene-expression pattern, $7!(), are the same for all
organisms in that population. The organisms are subject to
mutations of regulatory DNA regions, recombination among
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network genes, and genetic drift. They are also subject to
stabilizing selection on the optimal gene-expression state,
SOP’(OO) This requires a notion of an individual’s fitness, which
is modeled in the following way. A measure for the distance
d between the equilibrium state $(c) attained by a network
and the population’s optimal equilibrium state is defined by
d[§or'(0),8(2)] := % — 1/(2N) SN | S()S¢p'(0). This measure
is known as the Hamming distance (Amit 1989). It counts
the number of expression states of individual genes that are
different in the two states and normalizes it to the interval
(0, 1). Based on d, the fitness of an individual is then defined
via a Gaussian fitness function as

(_ d[Sr(2), §<w)12>
P ——

N

3

The parameter s (s > 0) represents the strength of selection,
small values of s implying strong selection against deviations
from the optimal state. Two principal questions will be asked
in this scenario. First, consider only those networks within
a population that attain an equilibrium expression state, (),
that is identical to the optimal gene expression state Sopt(e),
Is there variation in the stability of these networks to mu-
tations, that is, are there networks in which mutations are
more likely to cause a change in 3’(00) than in others? Second,
if such variation exists, is it heritable, and is it thus possible
to select for high epigenetic stability?

To develop an analytical theory for this problem is a for-
midable task, given that dynamical systems like (2) in and by
themselves pose difficult analytical problems (Amit 1989,
Binder and Young 1986), and given the added dimension of
a population-level process acting on the networks. Therefore,
a numerical approach is used here, in which a population of
(initially) identical gene networks is generated from one
“founder”’ network in a way detailed in the next section. The
optimal gene-expression state within the population is the
equilibrium gene-expression state of this ‘“‘founder’ network.
Then, networks within the population are allowed to diverge
by subjecting them to mutation and recombination, while ex-
ercising stabilizing selection on the optimal gene expression
pattern, until the mean fitness of the population has reached
a quasiequilibrium. The evolution of epigenetic stability
among members of this population is studied during this pro-
cess.

Little is known empirically about ‘“‘typical’ initial and
equilibrium expression states, as well as about patterns of
regulatory interactions within gene networks. Starting a pop-
ulation simulation with one type of network that has a pre-
specified initial, equilibrium state and connectivity matrix
would therefore require many ad hoc assumptions about bi-
ologically significant network features. This is in part cir-
cumvented here by pursuing a statistical approach involving
infinite sets E (“‘ensembles’’) of networks, each with its own
initial state, equilibrium state, and matrix w of regulatory
interactions. Each network within an ensemble is the starting
point of an evolution scenario as outlined above, during
which evolution of stability in a population of organisms is
monitored. This permits one to assess how sensitive results
are to variations in network features. In this approach, the
ensemble is a more suitable level to characterize network
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structure than the individual network, and network charac-
terization is therefore statistical in nature. The following pa-
rameters are used to characterize a network ensemble. First,
all networks within an ensemble have the same number of
genes, N. Second, among networks within an ensemble, the
number of genes expressed in the initial state follows a bi-
nomial distribution B(N, p). In other words, if one were to
choose randomly (with uniform distribution) a network from
the ensemble, the probability of finding a specific initial state
S(0) with k expressed genes would be given by ()pk(1 —

p)V-*. This also implies that the mean number of expressed
genes in the initial state is given by Np. Expressed genes in
the equilibrium state follow the same distribution but are
stochastically independent from those expressed in the initial
state. Third, connectivity matrices w within the ensemble are
defined by a probability distribution p(w) of regulatory in-
teraction strengths (specified below), with a mean fraction ¢
of connectivities different from 0 among networks within the
ensemble. The number of these connectivities varies from
network to network. Because a numerical analysis is per-
formed here, only finite samples of a network ensemble can
be studied. Such samples are generated by a random search
in the space of all possible gene networks with given N, p,
¢, and p. The important question regarding robustness of
results to variation in model parameters is addressed by nu-
merically generating several ensemble samples with different
values of N, p, ¢, and p. As will be discussed below, results
might also be sensitive to the specific way in which mutations
are modeled. Therefore, two different models for introducing
changes into connectivity matrices w are used to provide
additional support for robustness of the results.

NUMERICAL METHODS

This section and the Appendix describe how ensemble
samples were generated, how evolution was simulated, and
how epigenetic stability was assessed.

Generation of Individual Networks and of Ensemble Sam-
ples.—At the outset of this study are numerically generated
finite samples of infinitely large network ensembles E. Each
network in an ensemble (sample) has its own initial state
S(O) equilibrium state S(oo) and connectivity matrix w. Sam-
ple sizes ranged from 150 to 300 networks and are given
along with results in the next section. Because sample mem-
bers were generated independently from each other, it is suf-
ficient to describe how one member was generated.

Figure 1 outlines the procedure used to generate individual
ensemble members. First, two binary pseudorandom arrays
in {—1, 1}¥, corresponding to $(0) and $°7*, were generated.
Individual entries of these arrays were stochastically inde-
pendent both within each array and among arrays. Each entry
was chosen according to the probabilistic rule P(S; = 1) =
p, p being a real number in (0, 1). It follows that the number
of entries equal to (+1) in each array is binomially (B[N, p])
distributed, with mean Np. Then, a N X N pseudorandom
matrix w = (w;;) with independently and identically distrib-
uted entries was generated. Individual entries of this matrix
were different from 0 with probability ¢, and entries different
from 0 followed a continuous probability distribution p(w;)
(Gaussian and ‘‘reflected’”” gamma distribution, see Appen-
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Set counter jtoj=0
Generate a random initial state S(0)

i

Generate a random equilibrium state S(ee)

'

Increase j by one no

yes

Generate a random matrix w | ™%
Carry out dynanlics 2) A
using w and S(0)
no

Does the _network
attain S(e0) ?

* yes

w, with 5(0) and S(es),
is a member of the
network ensemble

FiG. 1. Numerical generation of network ensemble members.

dix). Subsequently, network dynamics (2) was performed us-
ing 3‘(0) as initial state and w as connectivity matrix. If the
network did not attain the equilibrium state §(OO) as a fixed
point, the matrix w was ‘“‘discarded,” a new matrix w was
generated in the same way as the old one, and the network’s
dynamics was evaluated again. New matrices were generated
in this way until a matrix had been found for which the
network attained S(«) as a fixed point, or until 5 X 22V ma-
trices had been generated, whichever came first. If no matrix
had been found after 5 X 22V trials, the pair of states S(0)
and S(OO) was discarded, a new pair of state arrays S(O) and
S() was generated in the same way as the old pair, and a
stochastic search for a matrix w was performed in the same
way as for the old pair of states. Once a matrix was found
for which (2) attamed S(OO) as a fixed point with S(O) as initial
state, the triplet (S(O) S(OO) w) was considered a member of
the ensemble sample. Further details of the sample generation
procedure are given in the Appendix.

The following network features were kept constant while
generating one ensemble sample: N, the number of network
genes, p, the (mean) fraction of genes expressed in initial
and equilibrium state, ¢ the (mean) fraction of connectivities
different from 0, and p(w;), the probability distribution of
non-zero connectivities w; within the ensemble. However,
for different ensemble samples, different values of these pa-
rameters were used (4 < N < 10,0.1 <p <09,04 <c <
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1.0, different distribution types for p, see Appendix) to assess
robustness of results to variations in these parameters.

Simulated Evolution.—From each member of an ensemble
thus generated, a population, that is, an array of P = 500
identical copies of the ensemble member was generated. A
simulated evolution process involving mutation, selection,
genetic drift, and in some cases (see Appendix), recombi-
nation was performed for this population. Because an inde-
pendent evolution simulation was performed for each ensem-
ble member, it is sufficient to describe this simulation for
only one member. The following four processes were per-
formed in the given order. Each iteration of this sequence of
processes was considered one generation of simulated evo-
lution.

1. Recombination: In pairs of consecutive matrices in the
population, starting with the first pair of matrices, rows were
swapped with probability 0.5, corresponding to free recom-
bination between genes and tight linkage among regulatory
elements within a promoter. Note that randomness in the order
of matrices is already implied by the selection algorithm used
(step four).

2. Mutation: Each non-zero entry in each connectivity ma-
trix of the population was replaced with probability 1/(cN?)
by a pseudorandom number distributed according to the same
continuous probability density p as that used in the generation
of the ensemble sample. This approach is essentially the
house-of-cards assumption used in many models of popu-
lation genetics (e.g., Turelli 1985; Zeng and Cockerham
1993).

3. Fitness evaluation: Network dynamics (2) was evalu-
ated numerically for each network in the population, using
the same initial state S(O) for all networks. If a given network
reached some fixed point S(OO) after 3N or fewer time steps
(see also Appendix), its fitness was evaluated using (3) with

= 0.1. In this calculatlon the reference (optimal) gene
express10n state Ser!(e0) for all networks in the population
was the equilibrium state of the network that had ‘‘founded”
the population at the beginning of the simulation. If a network
had not reached equilibrium after 3N time steps, its fitness
was assigned the minimally possible value of exp(— 1/s), thus
making it very unlikely that the network survived the sub-
sequent ‘‘selection’ step.

4. Selection: Fitness of networks was normalized such that
the maximum fitness in the population was equal to 1. Then,
a network was chosen at random and a pseudorandom num-
ber, r, with uniform distribution on (0, 1) was generated. If
r was smaller than the fitness of the individual, the individual
“survived.”” This process was repeated until a new population
of the same size as the old population had been generated,
that is, sampling of networks was performed with replace-
ment.

Assessment of Epigenetic Stability before and after Simu-
lated Evolution.—The stability of networks to changes in
their connectivity matrices was assessed before evolution and
after 400 generations of simulated evolution. Because epi-
genetic stability might depend on the kind of changes caused
by a mutation, it is necessary to verify that results are not
artifacts of the way mutations are modeled. For this reason,
the sensitivity of networks to changes in their connectivity
matrix was assayed by two different means, ‘“mutation’” and
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“orthogonal perturbation.” A ‘“‘mutation’ consisted, as
above, in the replacement of a non-zero connectivity by a
random variate with the same probability distribution p as
that used in the generation of the ensemble sample. The meth-
od of “‘orthogonal perturbation” is described in detail in the
Appendix.

The same approach was taken to evaluate the stability of
networks with respect to both types of perturbations, muta-
tions, and orthogonal perturbations. For each member of an
ensemble sample, one perturbation was introduced and it was
tested whether the network, starting at 3(0), attained the same
equilibrium state, $(), as before perturbation. This process
was repeated (5000c¢) times with the original ensemble mem-
ber, and the fraction of perturbations that led to the attainment
of the stable equilibrium state was termed the stability of
that network before evolution with respect to the kind of
perturbation used. The corresponding assay after 400 gen-
erations of simulated evolution of the population generated
from that ensemble member was carried out in a slightly
different way. After step 4 (““Selection”) in the last gener-
ation of the simulated evolution process, the number of net-
works in the population that attained the equilibrium state
Sopi(w0), Nopr, Was determined. For each of these N, networks,
sensitivity of the network to perturbation was assayed in the
same way as that of the original ensemble member, except
that (c¢/N,,)5000 perturbations were used per network, thus
ensuring that the assay before and after evolution was based
on approximately the same fofal number of perturbations.
The fraction of perturbations that lead to a change in the
trajectory of the networks, such that 3“’1”(00) was not attained,
was taken as a measure for the (average) stability of the
network to the respective perturbation after evolution. Strictly
speaking, this measure is a feature of the population and not
of an individual network (as opposed to the measure of sta-
bility before evolution), but because $(0) and 3“’1”(00) are iden-
tical for all members of a population, it will loosely be re-
ferred to as the stability of a network after evolution.

RESULTS

Epigenetic Stability Varies among Gene Networks and It
Can Evolve.—Figure 2a shows epigenetic stability before and
after a simulated evolution process in networks of N = 10
genes with a density of regulatory interactions, ¢, equal to
one, that is, the expression of any given network gene is
regulated by all other network genes. Values of stability
shown on the abscissa of this figure demonstrate considerable
variation in stability among networks within the ensemble
sample, that is, before evolution. Values on the ordinate dem-
onstrate that stabilizing selection, mutation, and recombi-
nation increase and homogenize epigenetic stability in the
populations derived from individual ensemble members. In
other words, individuals in the simulated populations have
evolved the ability to “‘absorb’” mutations. Their pattern of
epigenetic interactions acts as a ‘‘buffer” that prevents the
effects of most mutations from becoming visible as altered
equilibrium gene expression states. Figure 2b shows that a
qualitatively identical result holds if stability to ‘‘orthogonal
perturbations’ instead of stability to mutations is assayed,
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Fic. 2. Evolution of epigenetic stability. N = 10, ¢ = 1. a. Epi-
genetic stability as measured by sensitivity of networks to mutation.
b. Epigenetic stability as measured by sensitivity of networks to
orthogonal perturbation. Numerical values represent the fraction of
mutation/orthogonal perturbation events that leave the simulated
stable gene-expression pattern unchanged. Results are based on an
ensemble sample of 300 networks. “Before evolution” indicates
the stability of each member of the sample, whereas ‘‘after evo-
lution” corresponds to the mean stability in the population derived
from it after 400 generations of simulated evolution, as described
in “numerical methods.”” Further parameters: p(w,) is N(0,1) dis-
tributed; p = 0.5; population size: 500 networks.

demonstrating that the observed phenomenon is not an ar-
tifact of a specific way of modeling mutations.

Results are Robust to Changes in Model Parameters.—Im-
portant parameters of the model include the number of genes
in a network, N, and the density of regulatory interactions
within the network, c. Figure 3a—c shows the effect of varying
the connectivity density c on the evolution of stability. It can
be seen that as ¢ decreases from 1, both mean stability after
evolution and variability of stability before evolution de-
crease. Figure 4a summarizes the results of Figures 2a and
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FiG. 3. Evolution of stability for networks with varying densities
¢ of regulatory interactions. a. ¢ = 0.8; b. ¢ = 0.6; c. ¢ = 0.4.
Numerical values represent the fraction of mutation events that
leave the simulated stable gene-expression pattern unchanged. ‘‘Be-
fore evolution’ indicates the stability of each member of the sample,
whereas ‘‘after evolution’ corresponds to the mean stability in the
population derived from it after 400 generations of simulated evo-
lution, as described in ‘“‘numerical methods.”” Results are based on
a sample of 200, 200 and 198 networks for (a), (b), and (c), re-
spectively. Further parameters: N = 10, p(w,]) is N(0,1) distributed;
p = 0.5; population size: 500 networks.

3a—c, showing mean and standard deviation of stability before
and after evolution. ““Error’’ bars in this figure indicate dif-
ferences in variation of stability before and after evolution,
and not only ‘“‘significance’ of differences in mean stability.
Figure 4b shows results corresponding to those in Figure 4a,
but for “‘orthogonal perturbation” instead of mutation, dem-
onstrating again that the phenomenon observed here is not
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an artifact of a specific way of modeling mutations. Figure
5 shows results analogous to Figure 4, but here the number
of genes, N, is varied, whereas the connectivity density c is
kept constant at ¢ = 1. In sum, it can be said that both a
decrease in the density of regulatory connections and in the
number of network genes lead to a reduced increase in epi-
genetic stability during evolution, while not changing the
qualitative finding that such an increase takes place. Varying
two further important characteristics of network structure,
the mean number of expressed genes, Np, and the distribution
type, p, of individual connectivities yields increases in sta-
bility comparable in magnitude to those reported above (re-
sults not shown).

A decrease in (1) the number of regulatory interactions per
gene or (2) the number of network genes causes a decrease
in stability to mutations after evolution (Figs. 4 and 5). This
behavior can be qualitatively understood from the structure
of the network model (2). The sum of all regulatory influences
on gene G; at time ¢, hi(t) = XN ,w;S/(s), determines G,’s
expression state at time ¢+ + 7. Changing the value of indi-
vidual regulatory connections w;; by mutation will change
the value and, sometimes, the sign of A;(¢). It can be shown
(Wagner 1994), that the probability that a mutation changes
the sign of A,(f) is proportional to the probability that the
equilibrium gene-expression pattern of a network is changed.
The probability of a sign change in A,(¢), in turn, is clearly
determined by the number of non-zero products w;S; that
contribute to this sum. The larger the number of these con-
tributions, the smaller the effect that an individual mutation,
that is, a change in one connectivity w;, has on the whole
sum, h,(#). The number of non-zero products w;S, in hJt)
depends on (1) the number of genes in the network and (2)
the density of regulatory connections, that is, the number of
non-zero wy;’s in the network. In other words, as network size
or connectivity density is decreased, the influence that in-
dividual mutations have on 4,(¢) increases, and, thus, the like-
lihood that a mutation changes the equilibrium gene-expres-
sion pattern increases as well. The number of regulatory con-
nections and the number of network genes set an upper bound
for epigenetic stability that can not be exceeded. A network
with many connections or many genes can absorb higher
mutational pressure than a network with few connections or
few genes.

The absence of a rigorous analytical understanding of this
system does not preclude the possibility to characterize net-
works of high and low stability phenomenologically. What
happens in a population of gene networks during the evo-
lution of high stability? The following numerical analysis
provides a partial answer. It is based on networks with N =
10 genes that are densely connected, that is, ¢ = 1. The
phenomena observed for these parameter values are repre-
sentative of and exemplify those observed for different val-
ues, which are therefore not shown.

Some Path Lengths Occur More Frequently Than Others.—
The path length of a member network of the ensemble E is
defined as the number of time steps of (2) that the network
takes to get from 5’(0) to 3‘(00). Figure 6 shows the distribution
of path lengths in an ensemble sample of 1000 networks, that
is, before evolution, depicting the relative frequency of each
path length. It is clear that not all path lengths occur with
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Fic. 4. Evolution of epigenetic stability for networks with varying
densities ¢ of regulatory interactions. a. Epigenetic stability as mea-
sured by sensitivity of networks to mutation. Values are calculated
from the simulation results shown in Figures 2a, 3a, 3b, and 3c. b.
Epigenetic stability as measured by sensitivity of networks to or-
thogonal perturbation. Left and right columns in each pair of col-
umns show mean stability of a network ensemble sample “‘before
evolution” and mean stability of all populations derived from it
“after evolution,” respectively. The length of error bars is equal
to 1 SD. They indicate differences in variation of stability before
and after evolution, and not only “significance”” of differences in
mean stability. Results shown are based on numerically generated
ensemble samples of at least 175 networks. Further parameters: N
= 10; p(w,) is N(0,1); p = 0.5; population size: 500 networks.

equal frequency. Networks with path lengths 2 to 5, for ex-
ample, occur more frequently than networks with path length
10 to 12. Because the network search algorithm used to gen-
erate the sample is unbiased with respect to path length, one
can conclude that networks with certain (short) path lengths
occupy a much larger volume in the space of all possible
genotypes, than networks with other (longer) path lengths.
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by sensitivity of networks to orthogonal perturbation. Left and right
columns in each pair of columns show mean stability of a network
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length of error bars is equal to 1 SD. They indicate differences in
variation of stability before and after evolution, and not only “sig-
nificance” of differences in mean stability. Results shown are based
on numerically generated ensemble samples of at least 175 net-
works. Further parameters: ¢ = 1; p(w,) is N(0,1); p = 0.5; pop-
ulation size: 500 networks.

This observation invites the question whether epigenetic sta-
bility and path length are correlated.

Epigenetic Stability is Coupled to Path Length.—Figure 7a
shows a diagram of epigenetic stability versus path length in
a sample of E, that is, before evolution. It is clear that there
is a correlation between path length and epigenetic stability.
The estimated Pearson correlation regression coefficient is r
~ —0.79. Figure 7B is included to demonstrate that this
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S(). Note the significant differences in relative frequencies for
different path lengths. Further parameters: p(w,) is N(0,1); p = 0.5.

feature is not likely to be an artifact of the way mutations
are modeled (r = —0.49). These results imply that mutations
are more likely to have deleterious effects in a network with
a long path to equilibrium than in a network with a short
path. This raises the possibility that networks with high path
length are replaced with networks of lower path length during
evolution, because the latter are less likely to mutate to sub-
optimal variants.

Evolutionary Forces Change Path Lengths in a Popula-
tion.—Figure 8a shows mean and standard deviation of path
length during 400 generations of simulated evolution in a
population of networks with N = 10 and ¢ = 1. In generation
0, this population consisted of 500 identical networks, all of
which were copies of one network with path length 10. It is
obvious that a significant reduction in path length occurs in
fewer than 200 generations of network evolution. Figure 8b
shows the distribution of path lengths before and after evo-
lution in a sample of E. It demonstrates that a process similar
to that shown in Figure 8a occurs also on the ensemble level.

From the results presented so far, one can also infer that
the evolution of path lengths cannot fully account for the
evolution of high stability. To see that, consider a set of
networks with a given path length before evolution, for ex-
ample, networks from Figure 8a (N = 10, ¢ = 1) with path
length 3. It is evident from the figure that these networks
show variation in epigenetic stability (the coefficient of vari-
ation is ¢, /% = 0.129). This demonstrates that there are dif-
ferences in stability among ensemble members with a given
path length. Further, the mean path length of networks after
evolution in Figure 8b (N = 10, ¢ = 1) is 2.46, a value close
to 3. Variation in epigenetic stability for networks after evo-
lution is low, as can be seen from Figure 2a. The coefficient
of variation in stability after evolution for networks in this
figure is o,/% = 0,026, much lower than that for networks
with path length 3 before evolution. Thus, stabilizing selec-
tion eliminates not only path lengths with low stability, but
also networks with a given path length and low stability.
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Path Length and Epigenetic Stability Are Correlated
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Fic. 7. Correlation of path length to epigenetic stability. Results

are based on an ensemble sample of size 300. ““Path length” in-
dicates the path length of each member of the ensemble, **Stability”’
indicates its epigenetic stability before evolution based on (a) mu-
tation (estimated Pearson correlation coefficient r = —0.79, sig-
nificantly different from zero at P < 0.01) and (b) orthogonal per-
turbation (r = —0.49 at P < 0.01). Network parameters: N = 10;
¢ = 1; p(w,) is N(0,1); p = 0.5.

Evolution of Stability and Recombination.—A question that
has not yet been addressed concerns the influence of recom-
bination on the evolution of stability. All results shown so
far involved free recombination among network genes. Is
recombination required for the observed phenomena? The
answer is no. For example, Figure 9a shows the evolution of
mean and standard deviation of path length during 400 gen-
erations of simulated evolution in a population of networks
(N = 10 and ¢ = 1). It is completely analogous to Figure 8a,
except that no recombination occurred in the population of
Figure 9a. Similarly, Figure 9b shows results on the ensemble
level, analogously to Figure 9b but without recombination.
It is clear from the figures that the presence or absence of
recombination makes little difference for the evolution of
path lengths. Epigenetic stability before and after evolution
is also virtually identical for the two scenarios and to avoid
further redundancy no separate graphs are shown for the asex-
ual case.

The mere observation that selection is effective in the pres-
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FiG. 8. Evolution of path lengths. a. Change of mean (dots) and
standard deviation (length of bars) of path length in a population
of 500 networks derived from one ensemble member with path
length 10. The population was subjected to 400 generations of mu-
tation, recombination and selection. Note the rapid decrease in mean
path length. b. Path length of each member of an ensemble sample
(225 networks) before evolution versus mean path length in a pop-
ulation (derived from the respective ensemble member) after 400
generations of evolution as in (a). Network parameters: N = 10, ¢
= 1, p(w) is N(0,1); p = 0.5.

ence of recombination suggests that recombination leaves
important network properties unchanged. This may seem sur-
prising, given that recombination causes profound ‘‘system-
ic”” changes in a network. One example for such a property
is path length to equilibrium. One might suspect that path
length, being an “‘emergent’’ network feature depending on
the interaction of all network genes, would be randomized
by the random shuffling of the genes involved in recombi-
nation. However, the observation that mean path length in a
population changes under the influence of selection suggests
that path length is a ‘“‘heritable’” feature of such networks.
That this is indeed true is demonstrated by the numerical
example in Figure 10. Shown is a plot of mean parental path
length versus mean offspring path length in generation 200
of a simulated evolution process initialized by an ensemble
member with path length 10 (heritability A2 = 0.66, P <
0.01).
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FiG. 9. Evolution of path lengths in an ‘‘asexual” population. a.
Change of mean (dots) and standard deviation (length of bars) of
path length in a population of 500 networks derived from one en-
semble member with path length 10. The population was subjected
to 400 generations of mutation and selection, but no recombination
(cf. Fig. 8). Note the rapid decrease in mean path length. b. Path
length of each member of an ensemble sample (113 networks) be-
fore evolution versus mean path length in a population (derived
from the respective ensemble member) after 400 generations of
evolution as in (a). Network parameters: N = 10, ¢ = 1, p(w;) is
N(0,1); p = 0.5.

In sum, it can be said that stabilizing selection increases
epigenetic stability in the model of gene networks used here
and it does so regardless of network architecture and the mode
(sexual/asexual) of reproduction. Mutations in networks with
low stability and high fitness produce many genotypes with
low fitness. However, they also produce some genotypes with
high fitness and higher stability than the original network.
Networks with low fitness are eliminated, but networks with
high fitness and high stability accumulate, because they pro-
duce fewer suboptimal variants. Thus, networks with high
stability and high fitness replace networks with low stability
and high fitness in a population. In this model, stability is
associated with short paths to equilibrium gene expression
states of a gene network. The selection process at work acts
in part on these path lengths.
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Fic. 10. Path lengths are heritable. Results shown were obtained
in generation 200 of a simulated evolution process initialized with
one member of a network ensemble (N = 10, ¢ = 1) with path
length 10. The abscissa shows the mean path length of two “‘parent”
networks that were subsequently subjected to recombination, the
ordinate axis represents the mean path length of the two ““offspring”
networks obtained from them. Numbers to the right side of each
dot indicate the absolute frequency with which a pair of values
occurred. The estimated regression coefficient (heritability) is 0.66
at P < 0.01. Further parameters: p(w,) is N(0,1); p = 0.5.

DiscussioN

Networks of transcriptional regulators guide important de-
velopmental pattern formation processes in various organ-
isms, and the ubiquity of transcriptional regulation suggests
that important developmental functions of such gene net-
works still await discovery in many other organisms. Most
significantly, gene networks are involved in the patterning of
characters of the organismal body plan. These characters are
highly conserved and show little naturally occurring varia-
tion. In this paper, it is investigated whether such conser-
vation may in some cases reflect an evolved resilience, termed
“‘epigenetic stability,” of a developmental pathway to mu-
tation. Because this question is difficult to address experi-
mentally, a mathematical model for gene networks was used
here to provide preliminary answers. Using this model, it was
found that epigenetic stability varies among networks of tran-
scriptional regulators. In some gene networks, almost all mu-
tations have a phenotypic effect, whereas in others almost
none do. The following phenomenon is observed for all ex-
cept those very few networks who have exceptionally high
stability to begin with. In a simulated population of organisms
in which a network acts and in which selection favors a
specific, “‘optimal’’ gene-expression pattern, epigenetic sta-
bility is substantially increased in the course of an evolu-
tionary process involving many generations of mutation and
selection. What happens during evolution? Epigenetic sta-
bility is a property of the epigenetic system, that is, the pattern
of epigenetic interactions represented here by regulatory in-
teractions between transcriptional regulators and the genes
that encode for them. Subjected to a certain amount of mu-
tational pressure, a network with low stability will produce
a larger number of deleterious mutants (i.e., gene networks
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with expression patterns other than the optimal pattern) than
one with high stability. Occasionally, some mutant genotypes
are produced that are phenotypically neutral (i.e., they leave
the gene expression pattern unchanged), but have higher epi-
genetic stability than the original genotype. Thus, a quite
indirect process is at work, in which genotypes with low
epigenetic stability are eliminated from a population due to
the large fraction of maladapted offspring they produce. A
reorganization of the epigenetic system towards high stability
to mutations takes place.

Results Are Robust to Changes in Model Features.—Are
the findings just described likely to apply to real gene net-
works? The two issues relevant to this question are robustness
of results to changes in network architecture and to relaxation
of assumptions made in the model. Network architecture is
specified by model parameters, such as the number of genes
in a network, the number of transcriptional regulators influ-
encing the expression of any given gene, the pattern of reg-
ulatory interactions, and the number of genes that are tran-
scriptionally active. It is reassuring that the results summa-
rized above are qualitatively independent of variations in
these aspects of network architecture. Interestingly, the larg-
est increase in stability is seen in network types with large
numbers of regulatory interactions. The observed phenom-
enon does not seem to be an artifact of the way in which
mutations are modeled, because two quite different ways of
introducing changes in networks yield qualitatively identical
results. Further, the mode of reproduction (sexual reproduc-
tion with recombination or asexual reproduction) seems to
be of little significance. The evidence presented implies that
epigenetic stability can be heritable in sexually reproducing
populations. Moreover, note that a conscious decision to use
a haploid model was made here, because in a haploid model
no relevant genetic variation can be hidden in relations of
dominance and recessiveness among alleles. It is not clear a
priori whether diploidy would further increase the magnitude
of the effects observed here, because evolution of specific
dominance relations among alleles seems possible in a model
like this. However, it is unlikely that diploidy would diminish
these effects. A further important simplifying assumption was
that the regulatory influences of different transcription factors
act additively in determining the activation state of the gene
whose expression they regulate, an assumption reflected by
the additive superimposition of regulatory contributions in
(2). Because nonadditivity is responsible for the phenomena
reported here, a change in this aspect of the model would
most likely not eliminate the observed effects. They should
rather become more pronounced.

Epistasis and the Evolution of Epigenetic Stability.—Figure
11a illustrates a metaphor that may be useful to visualize the
results discussed above. In this figure, shaded regions cor-
respond to optimal genotypes within the rectangular box rep-
resenting all possible genotypes, that is, ‘‘genotype space.”
In terms of the model, the matrix w of regulatory interactions
within a gene network is represented by a point in the space
of all possible matrices (genotypes) w. The matrix w of a
network that attains its optimal gene expression pattern is
represented by a point on one of the shaded “‘islands.”” Mu-
tations in regulatory DNA sequences change connectivity
matrices, such that the matrix w' generated from a matrix w
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Fic. 11. Epistatic gene interactions are necessary for the evolution
of epigenetic stability. Shaded regions represent sets of optimal
genotypes in ‘“‘genotype space.” Clouds of points represent popu-
lations of organisms (genotypes). The circle around one individual
(genotype) in population A in (top) indicates the mean distance by
which a genotype is displaced in genotype space after a mutation
event. See text for details.

by mutation occupies a different location in genotype space.
The mean displacement in genotype space caused by a mu-
tation is a measure for the extent of this change. An evolving
population of organisms can be viewed as a moving cloud
of points in genotype space, and one factor determining the
extension of this cloud is the mean displacement caused by
a mutation event. Consider, for example, population A in
Figure 11a, which consists of some optimal and some sub-
optimal genotypes (the mean displacement caused by a mu-
tation is indicated by the circle drawn around one of the
individuals in the population). Evolution of high epigenetic
stability takes place when such a cloud moves away from
the edge and towards the center of an island. After evolution
of high stability (e.g., population B in Fig. 11a) mutations
generate fewer suboptimal genotypes. Population C illus-
trates that the topography of the regions of optimal genotypes
and the extent of change caused by mutations jointly deter-
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mine whether evolution of stability is possible. In relation to
the extension of population C, the island it occupies is too
small to allow evolution of epigenetic stability. The image
presented here is clearly only a caricature of a real, high-
dimensional genotype space, since high-dimensional spaces
may have complicated and counterintuitive topological fea-
tures. It does, however, allow one to illustrate that epistatic
(nonlinear) gene interactions are essential for the evolution
of epigenetic stability. Consider a system analogous to the
one considered here, but in which a phenotype is determined
by additive contributions from some genotype w. In this case,
the islands of Figure 11a would be replaced by a hyperplane
in genotype space (Fig. 11b), that is, an infinitely thin set of
zero volume. From the point of view of an evolving popu-
lation, this set shows no local differences in epigenetic sta-
bility that are “‘visible’’ to the population. Evolution of epi-
genetic stability becomes impossible here.

A Time Scale for the Evolution of Epigenetic Stability?—
Among the factors that may influence the evolution of epi-
genetic stability are (1) population sizes, (2) the strength of
stabilizing selection, and (3) the number of genes and the
gene interactions involved (here, only a minute segment of
a developmental pathway was modeled). Given that these
factors may vary widely and that they represent in general
unknown variables, it is difficult to estimate a characteristic
time scale for the evolution of stability. However, a crude
calculation for the network model used here serves to show
that any increase in stability for a comparable real gene net-
work is likely to take place on a macroevolutionary time
scale. Consider a network with N = 10 genes, a density of
regulatory interactions of ¢ = 0.2-1.0, and assume that one
regulatory enhancer element corresponds to 20 to 100 base
pairs of DNA. If mutations affecting these elements occur at
a rate of approximately 10~° per base pair per generation,
and if one takes into account the mutation rates used for
simulated evolution here, as well as the time course of evo-
lutionary change in the model (Fig. 8a), one arrives at a range
of 107-2.5 X 10® generations during which most of the
change in stability would take place.

Paleontological Data and the Evolution of Stability.—In-
direct evidence may be required to establish the biological
significance of the results obtained here, because the time
scales involved are potentially large. At first sight, paleon-
tological data might seem to provide such evidence. The rapid
radiation of morphs associated with the origin of many taxa
is often followed by evolutionary stasis. This might hint to-
wards a process analogous to the one described here. How-
ever, many lines of evidence suggest that major radiations
are associated with new ecological opportunities (e.g., Erwin
et al. 1987, Futuyma 1986, Jablonski and Bottjer 1990; Simp-
son 1944, Valentine and Erwin 1987), whereas only circum-
stantial and anecdotal evidence for the importance of genetic
factors is available (for an example involving the biogeog-
raphy of sea snakes and vampire bats see Futuyma [1986,
pp- 256]). Thus, although the potential importance of genetic
factors is discussed and acknowledged in the literature (Erwin
et al. 1987; Jablonski and Bottjer 1990; Valentine and Erwin
1987), conclusive evidence is lacking, and paleontological
data may be ill suited to discriminate between ecological and
genetic factors.
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Why are Neutral Mutations Neutral?—Selection against ge-
notypes with low epigenetic stability is responsible for the
evolution of stability. This finding, if generalizable, adds an-
other facet to the important role that natural selection plays
in organismal and molecular evolution (e.g., Gillespie 1991).
However, the way in which selection acts here is unusual, in
that selection itself is responsible for the evolution of ge-
notypes in which mutations are likely to be neutral. This
“selected” or “‘evolved neutrality’’ also raises a fundamental
question about the nature of neutral mutations. Are mutations
phenotypically neutral because they have no effect on the
activity of a gene product (such as an enzyme activity), or
are they neutral because the effect they have on a gene prod-
uct is buffered by epigenetic interactions? In the following,
these hypothetical types of neutrality will be referred to as
molecular neutrality and epigenetic neutrality, respectively.
The difference between them is well illustrated by the net-
work model. Here, mutation events do not correspond to
mutations in protein coding sequences, but to mutations in
the binding sites of proteins at an enhancer. In general, these
mutations are far from molecularly neutral. In fact, in the
mutation model used here, the strength of binding of a protein
at an enhancer site before mutation is completely uncorrelated
to that after mutation. However, in a gene network with high
epigenetic stability, most such molecularly nonneutral mu-
tations are phenotypically neutral. Thus, here epigenetically
neutral mutations are mainly responsible for epigenetic sta-
bility.

How important could epigenetic neutrality be in compar-
ison to molecular neutrality? Insight into the structure-func-
tion relationships of proteins suggests that protein function
may be very tolerant to amino acid substitution (e.g., Bowie
et al. 1990 and references therein). Thus, molecularly neutral
mutations will represent an important, and maybe the pre-
dominant class of phenotypically neutral mutations. Much
less is known in this regard about mutations in regulatory
DNA sequences, a type of mutation that has probably been
important in organismal evolution. In addition, molecularly
nonneutral mutations with biochemical effects strong enough
to overwhelm the buffering capacity of the epigenetic system
will most likely be possible in any developmental pathway.
Moreover, the relative importance of molecular and epige-
netic neutrality may crucially depend on the specific devel-
opmental pathway and/or biochemical pathway considered.
Especially in comparatively simple genetic systems, such as
viruses, there may be little leeway for epigenetic neutrality.

What kind of evidence is there and what kind of evidence
would demonstrate the importance of epigenetic neutrality?
First, note that carefully designed studies that test for the
tolerance of proteins to amino-acid substitutions have been
performed (e.g., Bowie et al. 1990 and references therein).
However, these studies test primarily for phenotypical neu-
trality, because they identify nonneutral mutations by the
suboptimal phenotypes they produce or by evolutionary in-
variable amino-acid residues in proteins. They do not distin-
guish between epigenetic and molecular neutrality. Such a
distinction could be made by experiments showing that there
are phenotypically neutral mutations that are not molecularly
neutral, quite tedious experiments, to be sure, because bio-
chemical activities of mutant gene products would have to
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be assayed mutant by mutant. The fact that some gene prod-
ucts, especially regulatory proteins, have different functions
in different developmental contexts is not likely to facilitate
this type of analysis. Fortunately, other lines of evidence
provide relevant information as well, although much more is
needed before definite conclusions will be possible. Graur
and Li (1988) report that some serine protease inhibitors in
mammals evolved faster at functionally important sites than
at functionally neutral sites. Although an unusual amino-acid
composition at the functional sites is invoked in the author’s
explanation for this apparent anomaly, a different reading
might be possible. If epigenetic stability for mutations in
these proteins is high, some of the substitutions may have
represented epigenetically neutral but molecularly nonneutral
mutations. The rate variations in the ‘“‘molecular clock™ in-
duced by phenotypically neutral nucleotide substitutions pro-
vides further hints. Variation in generation time among taxa
has been invoked in an explanation of this phenomenon, but
it cannot account for all variation in substitution rates (Ki-
mura 1987 and references therein). Kimura (1987) touches
upon the phenomenon at issue here by proposing the ‘al-
teration of the selective constraint of each molecule (due to
change of internal molecular environment)” (pp. 24) as one
possible explanation. He analyzes two candidate examples,
guinea pig insulin and opossum hemoglobin «, whose pat-
terns of variation in substitution rates can not be accounted
for by variations in generation time.

Epigenetic Stability and the Evolution of Developmental
Pathways.—How would epigenetic stability be affected if a
change in a developmental pathway leading to some (quan-
titative) phenotypic character occurs? Note that there is ample
evidence for such variation. Homologous characters in dif-
ferent taxa can be the product of different developmental
pathways (e.g., G.P. Wagner 1994). To illustrate the effect of
such variation, it is useful to consider results from the gene
network model in conjunction with the “‘island” metaphor
of optimal genotypes (Fig. 11a). In terms of the model, a
modification in a developmental pathway consists in a change
in the developmentally optimal gene-expression pattern of a
network, a change that is compensated by subsequent de-
velopmental events. This implies that the set of islands de-
fining the optimal genotypes in genotype space (Fig. 11a)
has changed as well. As a result, epigenetic stability may be
reduced, in which case the process of reorganizing the path-
way’s system of epigenetic interactions towards high epi-
genetic stability has to begin anew. This scenario generates
a testable hypothesis. Consider a (quantitative) phenotypic
character subject to stabilizing selection, and the develop-
mental pathway leading to this character. If a phylogeneti-
cally recent change in this pathway occurred in a taxon, the
new pathway should have lower epigenetic stability than the
ancestral pathway, and one should be able to observe more
genetic character variation in the new taxon than in an an-
cestral taxon. A similar line of reasoning can be applied if
mutants affecting a developmental pathway produce variant
phenotypes that are outside the normal range of phenotypic
variation in a population, but still viable and fertile. If pop-
ulations are established from such deviant genotypes, such
as in an artificial-selection experiment, more phenotypic vari-
ation with a genetic component should be observed in the
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respective character(s). Rendel (1979) states that this is a
general feature of mutants, exposing ‘‘hidden genetic differ-
ences between members of a uniform population” (pp. 140);
and he gives concrete examples, one of which concerns the
number of secondary mustacial whiskers in the house mouse.
Their number is usually 19, with little variation. In mutants
of the sex-linked gene Tabby, the number of whiskers is
substantially reduced and varies considerably. That this vari-
ation has a genetic component is shown by the effectiveness
of directional selection on the number of whiskers (Rendel
1979; Dun and Fraser 1958). A second, analogous example
concerns changes in the number of scutellar bristles caused
by the mutant scute of Drosophila melanogaster (Rendel
1979).

The phenomena observed here are clearly related to “‘de-
velopmental canalization” in “‘epigenetic landscapes’ (Wad-
dington 1957). Canalization can be conceptually partitioned
into two components, an environmental component that is
responsible for the buffering of a developing organism
against influences from the external and the internal (‘“‘de-
velopmental noise”) environment, and a genetic component
that determines to what extent genetic variation is trans-
formed into phenotypic variation. Although the environmen-
tal component may well be genetically determined, only the
genetic component, often termed ‘‘genetic canalization,” re-
lates to epigenetic stability. In fact, ‘“‘genetic canalization”
and ‘‘epigenetic stability”” are synonymous, but the latter
term was used here, because it emphasizes the epigenetic
nature of the phenomenon. Unfortunately, most available ex-
perimental data pertains to the environmental aspect of can-
alization (Rendel 1979; Waddington 1957). However, Stearns
and Kawecki (1994) were able to demonstrate recently that
differences in epigenetic stability exist among several life
history traits in D. melanogaster. As one would predict, they
find a high degree of canalization in traits that are closely
correlated with fitness.

Some experimental evidence discussed here argues for
variation in epigenetic stability as well as for its evolution.
This evidence is far from conclusive, however, and much
empirical work would be needed to provide firm empirical
footing for the proposed mechanism. Fortunately, this mech-
anism generates a series of testable predictions that will be
useful in assessing the biological significance of epigenetic
stability and its evolution.
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APPENDIX

Generation of Individual Networks and Ensemble Samples.—Connec-
tivity matrices w = (w,) were generated as N X N pseudorandom ma-
trices of independently and identically distributed entries w,,, where the
probability distribution (1 — ¢)8(w,) + cp(w,)) was used for each entry.
Here, p denotes a continuous probability distribution, 8(x) denotes the
Dirac delta function, and c is a real constant ¢ € (0, 1), which determines
the mean number, cN?, of entries of w that are different from 0. Two
types_of probability distributions, p, were used: Gaussian (p(x) =
1/(V2wo)exp[—x2/(26%)], x € M) or “reflected” Gamma (p(x) =
[2T(a)] 'e M[x|*-1, x € R \ {0}, @ > 0), because they cover a wide
range of qualitatively different shapes of symmetric distributions. Note
that because the dynamics (2) is invariant to multiplication of w with
an arbitrary scalar x # 0, the search for ensemble members can be
restricted to a bounded area, for example, a N?-dimensional ball defined
by 2N_w2< we N~, and still sample all relevant areas of matrix space
in a uniform way. This is what the algorithm of matrix generation used
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here achieves, because the probability distribution used in generating
individual connectivities is symmetric around the origin.

Throughout the search procedure used to find individual ensemble
members, the network dynamics (2) was performed for 3N time steps
or until a fixed point had been reached, whichever came first. This
particular value was chosen because test simulations had demonstrated
that networks with a larger number of time steps to equilibrium are rare
for N = 10 (see, e.g., Fig. 6). The maximum number of matrix trials
(5 X 22Ny used for a particular pair of states S(0), S(*) was chosen
because exploratory simulations (not shown) had demonstrated that 5
X 22N is at least two orders of magnitude greater than the mean number
of trials required to find a matrix for any given pair of states.

Simulated Evolution.—to study the influence of recombination on the
phenomena under consideration, two different kinds of simulated evo-
lution scenarios were explored, a scenario of sexual reproduction with
recombination in which steps one through four from ‘‘numerical meth-
ods’’ (“‘simulated evolution’’) were performed, and an asexual scenario
in which step one was omitted. Any difference between these scenarios
will be most obvious in a situation in which individual genes are un-
linked. This is the reason why free recombination between genes was
used in step one. All simulations were performed for 400 generations,
because test simulations (not shown) had demonstrated that a quasie-
quilibrium in mean fitness is attained in fewer than 400 generations.
This quasiequilibrium is characterized by the disappearance of any
trends in the evolution of mean fitness. Less heuristic criteria for the
attainment of quasiequilibrium, such as a decrease of temporal variation
in mean fitness below a certain threshold turned out to be impractical,
because the value of such a threshold would have depended on the
individual simulation. Mean fitness during the simulations was char-
acterized by a slight drop from its initial value of 1 until quasiequili-
brium was attained. Mean fitness values in quasiequilibrium depended
on the individual simulation, but were always greater than 0.93 (s =
0.1).

Assessment of Epigenetic Stability.—Here, the process of ‘‘orthogonal
perturbation” is described. While having little biological appeal, it dif-
fers from mutation in that it is nonlocal, causing simultaneous changes
in all entries of w. For what follows, it is useful to consider the con-
nectivity matrix w = (w,) as a vector v = (Wi, ..., WinWop, .- -,
Wy - - S WNLs - - - sWaN) 2= (U], . . . ,Vp?) in the vector space RV, From
this vector v, a vector v’ is generated by the perturbation. Note that the
dynamics of (2) is invariant to multiplication of v with any real number
x # 0. This implies that only a vector v’ with a component orthogonal
to v may cause a change in trajectory of (2), and thus only such a vector
has the potential to affect the equilibrium gene-expression pattern at-
tained. In other words, one can restrict the analysis of the space of
connectivity matrices to a N> — 1 dimensional manifold, the surface of
a ball defined by v} +...+v4? = r > 0. A natural measure of the
magnitude of a perturbation in v is therefore given by the angle «
between v and v’, defined as

v, V')

S
Il fiv'i

where (v, v') := E{‘fl v,v', denotes the Euclidian inner product and ||v||
:= Vv, v) is the associated norm. This angle is used as an order
parameter for the magnitude of the perturbation in v. A vector v’ with
a predetermined angle a to v was generated in the following way. First,
a vector orthogonal to v, v%, was generated. Its entries vi through
vi2_; were chosen as identically and independently distributed Gaussian
[N(0,1)] pseudorandom variates. Then, vy2_; was evaluated as

a = arcco

(N2-1)
4L
v,v,

=1
vliv2 = - >
V2

and from that

vJ.
v = v + tan a|y|l| — |

vl
All directions in ¥ will be sampled by v’ with equal probability,
subject to the constraint that v’ has a fixed angle a to v. The mutation
algorithm and this algorithm of orthogonal perturbation are related,
because replacement of individual connectivities within networks by
independent random variates will result in a mean angular displacement
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from the original array of connectivities. An analytical estimate of this
mean displacement can be obtained in the following way. Consider a
member of E, represented by a vector (connectivity matrix) v and assume
that the correlations among the entries of v are weak and that the in-
dividual entries follow a normal distribution, N(0,02), with mean 0 and
variance o2. Then, (1/c2)||v|? is distributed as x2(N?). Its mean is N2.
Thus, (1/0)|v|| will be of order N. Assume now that v' is the vector
generated from v by replacing one of its entries with an N(0,02) dis-
tributed random variable. The quantity (1/2a2)|lv — v'|]? is distributed
as x2(1). Thus, (1/o)v — v'| is of order V2. The maximum angle
between v and v’ is achieved if v — v’ is orthogonal to v, in which case

v — v
vl

If N is sufficiently large, the angular displacement by mutation will be
small, such that tana = a. Therefore, the mean angular displacement
by mutation should be of order V/2/N or smaller. This approximation
will become more accurate as N increases, because of the increase in
possible orthogonal directions in high dimensional spaces. In fact, nu-
merical estimates obtained by Monte Carlo simulations (Fig. A1) dem-
onstrate that even for N < 10 the actual mean angular displacement
induced by mutation remains within a factor two of this analytical
estimate. Whenever an orthogonal perturbation was performed in the
simulations, its angle was chosen as V2IN.

Heritability of Path Lengths.—The path length of a network that
reaches some fixed point is defined as the number of time steps that
(2) takes to reach this fixed point after starting from S(0). During the
process of simulated evolution including recombination, the heritability
of path lengths in the population was estimated by parent-offspring
regression (Falconer 1981) in the following way. In a population of
networks (“‘individuals’”) the average path length (‘‘midparent value’’)
of each pair of prospective ‘‘parents,” that is, pair of networks that are
destined to undergo recombination as described above, was evaluated.
The networks were then subjected to recombination and mutation, and
the mean path length of the pair of “‘offspring” networks produced
from every parental pair was evaluated. If at least one of the networks
in a pair of parents and their corresponding pair of offspring had not
attained an equilibrium state, the whole ‘‘mating” was excluded from
the calculation. A linear regression of mean parental path length versus
mean offspring path length was performed for the remaining matings.
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Fic. Al. Mean angular displacement caused by mutation. The sol-

id line represents the analytically obtained upper bound for the mean
angular displacement \/i)/,n as a function of dimension n. Note that
n in this figure corresponds to the squared number of genes, N2.
For each n, Monte Carlo estimates of the mean angular displacement
were obtained as follows. A vector (x;, X, . . ., X,,) of independently
and identically distributed (N(0,1)) pseudorandom variates was gen-
erated, and its angle to the vector (x'y, x,, .. ., x,), where x'; is a
stochastically independent N(0,1) pseudorandom variate, was eval-
uated. Dots show the mean angular displacement obtained from 103
independently generated pairs of vectors. The lengths of the cor-
responding bars are equal to 1 SD of displacement. Note that the
mean displacement stays close to the theoretical upper bound and
approaches it as n is increased.

A significance test (Sokal and Rohlf 1981) of the resulting regression
coefficient was performed as well. Note that the procedure also allows
for networks that attain an equilibrium state other than S°P().



