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Abstract 
 
I review evolutionary explanations of broad-tailed connectivity or degree distributions 
observed in metabolic networks and protein interaction networks. Self-assembled 
chemical reaction networks show degree distributions similar to those observed for 
metabolic networks, which argues against the postulated role of natural selection in 
maintaining this degree distribution. In addition, metabolic networks contain traces of 
their ancient history in the form of highly connected metabolites. Similarly to the degree 
distribution of metabolic networks, that of protein interaction networks can be explained 
without resorting to natural selection on the network level. I present data suggesting that 
highly connected proteins are not distinguishably older than other proteins, and explain 
this finding with a simple model of how a protein’s degree changes in evolutionary time.   
 
Introduction 
 
Graph representations of biological networks have become popular with the recent 
accumulation of functional genomic data on such networks. Graphs are mathematical 
objects consisting of nodes and edges connecting these nodes. The degree or connectivity 
d of a node is the number of edges emanating from it, or, equivalently, the number of its 
neighbors in the graph. Multiple biological networks show a connectivity or degree 
distribution that is broad-tailed and often consistent with a power-law. That is, when 
choosing a node from such a network at random, the probability P(d) that it has d 
interaction partners is proportional to P(d) ∝  d-γ , γ being some constant that is 
characteristic of the network. Most prominently, this holds for metabolic networks, 
whose nodes can be substrates, reactions, or both, depending on the network 
representation one chooses, and protein interaction networks, where two nodes (proteins) 
are connected if they interact physically inside the cell. Broad-tailed degree distributions 
have also been demonstrated for other cellular networks. 1-3 
 The degree distribution of a genetic network can be viewed as a feature of an 
organism like any other feature. It raises the same basic question: Why this and not some 
other degree distribution? There are three possible answers. First, a network’s degree 
distribution could be a mere consequence of chemistry, the chemistry of DNA, RNA, and 
proteins, and the patterns of molecular interactions this chemistry allows. This possibility 
may seem far-fetched, given that molecular networks have many biological functions 
which may constrain their structure. However, this possibility is not without precedent. 
An illustrative example exists on a lower level of biological organization, protein 
structure. The thousands of currently known protein structures have a highly skewed 
distribution. There is a small number of ‘frequent’ tertiary structures, such as the TIM-
barrel or the Rossman fold, found in nucleotide-binding proteins. While these folds are 
small in number, many proteins adopt them. Conversely, the majority of tertiary 
structures are ‘unifolds’ that may have originated only once in evolution, and are adopted 
by few proteins. 4-6 Does this skewed distribution of protein structures contain important 
information about design principles of proteins? For instance, do frequent structures have 
superior properties that lead to their frequent occurrence in proteins? The likely answer is 
no. Similarly skewed distributions of structures – a small number of excessively frequent 
structures and a vast majority of rare structures – occur in simple models of protein 



folding, models where polymers composed of parts with properties similar to amino acids 
fold into three-dimensional structures. 7, 8 The distribution of protein structures may be a 
mere consequence of polymer chemistry.  

The second possibility is that the degree distribution of genetic networks might 
somehow reflect their history, much like the jumble of streets in a medieval city reflects 
the city’s growth over centuries. An important class of mathematical models, originally 
devised to explain power-law degree distributions in growing networks like the internet, 
do indeed link a network’s history to its degree distribution. In their original and simplest 
incarnation, such models involve only two simple rules that change the structure of a 
network. 9 First, the network grows through addition of nodes. Second, newly added 
nodes connect to previously existing nodes, such that already highly connected nodes are 
more likely to receive a new connection than nodes of lesser connectivity. Over many 
cycles of node addition and linking to existing nodes, a power law degree distribution 
emerges. A great variety of variations to this model have been proposed (reviewed in ref.  
10).  They differ greatly in detail but retain in some way or another the rule that new 
connections preferably involve highly connected nodes. Importantly, most such models 
make a key prediction: Highly connected nodes are old nodes, nodes having been added 
very early in a network's history. In this sense, they link a network’ degree distribution to 
its history.  

The third possibility is that molecular networks have their degree distribution, 
because this structure is somehow best suited to the network’s biological function. From 
an ‘organismal design’ perspective, this is the most interesting possibility. It means that 
natural selection has shaped the global connectivity pattern of a network, and that 
network structure reveals something about the design principles of biological networks.  
    A recent hypothesis postulates that the observed broad-tailed degree distribution 
of biological networks is indeed a product of natural selection. 11-13 This ‘selectionist’ 
hypothesis is based on the following observation. In networks with a broad-tailed degree 
distribution, the mean distance between network nodes that can be reached from each 
other (via a path of edges) is very small and it increases only very little upon random 
removal of nodes. 11 (In contrast, this mean distance or mean path length increases 
drastically when highly connected nodes are removed.) A network’s mean path length 
can be thought of as a measure of how 'compact' the network is. In graphs with other 
degree distributions, mean path length increases more substantially upon random node 
removal, and the network becomes more easily fragmented into disconnected 
components. These observations have led to the proposition that robustly compact 
networks confer some advantages on cells, and that a broad-tailed degree distribution 
reflects the action of natural selection on the degree distribution itself. The nature of this 
advantage is unknown, except in the case of metabolic networks, where one can venture 
an informed guess. 14, 15  A possible advantage of small mean path lengths in metabolic 
networks stems from the importance of minimizing transition times between metabolic 
states in response to environmental changes. 16-18 Networks with robustly small diameter 
may adjust more rapidly to environmental perturbations.   
  
 
 
 



Metabolic networks and planetary atmospheres.   
 
While the above speculation makes a weak case for a selectionist explanation of broad-
tailed degree distributions in metabolic networks, another line of evidence makes a more 
solid case against it. One can ask whether power-law degree distributions might not be 
features of many or all large chemical reaction networks, whether or not part of an 
organism, whether or not they have a biological function which benefits from a robust 
network diameter. If so, then metabolic network degree distributions would join the club 
of other power-laws (such as Zipf's law of word frequency distributions in natural 
languages) whose existence does not owe credit to a benefit they provide. There is indeed 
evidence supporting this possibility.  
 Gleiss and collaborators 19 have compiled publicly available information on a 
class of large chemical reaction networks that exist not only outside the living, but on 
spatial scales many orders of magnitude larger than organisms. These are the chemical 
reaction networks of planetary atmospheres, networks whose structure is largely 
determined by the photochemistry of their component substrates. The available data 
stems not only from earth's atmosphere, but also from other solar planets including Venus 
and Jupiter, planets with chemically diverse atmospheres. These planets’ atmospheres 
have been explored through remote spectroscopic sensing methods and by planetary 
probes. The chemical reaction networks in these atmospheres, despite being vastly 
different in chemistry, have a degree distribution consistent with a power law.  19 This 
suggests that power-law distributions may be very general features of chemical reaction 
networks. The reasons why we observe them in cellular reaction networks may have 
nothing to do with the robustness they may provide.  

 Although such comparisons to ‘self-assembled’ networks suggest an important 
influence of chemistry on metabolic network structure, another aspect of metabolic 
networks should not be overlooked. Metabolic networks have a history. They have not 
been assembled in their present state at once. They have grown, perhaps over a billion 
years, as organisms increased their metabolic and biosynthetic abilities. In understanding 
their structure, we have to take this history of biological networks into account.   

We may never know enough about the history of life and metabolism to 
distinguish between different ways in which metabolism might have grown. However, we 
can address the key prediction of many network growth models I discussed above. Are 
highly connected metabolites old metabolites? The answer will contain a speculative 
element, because the oldest metabolites are those that arose in the earliest days of the 
living, close to life's origins. In addition, life forms as different as bacteria and humans 
have core metabolisms with a very similar structure. This suggests that the growth of 
metabolism has essentially been completed at the time the common ancestor of extant life 
emerged. Because this common ancestor does no longer exist, the detailed structure of its 
metabolism will remain in the dark forever. However, various hypotheses about life’s 
origin make predictions on the chemical compounds expected to have been part of early 
organisms. There are several of these hypotheses, and they are complementary in the 
respect most important here: They emphasize the origins of different aspects of life's 
chemistry. Some emphasize the origins of the earliest genetic material, RNA. Others 
make postulates about the composition of the earliest proteins. Yet others ask about the 



earliest metabolites in energy metabolism. Each of them makes a statement about a 
different aspect of early life's chemistry.  

Figure 1 shows the twelve most highly connected metabolites of the E. coli 
metabolic network graph. 14 Every single one of them has been part of early organisms 
according to at least one origin-of-life hypothesis. Colored in green are compounds such 
as coenzyme A thought to have been a part of early RNA-based organisms. 20 The RNA 
moieties such compounds contain are present in all organismal lineages. Some 
compounds in this group, such as tetrahydrofolate and coenzyme A, are thought to have 
played a role in precellular life that may have taken place on polykationic surfaces. These 
compounds are elongate molecules with one anionic terminus. They are therefore able to 
flexibly tether other molecules to the substrate, thus localizing them while simultaneously 
increasing their potential to react with other compounds. 21 Colored in red in Figure 1 are 
amino acids that were part of early proteins, based on likely scenarios for the early 
evolution of the genetic code. 22 Shown in blue are compounds likely to have been a part 
of early energy and biosynthetic metabolism. Glycolysis and the TCA cycle are perhaps 
the most ancient metabolic pathways, and various of their intermediates (α- ketoglutarate, 
succinate, pyruvate, 3-phosphoglycerate) occur in Figure 1 20, 22-26. The potential relation 
between evolutionary history and connectivity of metabolites corroborates a postulate put 
forth by Morowitz 23, namely that intermediary metabolism recapitulates the evolution of 
biochemistry.   
 In sum, the observation that power law degree distributions occur in self-
assembled chemical reaction networks that were never under the influence of natural 
selection suggests that such distributions are a rather common feature of such networks. 
Natural selection on the level of this degree distribution is thus unnecessary to understand 
their origin. Metabolic networks have grown by addition of new metabolites, and their 
degree distribution is in tentative agreement with a general prediction of many network 
growth models: Highly connected metabolites tend to be phylogenetically old 
metabolites, metabolites that have been added very early in the evolution of metabolism.    
 
Protein interaction networks 
 
In contrast to chemical reaction networks, large and self-assembled protein interaction 
networks do not exist outside living cells. Thus, we can not hope to use arguments from 
self-assembled networks to argue for or against the role of natural selection in explaining 
a protein network’s degree distribution. However, two different lines of evidence speak to 
this question for protein networks. The first class of evidence regards a corollary of the 
hypothesis that the degree distribution observed in genetic networks is a by-product of 
selection for ‘robust compactness’. In networks with a broad-tailed degree distribution, 
mean path length increases drastically upon removal of highly connected nodes, as 
opposed to the removal of lowly connected nodes, which does not change dramatically. If 
it is network compactness that matters to the organism, then removal of highly connected 
nodes should have more severe effects on the fitness of the organism than removal of less 
highly connected nodes. This prediction of the selectionist hypothesis can be tested with a 
publicly available collection of yeast gene-knockout (synthetic-null) mutant strains.  27 
Each strain of this collection lacks one gene, and the resulting change in growth rate has 
been measured under a variety of environmental conditions. 27-29 Jeong and collaborators 



13 first showed that a correlation between the effect of a gene-knockout mutation and the 
encoded protein’s degree exists. Figure 2 illustrates this correlation with more recent 
data. 28 
 The interpretation of data like that shown in Figure 2 faces multiple problems, 
aside from the fact that the association between protein degree and mutational effect is 
weak. The first problem is conceptual. While removal of highly connected proteins may 
have more severe effects on a cell, the reasons might have nothing to do with an altered 
network topology. For example, high connectedness may simple be an indicator that a 
protein acts in a variety of different cellular processes, hence the more severe defect 
when the protein is eliminated from a cell. Other problems in interpreting associations 
like that shown in Figure 2 are technical. First, the resolution at which the effect of a gene 
knock-out mutation on growth rate can be measured is very low. Much smaller fitness 
differences between wild-type and mutant cells than one can observe in the laboratory 
may lead to elimination of a mutant in the wild. Second, gene knock-out effects are 
usually measured only in one or a few laboratory environments, not in the myriad of 
conditions in which they could manifest themselves in the wild. Third, laboratory assays 
of gene knock-out effects usually measure only one or a few components of fitness – 
most prominently growth rate – and leave others, such as cell survival under starvation 
untouched. Because of these problems, it is not clear whether laboratory gene knock-out 
experiments measure quantities that reliably indicate the effects of such mutations on an 
organism’s ability to survive and reproduce.   
 These technical problems – but not the previous, conceptual one – could be 
overcome with an evolutionary approach. Here, one assesses not gene knockout effects 
but the rate at which different proteins in a protein interaction network evolve. 
Specifically, one asks whether highly connected proteins have evolved more slowly than 
lowly connected proteins. If this is the case, then one can argue that their evolution is 
more severely constrained. Several pertinent studies are available. 30-33 Their results differ 
in details, partly because they are sensitive to which of several available protein 
interaction data sets one uses. 30 However, their main conclusion is the same. If there are 
differences in the evolutionary rates of proteins in a network, they are not due to the 
differential effects these proteins have on a network’s compactness. Thus, evolutionary 
studies do not support the notion that natural selection for robust compactness is 
responsible for the broad-tailed degree distribution of protein interaction networks. 
 A completely different approach to testing the selectionist hypothesis is 
encapsulated in the following question. Can we explain the structure of protein 
interaction networks from processes of molecular evolution whose rates we can estimate, 
without resorting to natural selection acting on the network as a whole? The answer is 
yes. 34 Such an explanation may still involve natural selection, but on a local instead of a 
global scale. For example, whenever a mutation causes a new interaction between two 
proteins to occur, natural selection may determine whether this interaction becomes fixed 
in a population or eliminated from it, depending on whether the interaction is beneficial, 
neutral, or deleterious. However, this is selection acting on individual interactions rather 
than global properties of an entire network. 

In a previous contribution, I have proposed an explanation of the protein 
interaction network’s degree distribution from purely local processes such as gene 
duplications and mutations that generate new interactions and cause others to disappear. 



34 The rate at which some of these processes occur can be roughly estimated from 
available protein interaction data, and based on these estimates, one can establish a 
quantitative mathematical model that explains the network’s structure. This explanation 
falls within a class of models for network evolution that involve preferential attachment, 
that is, highly connected proteins are more likely to evolve new interactions than other 
proteins. Empirical data supports the notion that preferential attachment occurs in protein 
interaction networks, as shown in Figure 3. Others have also proposed models of protein 
network evolution 35, models that differ in important details but that have one key 
commonality:  They do not require natural selection on a global network feature, but they 
explain the network’s structure from evolutionary events on the small, local scale of 
individual proteins.       
  Many models of network evolution based on preferential attachment predict that 
highly connected network nodes should be old nodes, nodes that were added very early in 
a network’s history. 36 They should have arisen early in the evolution of the network. 
Because the protein interaction network shows preferential attachment (Fig. 3), the 
question arises whether such an association between protein age and connectivity exists. 
Specifically, one can ask whether highly connected proteins are phylogenetically old. 
Phylogenetically old proteins should have a wider taxonomic distribution than more 
recently evolved proteins. In two complementary analyses, I thus asked whether highly 
connected proteins have a wider phylogenetic distribution than less highly connected 
proteins.  
 
Connectivity and protein age 
 
For the first of these analyses, I used the fully sequenced genomes of six maximally 
diverse species. They represent fungi (Schizosaccharomyces pombe), protists 
(Plasmodium falciparum), plants (Arabidopsis thaliana), animals (Drosophila 
melanogaster), eubacteria (Escherichia coli), and archaea (Methanococcus janaschii). 
For each of the proteins in the protein interaction network of baker’s yeast 
(Saccharomyces cerevisiae) I used gapped BLAST 37 to ask how many of these six 
species contain a recognizable homologue of the yeast proteins. The data in Fig. 4 show 
the results of this analysis for a BLAST protein alignment score threshold of E<10-5 to 
identify homology.  Specifically, the figure shows the average number of taxa that 
contain at least one homologue to a yeast protein (vertical axis) plotted against the degree 
of this protein in the protein interaction network. The analysis shown is based on two 
different data sets of yeast protein interactions. 38, 39 If highly connected proteins are 
phylogenetically old, then highly connected proteins should occur in significantly more 
of the six taxa than lowly connected proteins. The data of Figure 4, however, does not 
support this pattern. Figure 5 shows a complementary analysis, where I plotted average 
protein degree against the number of the six taxa in which a protein’s homologue is 
found. If more widely distributed proteins are more highly connected, then they should 
have a higher degree. The data does not support this association either. Alignment score 
thresholds of E<10-2 and E<10-10 yield the same conclusion (data not shown).  
 In a second analysis, I cast my net wider than just the above six fully sequenced 
genome. I arbitrarily chose 15 highly connected proteins (degree > 4) and 15 proteins 
with low connectivity (degree one) from the yeast protein interaction network. 38 For each 



of these thirty proteins, I asked whether it has at least one homologue in any of six broad 
taxonomic groups: metazoa, plants, protists, fungi (exclusive Saccharomyces spp.), 
eubacteria, and archaea. Table 1 summarizes the results.  Seven out of 15 highly 
connected proteins and six out of 15 proteins with degree one have homologues in all 
eukaryotes. The same proportion (12 out of 15) of highly connected proteins and proteins 
with degree one have homologues in fungi outside the genus Saccharomyces. The same 
holds also for proteins that have no homologues outside this genus (3 out of 15 proteins). 
Based on this data, it appears that highly connected yeast proteins are not 
phylogenetically older than proteins of low degree.  

While this finding is at first sight puzzling, the following analysis suggests a 
mundane explanation. This explanation emerges from a stochastic model of how the 
number of a protein’s interaction partners changes over time. Consider one protein in a 
protein interaction network and denote as Dt the number of proteins this protein interacts 
with. If time t is measured in suitable discrete units, such as million years, then the 
change of this variable over time can be represented by a first order Markov process. 40 
Specifically, designate as pi the probability that the protein gains an interaction, that is, 
that its degree increases by one (through a mutation that has become fixed in a 
population). Formally pi=Prob(Dt=i+1|Dt-1=i). Similarly, denote the probability that the 
protein loses an interaction by qi (qi=Prob(Dt=i-1|Dt-1=i)). Finally, let ri denote the 
probability that Dt does not change between t-1 and t. This simple framework can capture 
a variety of observations. For instance, in an earlier contribution I suggested that the rate 
at which interactions get added and eliminated from the network must be approximately 
balanced, because of the high observed rate of interaction turnover. 34 This translates into 
pi≈qi for all i. 
In addition, the observation that proteins with more interaction partners show a greater 
turnover of interactions (Fig. 3) can be captured as a dependency of pi on i, e.g., pi=i×c, 
where c is some constant.   

A quantity of interest in this stochastic process is the expected waiting time until a 
protein first returns to the state Dt=i, i.e., mi=E(Ti|D0=i), where E indicates the expected 
value of the random variable  Ti:=min{t>0: Dt=i}, which measures the time until the 
protein first visits state i. For i=0, this expected time mi is closely related to the residence 
time of a protein in the network, that is, the time during which a protein has a degree 
greater than zero. Quantities like mi are difficult to calculate because we do not know 
how pi, qi and ri depend on i, especially for large i. However, it is noteworthy that if the 
above assumptions held for arbitrarily large i, then this stochastic process would belong 
in the class of null-recurrent Markov processes, 41 whose expected waiting time to return 
to any state (not only i=0) is infinite, and can thus not be calculated. We can, however, 
calculate related quantities that may explain why highly connected proteins are not 
necessarily phylogenetically old. Consider a protein with degree 1. What is the expected 
time until such a protein loses this interaction – and thus ceases to be part of the network 
– assuming that this protein never attains a degree higher than one? If we denote as τ the 
random variable measuring this time, then its distribution is given by Prob(τ=k)= q1r1

k-1, 
which is essentially a geometric distribution. Its mean and variance are given by 
E(τ)=q1/(1-r1)2, and Var(τ)=r1q1/(1-r1)3. Order-of-magnitude estimates for upper bounds 
on the probabilities p1 and q1 suggest that they are of the order of 6x10-4 per protein and 
million year.34 Using these values, E(τ) calculates as 416 million years, and its standard 



deviation as 588 million years. In other words, even a protein of low degree that does not 
acquire any further interactions through mutations takes more than an expected 400 
million years to lose its only interaction, with an enormous standard deviation. For 
proteins that acquire more interactions in the course of evolution, this expected time 
would be much larger. Considering the standard deviation in and by itself, it is then 
hardly surprising that we can not distinguish proteins of different degrees by their 
phylogenetic distribution. The time for which even low degree proteins reside in the 
network can vary over an enormous range, a range greater than the time elapsed since the 
Cambrian radiation. A statistical test could not distinguish between the age of high and 
low-connectivity proteins if their residence time in a network can vary so widely.  

 
Conclusions 

 
In sum, I have reviewed evidence pertaining to the hypothesis that natural selection acts 
on the global structure of cellular networks and is responsible for their broad-tailed 
degree distribution. While associations between gene knock-out effects and protein 
degree weakly support this hypothesis for protein interaction networks, evolutionary 
studies and explanations of network structure based on purely local processes argue 
against it. I showed that the great dispersion of time for which proteins may reside in a 
network can obscure expected differences in the taxonomic distribution of highly and 
lowly connected proteins. Similar to metabolic reaction networks, where chemistry itself 
is an important factor shaping a network’s structure, the minor role for natural selection 
in optimizing a network’s degree distribution suggests an important role for protein 
chemistry in determining this distribution. Which of a protein’s chemical features, such 
as domain composition or surface properties, renders some proteins highly connected? 
What aspect of protein chemistry is responsible for the observation that highly connected 
proteins show a greater evolutionary turnover of interactions? The answers to these and 
other questions are contained in accumulating structural data on thousands of proteins.   
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Figure and Table Captions 
 
 
Fig. 1.: Highly connected metabolites in Escherichia coli are evolutionarily old. The 
list shows the 12 most highly connected metabolites in the E. coli core intermediary 
metabolic network. The numbers in parentheses show the degree (number of neighbors) 
of a metabolite in the substrate network as defined by Wagner and Fell. 14 Green indicates 
proposed remnants of a surface metabolism or an RNA world. Red indicates proposed 
early amino acids. Blue indicates proposed early metabolites (in the tricarboxylic acid 
cycle or glycolysis). The network was generated after the elimination of the compounds 
NAD, ATP, and their derivatives. These are even more highly connected than the 
compounds shown here. They are also evolutionarily ancient. See text for further details.    
 
Fig. 2.: A weak but significant correlation between protein degree and gene 
knockout effect. Information on protein degrees shown here was obtained by pooling 
data from three independent sources, two large-scale protein interaction studies 38, 42, and 
a public data base of protein interactions 39 from which all interactions generated with the 
yeast two-hybrid assay had been eliminated. The horizontal axis shows the difference in 
the growth rate of a gene knock-out strain between the growth medium (among five 
different media) in which the strain grew at the highest rate, and the medium in which it 
grew at the lowest rate, as reported by Steinmetz and collaborators. 28 Growth rates are 
measured relative to a large pool of yeast gene deletion strains. 28 
For most genes, the growth rate difference is an indicator of the largest gene knockout 
effect among the tested growth media. An analogous analysis using the growth rate 
change of a gene knockout mutation in only rich medium (YPD) yields the same results 
(not shown).   
 
Fig. 3.: Preferential attachment in protein interaction networks. The horizontal axis 
shows protein degree d. The vertical axis shows the likelihood Pd that a protein of degree 
d evolves new interactions. This likelihood can be estimated from the number of newly 
evolved interactions between products of paralogous genes, as detailed in ref. 34. For all 
member genes of a paralogous gene pair with a newly evolved interaction since their 
duplication, I determined the number Id of those genes whose encoded proteins had d 
interactions to proteins different from its paralogue. To account for the fact that proteins 
of different degree occur at different frequencies in the network, I then divided this 
number by the relative frequency fd of proteins of degree d in the network, and 
normalized the resulting quantity to obtain Pd, i.e., Pd=(Id/fd))/Σd (Id/fd).  There is a strong, 
approximately linear association between protein degree and the likelihood to evolve new 
interactions. From Figure 5 in ref. 34. 
 

Fig. 4.: The vertical axis shows the average number of genomes (± one s.d.) among six 
fully sequenced genomes that contain at least one protein homologous to proteins whose  
degree is indicated on the horizontal axis. The analysis is based on two different data sets 
on yeast protein interactions, one (‘two hybrid’) from a high-throughput experiment using 



the yeast-two hybrid assay to identify such interactions 38, the other (‘non-two hybrid’) 
from a publicly available database on protein interactions from which I eliminated all 
data generated with the two-hybrid assay. 39 Protein comparisons are based on the 
following six maximally diverse fully sequenced and publicly available genomes:  
Schizosaccharomyces pombe (www.sanger.ac.uk), Plasmodium falciparum 
(www.plasmodb.org), Arabidopsis thaliana (www.tigr.org), Drosophila melanogaster 
(www.fruitfly.org), Escherichia coli K12-MG1655 (www.tigr.org), Methanococcus 
janaschii DSM2661 (www.tigr.org). I used gapped BLAST 37 with a threshold protein 
alignment score of E<10-5 to identify homology. Results (not shown) are qualitatively 
identical for threshold scores of E<10-2 and E<10-10. 

 
Fig. 5.: The vertical axis shows the average degree (± one s.d.) of proteins in the yeast 
protein interaction network as a function of the number of genomes – among six fully 
sequenced genomes – in which these proteins contain homologues, as shown on the 
horizontal axis. The analysis is based on two different data sets on yeast protein 
interactions, one (‘two hybrid’) using the yeast-two hybrid assay to identify such 
interactions 38, the other (‘non-two hybrid’) a publicly available database on protein 
interactions from which I eliminated all data generated with the two-hybrid assay. 39 
Protein comparisons are based on the following six maximally diverse fully sequenced 
and publicly available genomes:  Schizosaccharomyces pombe (www.sanger.ac.uk), 
Plasmodium falciparum (www.plasmodb.org), Arabidopsis thaliana (www.tigr.org), 
Drosophila melanogaster (www.fruitfly.org), Escherichia coli K12-MG1655 
(www.tigr.org), Methanococcus janaschii DSM2661 (www.tigr.org). For the data shown, 
I used gapped BLAST 37 with a threshold protein alignment score of E<10-5 to identify 
homology. Results (not shown) are qualitatively identical for threshold scores of E<10-2 
and E<10-10. 
 
Table 1: Taxonomic distribution of proteins with different connectivity in the yeast protein 
interaction network. The upper and lower parts of the table show the phylogenetic distribution of 
15 arbitrarily chosen high and low degree proteins from publicly available yeast protein interaction 
data 38. Gapped BLAST 37 was used to search for homologs to these yeast proteins in the GenBank 
database (www.ncbi.nlm.nih.gov). Columns in the table correspond to the following broad 
taxonomic groups. Metazoa (M), Protists (Pr), Plants (P), Fungi (F, exclusive of the genus 
Saccharomyces), Eubacteria (E) and Archaea (Ar). A ‘+’ indicates that the respective protein has at 
least one putative homologue within the respective taxonomic group with a BLAST amino acid 
alignment score of E<10-10. ‘++’ and ‘+++’ indicate at least one homologue with E<10-20 and 
E<10-30 , respectively.  
 
 



 

 

  

 

  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 

 
glutamate (51)    
pyruvate (29)     
coenzyme A (29)    
α-ketoglutarate (27)     
glutamine (22)     
aspartate (20)     
acetyl-CoA (17)     
phosphoribosyl pyrophosphate (16)   
tetrahydrofolate  (15)     
succinate  (14)     
3-phosphoglycerate (13)    
serine (13)        

Twelve key metabolites in E. coli  
ranked by degree (“connectivity”) 



 

 

 

 

 

 

 

 

 

 

 

Fig. 2 
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Fig. 3 
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Fig. 4 

Highly connected proteins do not occur in more taxa
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Fig. 5

Widely distributed proteins are not more highly connected
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Table 1 
 
High Degree Proteins 
 
Name   Deg M Pr P F B Ar 
 
GLC1  12 +++ +++ +++ +++ - - 
CDC7  11 +++ +++ +++ +++ - - 
PHO85  10 +++ +++ +++ +++ ++ -  
LSM4  9 +++ - + + - - 
SAP4  8 - - - +++ - -  
CSM1  8 - - - - - -  
YCK2  7 +++ +++ +++ +++ + -  
YIL105C 7  - - - ++ - -  
MET30  7 +++ ++ ++ +++ ++ -  
YDL012C 7  - - - - - - 
CLB2  6 +++ ++ +++ +++ - - 
CVT19 6 - - - - - - 
ERF2  6 +++ + +++ +++ - - 
CUP2  6 - - - ++ - - 
RPC19  5 ++ - - ++ - - 
 
Low Degree Proteins 
 
Name  Degree M Pr P F E Ar 
 
VPS4  1 ++ +++ +++ +++ +++ +++ 
RHO1  1 ++ +++ +++ +++ - - 
KRE6  1 - - - +++ - - 
SMK1  1 ++ +++ +++ +++ + - 
RLF2  1 - - - - - - 
YPR011C 1 +++ ++ +++ ++ - - 
YPR008W 1 - - - ++ - - 
APM1  1 +++ - +++ +++ - - 
VIK1  1 - - - - - - 
HRR25  1 +++ +++ +++ +++ + - 
MKK2  1 +++ +++ +++ +++ - - 
YPL110C 1 +++ - ++ +++ - -  
MET31  1 - - - - - - 
YPL019C 1 - ++ - +++ - - 
GDH1  1 - +++ +++ +++ +++ - 
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