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INTRODUCTION

How new traits originate in life is a question that has occu-
pied evolutionary biologists since Darwin’s time. This holds
especially for traits that are evolutionary innovations, i.e.,
qualitatively new features that benefit their carrier [1,2].
About this origin, the geneticist de Vries said in 1904 that
Darwin’s theory can explain the survival of the fittest but not
its arrival [3]. Today, more than a century later, the bio-
logical literature contains many well-studied examples
of innovations, fascinating case studies of natural history
[1,4—10]. However, we still know little about any principles
that might underlie the origin of innovations, other than the
well-worn notion that a combination of mutation and natural
selection may be necessary. We do not even know whether
such principles exist. De Vries’ statement makes clear that
such principles would be principles of how biological
systems bring forth novel and beneficial phenotypes. They
would be principles of phenotypic variability.

To understand the origins of new phenotypes one needs
to understand the relationship between genotype and
phenotype. The genotype is the totality of an organism’s
genetic material. The phenotype is any other observable
characteristic. It includes the morphology and behavior of
complex organisms, the structure of cells, the expression
pattern of genes and proteins, the biosynthetic abilities of
an organism’s metabolism, and the three-dimensional
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structure and function of its macromolecules, such as
protein and RNA molecules.

New phenotypes often arise through mutations that alter
an organism’s genotype. Therefore, understanding pheno-
typic variability requires understanding how genotypic
change translates into phenotypic change. Ideally, experi-
mentation should provide this understanding [11,12].
However, a systematic understanding of the relationship
between genotype and phenotype requires the analysis of
thousands if not millions of different genotypes and their
phenotypes. It is beyond reach of current experimental
technologies for most systems. An alternative is to use
existing comparative data about genotypes and their
phenotypes. The necessary information is available only for
a few kinds of system, for example proteins, where the
structure and function of tens of thousands of proteins are
available. In most other systems computational modeling of
phenotypes will be essential for the foreseeable future.
Fortunately, the tools of systems biology have allowed us to
make great strides in such modeling. For example, within
the last 15 years it has become possible to computationally
predict the biosynthetic phenotypes of enormously
complex metabolic networks comprising hundreds of
enzymatic reactions [13,14]. The analyses reviewed in this
chapter use such computational approaches, as well as
comparative data and experimentation. Taken together,
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these three lines of evidence point to a series of surprisingly
simple principles behind life’s ability to produce novel and
beneficial phenotypes, i.e., its innovability.

Here, I will first devote three short sections to three
central classes of systems and their phenotypes. Changes in
these systems are the foundations of most, if not all
evolutionary innovations. These system classes are meta-
bolic networks, regulatory circuits, and molecules such as
proteins and RNA. Subsequently, I will suggest how one
can study phenotypic variability systematically in these
system classes. The next section explains two fundamental
concepts, that of a genotype space and the phenotypes
therein, for these system classes. The two sections after that
summarize recent evidence that these system classes share
two organizational features of genotype space that facilitate
phenotypic variability and evolutionary innovation. These
are the existence of genotype networks (to be defined
further below) and of a great phenotypic diversity in
different neighborhoods of genotype space. The next
section explains how these concepts can help explain the
origins of evolutionary innovations. A final section
suggests why system classes as different as these can share
such similarities, and especially the existence of genotype
networks. The reason is that systems in these classes typi-
cally operate in changing environments, which endows
them with robustness to environmental change, but also to
genetic change. The existence of genotype networks is
a consequence of such robustness.

I emphasize that the principles I discuss here by no
means negate the importance of other factors, such as
environmental change, phenotypic' plasticity, multi-
functionality of biological systems, epigenetic change,
gene duplication, and gradual evolution from simple to
complex systems, for the ability to bring forth variable
phenotypes [15—20]. The principles I discuss are comple-
mentary to other factors, and may even help clarify the role
these factors play in phenotypic variability. They do not
only apply to qualitatively new phenotypes, but also to
beneficial quantitative changes in existing phenotypes —
evolutionary adaptations, in the jargon of evolutionary
biologists. A more comprehensive treatment can be found
elsewhere [10].

METABOLIC NETWORKS AND THEIR
INNOVATIONS

Large-scale metabolic networks are systems of hundreds to
more than 1000 chemical reactions that are at work in every
organism [21]. Their most fundamental task is to transform
sources of chemical elements and energy into a chemical
form that is useful to the organism. Evolutionary innova-
tions in metabolism fall into multiple categories. An
especially prominent category concerns traits that allow
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organisms to survive on new sources of food. Prokaryotes
are the undisputed masters of such innovations. They are
able to survive on sources of carbon and energy that are
bizarre and toxic (to us), including methane, hydrogen gas,
crude oil, antibiotics, and xenobiotic chemicals [22—24].

The likely reason why many metabolic innovations
occur in prokaryotes is the ability of prokaryotes to
exchange genes through a variety of mechanism [25,26].
Horizontal gene transfer can transform the genome of
a prokaryote on short evolutionary timescales, such that
even different strains of the same bacterial species may
differ in hundreds of genes. Such horizontal gene transfer is
the cause of many evolutionary innovations. A candidate
example involves the prokaryote Sphingomonas chlor-
ophenolica, which is able to metabolize the toxic xenobi-
otic compound pentachlorophenol. It does so through
a sequence of four chemical reactions [27], none of which
is new to S. chlorophenolica. Two of them are involved in
degrading naturally occurring chlorinated compounds in
other organisms. Two others are involved in the metabolism
of the common amino acid tyrosine [27]. The innovation in
S. chlorophenolica’s metabolism is the combination of
these reactions. Such new combinations of reactions can be
easily achieved through horizontal transfer of enzyme
coding genes.

Prokaryotes may be the most prolific metabolic inno-
vators, but metabolic innovations also occur in the evolu-
tion of higher, multicellular organisms. An example is the
urea cycle, an innovation that occurred during the evolution
of land-living animals. It allows animals to dispose of
ammonia, a waste product of their metabolism that is toxic
to cells, by converting it into urea that is excreted in urine.
The ureacycle consists of five metabolic reactions, none of
which-'are new to their carrier. Individually, they are
widespread in many organisms. Four of these reactions are
involved in the biosynthesis of arginine, and the fifth is
involved in the degradation of arginine [28]. What is new is
the combination of these five reactions into a metabolic
cycle, a major innovation of biological waste management.

REGULATORY CIRCUITS AND THEIR
INNOVATIONS

Regulation is a process that changes the activity of genes
and their products. It can affect transcription, translation,
post-translational modification, transport, as well as several
other aspects of gene and protein function. Among all the
known modes of regulation, transcriptional regulation is
perhaps the most prominent [29—33]. The reason is that
most modes of regulation ultimately affect the regulation of
transcription. Transcriptional regulation is thus a backbone
of regulatory processes inside an organism. Transcriptional
regulation involves specialized proteins called transcription
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factors that bind regulatory DNA near a gene. The binding
of one or more transcription factors to such regulatory DNA
can activate or repress the transcription of a gene through
interactions with the RNA polymerase that is responsible
for transcribing the gene.

Regulation is often mediated by complex regulatory
circuits. Such circuits consist of multiple molecules that
mutually influence each other’s activity. Transcriptional
regulation is no exception. Transcription factors form
regulatory circuits that can comprise dozens of proteins.
These proteins regulate the transcription of the genes
encoding them, and of many other genes downstream of the
circuit genes [34—39]. In doing so, the circuit’s proteins
produce a gene expression pattern in which specific genes
are activated or repressed, a state that can vary in space and
time. A gene expression pattern is a transcriptional regu-
lation circuit’s phenotype. Such phenotypes play central
roles in physiology and in embryonic development, the
process that creates a viable adult organism from a fertil-
ized egg [34,35,40].

Regulatory circuits in general, and transcriptional
regulation circuits in particular, are involved in the evolu-
tion of many new traits. One example involves the evolu-
tion of eyespots on the back of butterfly wings [41—43].
These traits may help butterflies deter predators [41—43].
Eyespots start to form during development in regions that
are called eyespot foci. These foci express the protein
Distal-less, which is causally involved in eyespot forma-
tion. The number of eyespots that form on a wing corre-
sponds to the number of regions that express Distal-less
during early wing development. What is more, grafts of
Distal-less expressing cells to developing wing tissue can
be sufficient for eyespot formation in the graft’screcipient
[44]. Distal-less is a transcription factor, a member of
a complex regulatory circuit with other functions in the
development of wings and legs [41—43].

Another example involves the evolution of dissected
leaves in plants [45, 46]. The ancestral leaves of flowering
plants were most likely simple leaves, which have an
undivided leaf blade [47]. Dissected leaves evolved from
such simple leaves. In a dissected leaf, the leaf blade is
subdivided into multiple smaller leaflets. Leaf dissection is
a trait that may facilitate heat dissipation in hot terrestrial
environments and help increase CO, uptake in water [45,
46]. Dissected leaves may have originated multiple times in
the evolution of flowering plants [47]. During the devel-
opment of dissected leaves, transcription factors of the
KNOX (KNOTTED!1-like homeobox) family play a crucial
role. They are expressed in leaf primordials, which form
close to the growing tip of a plant’s shoot. Increasing the
expression of KNOX genes during leaf formation can
increase the number of leaflets that are forming; conversely,
reducing their expression can reduce this number of leaflets
[48]. KNOX genes are part of a regulatory circuit [48].

These are just two examples where regulatory proteins
and the regulatory circuits they form are critically involved
in the formation of an organism and its parts, as well as in
the formation of a structure that was an innovation when it
first became fully formed. Other prominent examples
include the role of Hox genes in the formation of axial
structures such as limbs in vertebrates, or the role of MADS
box genes in the formation and diversification of flowers
[7, 41—43].

MACROMOLECULES AND THEIR
INNOVATIONS

Individual proteins and RNA macromolecules are not
usually considered the subject of systems biology, but they
should be. They are systems whose parts are amino acid or
nucleotide monomers. These parts are strung together to
form a whole macromolecule that folds intricately in
three-dimensional space. Such macromolecules are
responsible for all enzyme-catalyzed reactions that take
place in a cell. They serve numerous other functions in
addition, including transport, structural support, and
communication, and they are behind numerous if not all
new molecular functions that originated in life’s history.
Some of these functions involve very little change in
a macromolecule’s genotype. (This genotype is the DNA
string that encodes the molecule, but for many purposes,
a protein’s amino acid sequence or an RNA molecule’s
nucleotide sequence can be viewed as the genotype.) An
example of a new function requiring little change involves
the enzyme l-ribulose-5-phosphate 4-epimerase from the
bacterium Escherichia coli, which is necessary for E. coli
to grow on the sugar arabinose as a carbon and energy
source. A single amino acid change from histidine to
asparagine at position 97 of this enzyme suffices to create
a new enzymatic function, an aldolase that joins one
molecule of dihydroxyacetone phosphate and one of gly-
coaldehyde phosphate [49]. New functions in other
molecules require greater amounts of amino acid change.
Take as an example antifreeze proteins. These proteins
occur in numerous organisms that have to survive cold
conditions, such as Arctic and Antarctic fish, as well as
overwintering insects and plants. Antifreeze proteins lower
the freezing point of an organism’s body fluids. They
originated multiple times independently, in different
organisms, and sometimes rapidly, through multiple amino
acid changes in various ancestor proteins [50—52]. These
are just two examples of myriad evolutionary innovations
that occurred in biological macromolecules.

All these three kinds of change — in metabolism, in
regulatory circuits, and in macromolecules — may be
involved in any one innovation, and in ways that are diffi-
cult to disentangle. It is nonetheless useful to study these
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kinds of change separately, in order to find out whether any
commonalities exist among them. Such commonalities
would point to more general principles of phenotypic
variability.

TOWARDS A SYSTEMATIC
UNDERSTANDING OF INNOVATION

By themselves, examples of innovations like those just dis-
cussed may not help us answer whether broader principles of
innovation exist. To this end, it may be necessary to study
innovation more systematically. One way to do thatis to study
a ‘space’ of possible innovation in each of the three system
classes. This space is vast, too vast to understand exhaus-
tively. But even by examining small samples of this space it is
possible to learn about the structure of the entire space, and
thus about principles of innovability. I will next discuss such
a more systematic approach for each system class. Before
that, however, I want to highlight three goals that a systematic
understanding of innovation — an innovability theory —
should achieve (others are highlighted elsewhere [10]).

The first goal reflects perhaps the most difficult problem
that the origin of new beneficial trait poses to our under-
standing of evolution. Most mutations that affect an
organism’s genotype are deleterious, that is, their effects
harm rather than benefit their carrier. Such mutations
produce inferior phenotypes. Thus, to find new and superior
phenotypes organisms may have to explore many mutant
genotypes. At the same time, however, organisms need to
preserve existing, well-adapted phenotypes. In other words,
organisms have to be conservative and explore many new
phenotypes at the same time. How both objectives can be
achieved simultaneously is a question that a theory of
innovation would have to answer.

The second goal relates to the observation that many
innovations in the history of life have occurred more than
once [6]. Dissected leaves may have evolved multiple times;
so did antifreeze proteins; and so did many metabolic
innovations. For example, life has solved the metabolic
problem of incorporating atmospheric carbon (CO;) into
biomass at least three times in different ways, that is, through
the Calvin—Benson cycle, through the reductive citric acid
cycle, and through the hydroxypropionate cycle [53].

A third goal relates to the observation that some inno-
vations seem to combine existing parts of a system to create
a new function. I mentioned a metabolic pathway that can
degrade pentachlorophenol, as well as the urea cycle, both
of which involve new combinations of existing enzymatic
reactions — parts of a metabolic system. Is this combina-
torial nature of innovations a peculiarity of some innova-
tions, or is it a more general phenomenon?

The framework I will discuss here suggests an answer to
all three questions.
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GENOTYPE SPACES AND THE PHENOTYPES
THEREIN

This section discusses genotypes and phenotypes separately
for each of the three systems classes mentioned above.

The metabolic genotype of an organism is the totality of
its DNA that encodes metabolic enzymes. It is thus funda-
mentally a subset of its genome. While one can think of this
genotype as a DNA string, is often more expedient to
represent the genotype more compactly. Here is a compact
representation that is well suited to study innovation
systematically [54]. Consider the known universe of
biochemical reactions, that is, chemical reactions catalyzed
by an enzyme that are known to occur somewhere in some
organism. This known universe of biochemical reactions
currently comprises more than 5000 such reactions [55]. One
can write these reactions as a list, as shown in Figure 13.1a,
which represents each reaction by its stoichiometric equa-
tion. Any one organism, such as a human or the bacterium E.
coli, will have enzymes that catalyze some of these reactions
but not others. For reactions that are catalyzed in any one
organism, write 1 next to the stoichiometric equation shown
in Figure 13.1a. For every reaction that does not occur, write
0. The result of this procedure is a binary string that indicates
which reactions do or do not take place in the metabolism of
an organism. It is a compact description of a metabolic
genotype, comprising all the enzymatic reactions that take
place in a metabolic network. With this definition in mind,
the notions of metabolic genotype and metabolic network are
used here synonymously.

The totality of all possible metabolic genotypes — the set
of all the binary strings defined above — constitutes a meta-
bolic genotype space, a collection of possible metabolic
genotypes. This space is vast, containing more than 23000
possible genotypes, more metabolisms than could ever be
realized on earth (and many of them surely useless to life as
we know it). It is the space of all possible metabolisms that
can be realized with a given set of biochemical reactions. To
understand metabolism and metabolic innovation system-
atically is to understand the structure of this space, and the
metabolic phenotypes that exist in it.

A few further concepts are useful in discussing meta-
bolic genotype space. The first is that of a neighbor. Two
metabolic networks are neighbors in genotype space if they
differ in a single chemical reaction. A neighborhood of
a metabolic network comprises all its 1-neighbors, all
metabolic genotypes that differ from it in a single reaction.
These concepts can be extended to k-neighbors, networks
that differ from a given network in k chemical reactions.
The distance of two metabolic networks indicates the
fraction of reactions in which they differ. Two metabolic
networks have a distance of D =0 if they contain the same
reactions; a distance of D =0.5 if 50% of reactions that are
catalyzed by one network are not catalyzed by the other
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(@) Metabolic genotype

(network of enzymatic reactions)

Glucose + ATP — Glucose 6-phosphate + ADP 1
Fructose 1,6-bisphosphate — Fructose 6-phosphate + P; 1

Acetoacetyl-Co + Glyoxylate — CoA + Malatet 1

Oxaloacetate + ATP — Phosphoenolpyruvate + CO, + ADP

\ J
Y

>5000 biochemical reactions

network or vice versa; and a distance of D = 1 if they differ
in every single reaction [54,56,57].

There are as many ways to define a metabolic phenotype
as there are tasks of metabolism. Metabolism detoxifies
waste, synthesizes molecules for defense and communi-
cation, and manufactures all small precursor molecules for
biomass synthesis. The latter task is the most fundamental,
and I will therefore focus on metabolic phenotypes related
to this task. For free-living organisms such as E. coli there
are of the order of 60 small biomass precursors [58]. These
include all proteinaceous amino acids, DNA nucleotide
precursors, RNA nucleotide precursors, as well as multiple
lipids and enzyme cofactors. A network’s ability to
synthesize all these molecules will depend on thenutrients
that are available in an environment. Some organisms, such
as E. coli, can survive in very simple, minimal chemical
environments. These environments contain only one kind
of molecule that provides each chemical element; at least
one of these molecules also provides energy. Most free-
living organisms can use multiple different sources of
chemical elements and of energy.

These observations give rise to the following definition
of a metabolic phenotype, which is focused on sources of
carbon and energy but can be easily extended to sources of
other chemical elements [54,57]. Consider a given number
of molecules that could serve as sources of carbon energy to
some organism. Write these molecules as a list, as shown in
Figure 13.1b. If the metabolism of a given organism can
synthesize biomass — that is, if it can sustain life on any one
of these carbon sources (that is, the organism needs to be
able to use this carbon source as its only carbon source) —
write a 1 next to the carbon source. Otherwise, write a 0. In
this way one can define a metabolic phenotype as a binary
string that reflects an organism’s viability on different

(b) Metabolic phenotype

(viability on carbon source)
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FIGURE 13.1 Metabolic genotypes
and phenotypes. Panel a) shows the
metabolic genotype of a genome-scale
metabolic network. It can be represented
in a simplified form as a binary string.
The entries of this string correspond to
one biochemical reaction in a ‘universe’
of known reactions. Panel b) shows one
of many possible representations of
a metabolic phenotype, a binary string
representation whose entries correspond
1 Ethanol to individual carbon sources. This
s representation contains a one for every
: carbon source from which a metabolic
0 network can synthesize all biomass
precursors. (Figure and caption adapted
Sfrom [10]. Used with permission from
Oxford University Press.)

1 Glucose

1 Xanthosine

H_/

sole carbon
sources

sources of carbon or other elements. Note that even for
a modest number of 100 different potential carbon sources,
the number of possible metabolic phenotypes is already
2199 61 %1079,

This representation of metabolic phenotypes lends itself
to the systematic study of new metabolic phenotypes.
Consider a genotypic change that causes the addition of
chemical reactions to a metabolic network by horizontal
gene transfer. If these new reactions allow an organism to
survive on a carbon source that it had not been previously
able to utilize, a metabolic innovation has arisen. In an
environment where other carbon sources limit growth, or
where they are absent, this ability can make a life-changing
qualitative difference to its carrier.

I will now discuss analogous definitions of genotypes
and phenotypes for regulatory circuits. The evolution of
regulatory circuits, and especially of transcriptional regu-
lation circuits, is difficult to study experimentally. Part of
the reason is that regulatory DNA can occur far away from
the genes it regulates; also, such DNA can change very
rapidly on evolutionary timescales [36,59—66]. In addition,
to understand the relationship between genotype and
phenotype requires an analysis of many circuit genotypes
and their phenotypes. For these reasons, computational
models of regulatory circuits are still indispensable to
understand genotype—phenotype relationships in such
circuits. The evidence discussed below stems from well-
studied models of transcriptional regulation -circuits
[67—71]. Variants of these models have been used
successfully to understand the development of specific
organisms, such as the early fruit fly embryo, and to predict
the developmental changes in mutant embryos [67,
72—75]. In addition, they have helped us understand
a variety of evolutionary phenomena, such as how
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regulatory circuits can evolve increased robustness to
perturbations, and that cryptic variation — genotypic vari-
ation without phenotypic effects in a given environment —
might facilitate evolutionary adaptation [76—80]. Note that
circuits different from those discussed here, such as
signaling circuits, can show properties similar to those
highlighted below, which suggests that these properties
may be generic features of regulatory circuits [71,81,82].

The genotype of a regulatory circuit comprises the
genomic DNA that encodes all regulatory molecules, as
well as the non-coding DNA that may help determine the
interactions between them. For a transcriptional regulation
circuit, this genotype typically includes the genes that
encode the circuit’s transcriptional regulators, as well as the
regulatory DNA sequences that determine where a regu-
lator binds, and which therefore determine who regulates
who in the circuit. As in metabolism, there are more
compact representations of a circuit’s regulatory genotype
than its DNA sequence. For example, one can represent the
regulatory genotype simply through a square matrix
w = (w;j), whose entries w; reflect whether transcription
factor j regulates the expression of transcription factor i in
the circuit. In the simplest possible representation, this
matrix contains only information about whether this
interaction is activating (w;;=+1), repressing (w;;=—1),
or absent. Even the simplest representation shows that the
number of circuit genotypes will be very large, even for
circuits with a modest number N of genes. That is, there are
3V possible circuits. In more complicated representations
of transcriptional regulation circuits, these interactions
could assume a larger or a continuous range of values.
Mutations in DNA that affect the regulatory interactions of
circuit genes can change this circuit genotype. For
example, a mutation in regulatory DNA that abolishes
binding of a transcription factor to this DNA may also
abolish regulation of a nearby gene by this transcription
factor, and thus eliminate one of the regulatory interactions
w;j of this circuit (w; — 0).

The mutual regulatory interactions of molecules in such
a circuit will create a gene expression pattern. This
expression pattern is a circuit’s phenotype. It typically
influences the expression of many genes downstream of the
circuit, genes that influence physiological or developmental
processes. Changes in such phenotypes caused by muta-
tions of the circuit’s regulatory genotype can help create
new traits, some of which may become evolutionary
innovations.

To study the origin of new gene expression phenotypes
in such circuits systematically, one needs to think of any
one circuit as being part of a much larger genotype space of
circuits. This space contains all possible circuits of a given
number N of genes. In this genotype space, two circuits
are k-neighbors if they differ in k regulatory interaction.
The k-neighborhood of a circuit comprises all circuits that
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differ from it in no more than k regulatory interaction. The
distance D of two circuits can be defined as the fraction of
regulatory interactions in which they differ. For example.
two circuits would have a distance of D=0.2, if they
differed in 20% of their interactions. They would have
a distance of D=1 if they differed in every single inter-
action, that is, if no interaction that occurs in the first circui
also occurs in the second circuit [83,84].

The final class of systems to be discussed here are
protein and RNA macromolecules. Their genotype spaces
also known as sequence spaces, have been studied for many
years [85—87]. For protein strings of a given length N of
amino acids, genotype space comprises all amino acids
strings of length N, and thus a totality of 20" such strings
because 20 different amino acids occur in most proteins
For RNA molecules of N nucleotides, it comprises 4
possible RNA strings. As for metabolism and for regulatory
circuits, the sizes of these genotype spaces can be astro:
nomically large. Two protein and RNA molecules are
k-neighbors in genotype space if they differ in k nucleotide:
or amino acids. The k-neighborhood of a molecule
comprises all of its neighbors. The distance of two proteir
or RNA molecules can be defined in a variety of ways, one
of them being the fraction of monomers in which they
differ.

The phenotype of a protein or RNA molecule comprise:
its secondary structure, its tertiary structure — that is, it:
three-dimensional fold in space — as well as its biochem
ical function, be it catalytic, structural, or something else
Over the last 40 years the genotypes and phenotypes of ten:
of thousands of proteins have been characterized bio
chemically. They provide a rich source of information tc
study the relationship between genotype and phenotyp
[88]. Fewer RNA phenotypes are known, but for RN/
secondary structures algorithms exist that can predict RN/
phenotypes from genotypes [89,90]. Albeit not perfectl;
accurate for any one sequence, the relevant algorithms ar
sufficiently accurate (and also sufficiently fast) to charac
terize thousands to millions of different RNA genotype
and their phenotypes [87,91—93]. Because RNA secondar
structure phenotypes are necessary for the functioning o
many molecules, they are interesting study objects in thei
own right [94—96].

Genotype Networks

The genotype spaces of metabolic networks, regulator
circuits, and macromolecules are much too large to b
characterized exhaustively. However, they can be charac
terized through (unbiased) sampling of genotypes o
phenotypes, or through exhaustive enumeration of geno
types and phenotypes for small systems. These approache
can identify generic properties of such spaces, that i
properties that hold for typical genotypes and phenotypes
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Two such properties are discussed in this and the following
section.

The first is that a given phenotype is typically not just
formed by one or few genotypes, but by astronomically
many genotypes [54,56,84,86,87]. In other words, vast sets
of genotypes share the same phenotype. In some systems,
such as metabolism, it is possible to characterize such sets of
genotypes through Markov chain Monte Carlo sampling of
genotype space [54,56]. This involves carefully designed
random walks through genotype space. Briefly, one starts
from a specific metabolic network (metabolic genotype)
with a given number of reactions and a given phenotype.
(This starting genotype can be viewed as a single point in
metabolic genotype space.) Techniques such as flux-balance
analysis allow one to compute this metabolic phenotype
from the network’s metabolic genotype [14,97]. One then
either eliminates a specific, randomly chosen reaction from
this starting genotype, or one adds a reaction chosen at
random from the known universe of biochemical reactions.
After this change to the network, one computes the pheno-
type of the changed network. If this phenotype is the same as
before the change — that is, if this change has not altered the
ability of the network to sustain life on a given spectrum of
carbon sources — then the altered network is kept. Other-
wise, the genotypic change is discarded and one reverts to
the initial metabolic network. One then applies a second
change (reaction deletion or addition), evaluates the
phenotype, and keeps the altered network if it is unchanged,
and so on, in a long sequence of >10’ reaction changes, each
of which has to keep the network’s phenotype unchanged.
This approach can not only sample sets of genotypes with
a given phenotype uniformly, that is, in an unbiased manner,
it also resembles the process by which metabolic networks
evolve through the deletion and the addition of reactions to
a network, for example through horizontal gene transfer.

Using this approach one can ask how different two
metabolic genotypes that have the same phenotype can
become? The answer is that they can become very different.
For example, metabolic networks that have the same
number of reactions as the E. coli network, and that can
synthesize all E. coli biomass precursors in a minimal
environment that contains glucose as the sole carbon
source, can differ in more than 75% of their reactions.
Moreover, any two such metabolic networks can typically
be connected to one another. This means that sequences of
reaction changes exist that can convert one metabolic
network into the other, such that no individual change alters
the phenotype [54,56]. In other words, metabolic genotypes
with the same phenotype form extended networks —
genotype networks — in metabolic genotype space. Note
the distinction between a metabolic network and a geno-
type network: a metabolic network corresponds to a single
point, a single genotype in genotype space; a genotype
network is a network of such genotypes, and thus a network
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of metabolic networks. I will keep these two meanings of
a network distinct.

Genotype networks exist for metabolic phenotypes that
can sustain life on many different sole carbon sources, as
well as on multiple carbon sources (when each source is
provided as the sole carbon source). Even metabolic
networks that can sustain life on up to 60 carbon sources
form genotype networks that can still differ in 75% of their
reactions. Extended genotype networks also exist for
metabolic networks that contain different numbers of
reactions, and for phenotypes’ that involve sources of
chemical elements other than carbon [57]. Thus, the most
basic properties of genotype networks are not highly
sensitive to the phenotype one considers. Based on what we
know, they appear to be generic features of metabolic
genotype space.

To explore the genotype space of regulatory circuits one
can use similar sampling approaches [83,84], and one finds
a similar organization of this space. Two circuits with the
same gene expression phenotype can have a genotype
distance between D=0.75 and D=1, that is, they may
differ in 75—100% of their regulatory interactions. What is
more, circuits with very different genotypes can typically
be connected through a sequence of steps, each of which
changes a single regulatory interaction, but none of which
alters the circuit’s gene expression phenotype. These
observations hold for broadly different gene expression
phenotypes, and regardless of the number of genes or
regulatory interactions in a circuit, except possibly for the
smallest circuits [84,98].

Comparative data on the tertiary structure phenotypes
of proteins demonstrates the existence of genotype
networks here as well. Although exceptions exist [99],
proteins with the same structure and/or function can differ
in most of their amino acids [100—103]. Examples include
oxygen-binding globins. These proteins occur both in
animals and plants, probably share a common ancestor, but
are extremely diverse in their genotypes. For example, no
more than four of their more than 90 amino acids are
absolutely conserved. Despite this genotypic divergence,
globins have largely preserved their tertiary structure and
their oxygen-binding ability [104—106].

Globins are not unusual in this regard. Other proteins
with preserved phenotype are even more diverse. Take
triose phosphate isomerase (TIM) barrel proteins. These
proteins have preserved their tertiary structure but can
differ in every single amino acid [107,108]. More
generally, proteins with highly diverged genotype yet
highly conserved phenotype are the rule rather than the
exception [100—103]. Such proteins form vast genotype
networks that extend far into genotype space. Phyloge-
netic analyses of related proteins from different organ-
isms reveal a reflection of these networks in the tree of
life [106].
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Fewer RNA than protein phenotypes have been char-
acterized experimentally, but computational analyses of the
relationship between RNA sequence and secondary struc-
ture point to much the same phenomenon. RNA genotypes
with the same secondary structure phenotype typically
form large genotype networks that extend far into, and
often all the way through, RNA genotype space [87,109].

In sum, metabolic networks, regulatory circuits, and
macromolecules — very different kinds of systems — show
a remarkable common property. Genotypes that have the
same phenotype are typically organized in large genotype
networks that reach far through genotype space. I will
return to genotype networks later, when I discuss their
significance for phenotypic variability.

The Diversity of Neighborhoods
in Genotype Space

A second common property of the three system classes
emerges from the analysis of genotypic neighborhoods.
The neighborhood of a genotype is relevant for phenotypic
variability, because it contains genotypes that can be easily
reached from this genotype, that is, through one or few
small genotypic changes. For an analysis of phenotypic
variability, it is therefore useful to examine the spectrum of
phenotypes PI that occur in a given neighborhood of
a genotype GI that has some phenotype P. A simple
question is whether the spectrum of phenotypes in this
neighborhood depends on the genotype GI. More precisely,
consider two genotypes GI and G2 with the same pheno-
type P and a given distance D. Denote as PI and P2 the sets
of phenotypes (different from P) in their respective
neighborhoods. How different is the set PI from the set P2?
That is, are most phenotypes in P1 also contained in P2? Or
are most of these phenotypes unique to the neighborhood of
G1, in the sense that they do not also occur in the neigh-
borhood of G2?

In metabolism, one finds that the neighborhoods of two
metabolic genotypes GI and G2 sampled at random from
the same genotype network contain mostly different novel
phenotypes. In other words, the set PI of new phenotypes
in the neighborhood of G/ is very different from the set P2
of new phenotypes in the neighborhood of G2. This holds
regardless of the specific genotypes GI and G2, as well
as regardless of the specific phenotype P that they have
[54,57]. The situation in regulatory circuits is not much
different. There, small neighborhoods around two circuits
G1I and G2 may contain sets of phenotypes PI and P2 that
differ in the majority of their phenotypes, even for circuits
whose genotypes differ little, that is, in no more than 20%
of their regulatory interactions [83]. Much the same holds
for protein and RNA molecules [87,92,110,111]. For
example, a recent analysis studied more than 16 000
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enzymes with known sequence, tertiary structure, ¢
enzymatic function. It showed that small neighborhox
around two proteins G/ and G2 that differ at fewer tl
25% of their amino acids can contain sets of PI and P2
new enzyme function phenotypes, such that the majority
enzymatic functions found in PI are not contained in F

In sum, metabolic networks, regulatory circuits, ¢
macromolecules show two common qualitative propert
in the organization of their genotype space. Property 1
the existence of genotype networks that reach far throt
genotype space. Property 2 is that small neighborhoc
around different genotypes typically contain differ
phenotypes, even if the genotypes do not differ grea
Figure 13.2 shows a schematic sketch of these properti
The large rectangle in the figure stands for a hypotheti
genotype space. Each of the small circles stands for a sin,
genotype. The open circles correspond to genotypes t
share some hypothetical phenotype P (not show
Two genotypes are connected by a straight line if they :

000000&.0000

FIGURE 13.2 A highly simplified schematic of the structure
a genotype network and the new phenotypes near it. See text

details. Note that genotype networks are objects in a high-dimensio
genotype space with counterintuitive geometric properties. Also, act
genotype networks contain an astronomical number of members. In
vidual genotypes may have hundreds to thousands of neighbors, only f
of which can be shown. In addition, each of the genotypes shown
different colors is also part of a vast genotype network that is not shown
figure like this can thus merely provide a modicum of intuition about
organization of genotype space. (Adapted from [10]. Used with permissi
Jfrom Oxford University Press.)
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neighbors. The network of open circles stands for a large
connected genotype network that traverses genotype space.
The colored circles represent genotypes whose phenotype
is different from P (one color per phenotype), and that are
neighbors of the genotypes on the genotype network. Note
that different regions of this hypothetical genotype space
contain different colors. The two large dashed circles
represent the neighborhoods of two genotypes on the
genotype network. Note that the phenotypes (colors) in
these two neighborhoods are different, a reflection of
property 2. Note that Figure 13.2 represents a complex,
vast, and high dimensional genotype space in a highly
simplified, two-dimensional way. For example, actual
genotype networks contain an astronomical number of
members. Individual genotypes may have hundreds to
thousands of neighbors, only few of which can be shown. In
addition, each of the colored genotypes is also part of a vast
genotype network that is not shown.

Genotype Networks and Their Diverse
Neighborhoods Can Help Explain the Origin
of New Phenotypes

I will now return to the three questions about the origin of
new phenotypes posed earlier, and which a systematic
understanding of phenotypic variability needs to address.
The first is that organisms need to preserve old, well-
adapted phenotypes while exploring many new phenotypes.
Properties 1 and 2 can jointly help answer this question. To
see this, consider that all evolution takes place in pop-
ulations of organisms, each with its own genotype. Envi-
sion a population of genotypes in any one of our three
system classes. Individuals in this population have
a phenotype that may be necessary for their survival, but
somewhere in genotype space a superior phenotype may
exist. The genotypes of individuals in this population suffer
mutations that affect their genotype. Natural selection
eliminates any mutants that have not preserved the old
phenotype or replaced it with a superior phenotype. One
can view such a population as a cloud of points [112] that
diffuses on a genotype network through genotype space.
Genotype networks (property 1) allow the genotypes of
individuals in such a population to change without affecting
their phenotype. They allow the preservation of old
phenotypes despite genotypic change. Over time, geno-
types may change dramatically while preserving their
phenotype. During this process, the population explores
different regions of genotype space. Because of property 2,
the diversity of genotypic neighborhoods, the neighbor-
hoods of the population’s genotypes will contain ever-
changing sets of new phenotypes. This means that the
population can explore different novel phenotypes in its
neighborhood as its genotypes change. In sum, genotype
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networks and their neighborhoods allow populations to
preserve old phenotypes while exploring many new
phenotypes.

Neither property 1 nor property 2 alone would be
sufficient for such exploration [10]. Without property 1 (no
genotype networks), a population would have low geno-
typic diversity and could therefore not explore different
neighborhoods in this space. The total number of pheno-
types is much greater than the number of phenotypes in
aneighborhood for any one of the three system classes [10].
Thus, the absence of genotype networks would mean that
most novel phenotypes are off-limits to an evolving pop-
ulation. Conversely, in the absence of property 2, that is, if
the neighborhoods of different genotypes contained mostly
identical new phenotypes, the existence of genotype
networks would be irrelevant to the exploration of novel
phenotypes. The reason is that even though a population’s
genotypes could change during evolutionary exploration of
a genotype network, the changing genotypes would have
access to the same unchanging spectrum of novel
phenotypes.

The second question posed earlier regards the multiple
evolutionary origins of many evolutionary innovations [6,
53]. Such multiple origins may be difficult to understand, if
one assumes that innovations are unique solutions to
particular problems that life faces, and that they are unique
because the underlying problems are difficult to solve.
Viewing such solutions from the vantage point of a geno-
type space leads to a completely different perspective.
There, a genotype with a specific phenotype can be viewed
as a solution to a particular problem. The existence of vast
genotype networks for typical phenotypes means that
typical problems have not just one, but astronomically
many solutions. Different genotypes on the same genotype
network can be viewed as different solutions to the same
problem. Populations of organisms that explore genotype
space from different starting points may encounter different
solutions. To be sure, most innovations may involve
multiple changes in all three major system classes, but
because genotype networks are ubiquitous in all three
classes, so are multiple solutions to most problems. From
this perspective, the multiple origins of many evolutionary
innovations are not surprising but rather to be expected.

The third question is whether innovation is usually
combinatorial, involving old parts that are combined to new
purposes. Here again, the vantage point of a genotype
space, which contains all possible innovations, suggests
a very straightforward answer: all innovation is combina-
torial. New functions of proteins emerge through new
combinations of amino acids. New metabolic phenotypes
emerge through new combinations of already existing
biochemical reactions. And new gene expression patterns
of regulatory circuits arise through new combinations of
regulators and their interactions.
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Innovations that involve new combinations of existing
system parts have many guises. Students of embryonic
development, for example, have coined the term co-option,
the use of an existing regulator or an existing regulatory
interaction for new purposes [113]. Examples include the
regulator Distal-less mentioned earlier. It is involved in the
development of insect legs and wings, but it has been co-
opted to form eyespots [44,114]. Distal-less does not act
alone in these processes. It is part of regulatory circuit that
involves other molecules, some of which may also have
changed their interactions and expression in helping form
anew body structure. One can view the co-option of Distal-
less as a special case of a more general principle, in which
new combinations of regulators and their interactions
specify new body parts.

In sum, evidence from three very different kinds of
systems can help answer several related questions about the
origins of new phenotypes. It can help us grasp how life can
preserve old phenotypes while exploring many new
phenotypes. It can help us understand how many evolu-
tionary innovations have originated multiple times in the
history of life. And it can help us appreciate that innovation
will generally involve combinations of old parts to achieve
new purposes. The fact that the properties described exist in
very different kinds of system suggests that they apply to
multiple different kinds of innovation. They are suitable to
form the basis of a general innovability theory.

Robustness, Genotype Networks
and Environmental Change

A question so far left open is why genotype networks exist
in metabolism, regulatory circuits, and macromolecules. At
first sight this may seem difficult to answer, because these
system classes are so different. However, it can be shown
that this commonality emerges from a very simple property
that they share: the robustness of their phenotypes to
mutational changes in individual system parts.

In the genotype space framework such robustness can
be thought of as a property of individual genotypes.
Mutations often change any one genotype into one of its
neighbors. A loss-of-function mutation in an enzyme-
coding gene may eliminate one reaction from a metabolic
network and transform the network into one of its neigh-
bors; a mutation-changing regulatory DNA may eliminate
a transcription factor’s binding to this DNA, and hence its
regulatory interaction with a target gene, transforming the
circuit into one of its neighbors; a nucleotide change in
a protein-coding gene often transforms the protein into one
of its neighbors. One way to quantify the robustness of
a genotype is through the proportion of its neighbors that
have the same phenotype as itself. Metabolic networks,
regulatory circuits and macromolecules are all to some
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extent robust in this sense [39,115—123]. This robustness
has been estimated experimentally in systems such as
proteins through random mutagenesis experiments
[115—118], in metabolic networks through knockout
mutations of enzyme-coding genes, and in regulatory
circuits through circuit rewiring [39,115—123]. Computer
modeling confirms that such robustness is a generic feature
of these three system classes [54,84,124]. Typically,
between 10% and more than 50% of a genotype’s neighbors
have the same phenotype as itself, depending on the system
and the individual genotype [10]. It can be shown mathe-
matically that this property is both necessary and sufficient
to bring forth genotype networks that are astronomically
large, and that extend far through genotype space [10].
From this vantage point, one could argue that genotype
networks are a consequence of robustness. (Their diverse
phenotypic neighborhoods emerge from the fact that many
more phenotypes exist than the neighborhood of any one
genotype can contain [10].)

These observations raise a further question. What is the
ultimate cause of this robustness? Although multiple
answers have been proposed, the current best candidate
emerges from the observation that living systems need to
operate in different environments [119,125—129]. The
notion of an environment should be broadly defined in this
context, and include the biotic, chemical, and physical
environment outside an organism, as well as inside its cells.
For example, it includes the changing chemical environ-
ments that provide nutrients to a metabolic network, the
different regions of a developing embryo in which a regu-
latory circuit is exposed to different chemical signals, and
the intracellular chemical environment that macromole-
cules need to operate in.

The role of changing environments for robustness has
been most thoroughly studied in the context of metabolic
networks [56, 119,129—133]. A free-living organism such
as E. coli, which encounters multiple different environment
containing different nutrients, can sustain life on dozens of
different nutrients. It also has a large metabolic network
that comprises more than 900 reactions. In any one such
environment, it is also robust to the removal of individual
reactions [134]. For example, more than 70% of its reac-
tions are dispensable in a minimal environment with
glucose as the sole carbon source. Such robustness is not
a peculiarity of the E. coli metabolic network: it is a general
property of metabolic networks that can sustain life in
multiple environments [57,119]. (Note that any reaction
that is dispensable in one environment may be essential in
a different environment [119].) If E. coli lived for many
generations in an environment that did not vary in its
nutrient composition, its robustness would slowly disap-
pear. This is what happened in endosymbiotic organisms
such as Buchnera aphidicola, a relative of E. coli that has
lived for millions of years inside its host organism, an aphid
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[135—137]. Buchnera has a much simpler metabolic
network comprising only 263 reactions. During its long
association with its host and the constant environment this
host provides, Buchnera has lost the ability to survive on
a broad spectrum of nutrients. What is more, it has also lost
almost all robustness to the removal of chemical reactions
from its metabolism [135].

A metabolism that is to sustain life in multiple different
chemical environments needs specific enzymatic reactions
to metabolize all the nutrients that these environments may
contain. It therefore needs to be more complex than
a metabolism highly specialized to one specific environ-
ment. This increased complexity endows metabolism with
robustness to the removal of reactions in any one envi-
ronment [10,57]. Although the relationship between envi-
ronmental change, increased complexity, and robustness is
not as well explored for proteins and regulatory circuits,
similar arguments can be made for them [10].

In sum, the ability to cope with changing environments
can require increased complexity of a biological system,
which can cause robustness to genetic change in any one
environment. Such robustness is responsible for the exis-
tence of genotype networks, which can facilitate the origin
of new phenotypes. Minimally complex systems may not
display some of the core properties discussed here [98], and
may thus not be capable of exploring a broad spectrum of
new phenotypes.

Conclusions and Future Challenges

Genotypic changes in metabolism, in regulatory circuits, as
well as in protein and RNA molecules are involved in many
if not all evolutionary innovations. These system classes are
therefore important study objects to understand the
phenotypic variability that brings forth evolutionary adap-
tations and innovations. I have discussed evidence that all
three system classes have two common properties. The first
is the existence of genotype networks, vast connected sets
of genotypes with the same phenotype that reach far
through genotype space. The second is the fact that the
neighborhoods of different genotypes with the same
phenotype typically contain very different new phenotypes.
Together, these properties can help explain how living
systems can preserve old phenotypes while exploring many
new phenotypes, why many evolutionary innovations in
life’s history have occurred multiple times, and that
evolutionary innovation has a fundamentally combinatorial
nature. Robustness of a system to genetic change is both
a necessary and sufficient criterion for the existence of
genotype networks. A likely cause of such robustness is the
fact that many biological systems need to operate in
multiple environments.

The observations

made here regard qualitative

commonalities in the organization of genotype spaces.
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These spaces may harbor further, unrecognized similarities,
but also differences among different kinds of systems.
A combination of high-throughput genotyping with
emerging technologies for high-throughput phenotyping
[138], and sophisticated computer models of genotype—
phenotype relationships may reveal many more such prin-
ciples in the years to come. Given how vast genotype
spaces are, myriad principles of phenotypic variability may
still await discovery.

REFERENCES

[1] Muller GB, Wagner GP. Novelty in evolution — restructuring

[2] Pigliucci M. What, if anything, is an evolutionary novelty? In
20th Biennial meeting of the philosophy of science association.
CANADA: Vancouver; 2006. p. 887—98.

[3] de Vries H. Species and Varieties, Their Origin by Mutation.
Chicago, IL: The open court publishing company; 1905.

[4] Shubin N, Tabin C, Carroll S. Deep homology and the origins of
evolutionary novelty. Nature 2009;457:818—23.

[5] Moczek AP. On the origins of novelty in development and
evolution. Bioessays 2008;30:432—47.

[6] Vermeij GJ. Historical contingency and the purported uniqueness
of evolutionary innovations. Proc Natl Acad Sci USA 2006;103:
1804—9.

[7] TIrish VF. The evolution of floral homeotic gene function. Bio-
essays 2003;25:637—46.

[8] Shimeld SM, Holland PWH. Vertebrate innovations. Proc Natl
Acad Sci USA 2000;97:4449—52.

[9] Gerhart J, Kirschner M. Cells, Embryos, and Evolution. Boston:
Blackwell; 1998.

[10] Wagner A. The Origins of Evolutionary Innovations. A Theory of
Transformative Change in Living Systems. Oxford, UK: Oxford
University Press; 2011.

[11] Schultes E, Bartel D. One sequence, two ribozymes: implications
for the emergence of new ribozyme folds. Science 2000;289:
448-52.

[12] Hayden E, Ferrada E, Wagner A. Cryptic genetic variation
promotes rapid evolutionary adaptation in an RNA enzyme.
Nature 2011;474:92—5.

[13] Feist AM, Herrgard MJ, Thiele I, Reed JL, Palsson BO. Recon-
struction of biochemical networks in microorganisms. Nat Rev
Microbiol 2009;7:129—43.

[14] Becker SA, Feist AM, Mo ML, Hannum G, Palsson BO,
Herrgard MJ. Quantitative prediction of cellular metabolism with
constraint-based models: the COBRA Toolbox. Nat Protocol
2007;2:727-38.

[15] West-Eberhard M. Developmental Plasticity and Evolution. New
York, NY: Oxford University Press; 2003.

[16] Jeffery C. Moonlighting Trends
1999;24:8—11.

[17] True HL, Berlin I, Lindquist SL. Epigenetic regulation of trans-
lation reveals hidden genetic variation to produce complex traits.
Nature 2004;431:184—7.

[18] Masel J, Bergman A. The evolution of the evolvability properties
of the yeast prion [PSI+]. Evolution 2003;57:1498—512.

proteins. Biochem Sci




262

[19]

[25]

[26]

[27]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

SECTION | Il

Jensen RA. Enzyme recruitment in evolution of new function.
Annu Rev Microbiol 1976;30:409—25.

Horowitz NH. On the evolution of biochemical syntheses. Proc
Natl Acad Sci USA 1945;31:153—7.

Palsson B. Metabolic systems biology. FEBS Lett 2009;583:
3900—4.

Postgate JR. The Outer Reaches of Life. Cambridge, UK: Cambridge
University Press; 1994.

Dantas G, Sommer MOA, Oluwasegun RD, Church GM. Bacteria
subsisting on antibiotics. Science 2008;320:100—3.

Nohynek LJ, Suhonen EL, NurmiahoLassila EL, Hantula J,
SalkinojaSalonen M. Description of four pentachlorophenol-
degrading bacterial strains as Sphingomonas chlorophenolica sp
nov. Syst Appl Microbiol 1996;18:527—38.

Ochman H, Lawrence J, Groisman E. Lateral gene transfer and
the nature of bacterial innovation. Nature 2000;405:299—304.
Pal C, Papp B, Lercher MJ. Adaptive evolution of bacterial
metabolic networks by horizontal gene transfer. Nat Genet
2005;37:1372—5.

Copley SD. Evolution of a metabolic pathway for degradation of
a toxic xenobiotic: the patchwork approach. Trends Biochem Sci
2000;25:261-5.

Takiguchi M, Matsubasa T, Amaya Y, Mori M. Evolutionary
aspects of urea cycle enzyme genes. Bioessays 1989;10:163—6.
Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular
Biology of the Cell. New York, NY: Garland Science; 2008.

Badis G, Berger MF, Philippakis AA, Talukder S, Gehrke AR,
Jaeger SA, et al. Diversity and Complexity in DNA Recognition
by Transcription Factors. Science 2009;324:1720—3.

Walhout AJM. Unraveling transcription regulatory networks by
protein-DNA and protein—protein interaction mapping. Genome
Res 2006;16:1445—54.

Davidson EH, Erwin DH. Gene regulatory networks and the
evolution of animal body plans. Science 2006;311:796—800.
Arnone MI, Davidson EH. The hardwiring of development:
organization and function of genomic regulatory systems.
Development 1997;124:1851—64.

Hueber SD, Lohmann I. Shaping segments: Hox gene function in
the genomic age. Bioessays 2008;30:965—79.

Hughes CL, Kaufman TC. Hox genes and the evolution of the
arthropod body plan. Evol Dev 2002;4:459—99.

Tuch BB, Li H, Johnson AD. Evolution of eukaryotic transcrip-
tion circuits. Science 2008;319:1797-9.

Lee T, Rinaldi N, Robert F, Odom D, Bar-Joseph Z, Gerber G,
et al. Transcriptional regulatory networks in Saccharomyces cer-
evisiae. Science 2002;298:799—804.

Shen-Orr S, Milo R, Mangan S, Alon U. Network motifs in the
transcriptional regulation network of Escherichia coli. Nat Genet
2002;31:64—8.

Isalan M, Lemerle C, Michalodimitrakis K, Beltrao P, Horn C,
Garriga-Canut M, et al. Evolvability and hierarchy in rewired
bacterial gene networks. Nature 2008;452:840—5.

Carroll SB, Grenier JK, Weatherbee SD. From DNA to Diversity.
Molecular Genetics and the Evolution of Animal Design. Malden,
MA: Blackwell; 2001.

Stevens M, Stubbins CL, Hardman CJ. The anti-predator function
of ‘eyespots’ on camouflaged and conspicuous prey. Behav Ecol
Sociobiol 2008;62:1787—93.

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Dynamic and Logical Properties of Biological Systems

Stevens M, Hardman CJ, Stubbins CL. Conspicuousness, not eye
mimicry, makes ‘eyespots’ effective antipredator signals. Behav
Ecol 2008;19:525—31.

Stevens M. The role of eyespots as anti-predator mechanisms,
principally demonstrated in the Lepidoptera. Biol Rev
2005;80:573—88.

Brakefield PM, Gates J, Keys D, Kesbeke F, Wijngaarden PJ,
Monteiro A, et al. Development, plasticity and evolution of
butterfly eyespot patterns. Nature 1996;384:236—42.

Gurevitch J. Variation in leaf dissection and leaf energy budgets
among populations of Achillea from an altitudinal gradient. Am J
Bot 1988;75:1298—306.

Givnish TJ. Comparative studies of leaf form — assessing the
relative roles of selective pressures and phylogenetic constraints.
New Phytol 1987;106:131—60.

Bharathan G, Goliber TE, Moore C, Kessler S, Pham T,
Sinha NR. Homologies in leaf form inferred from KNOXI gene
expression during development. Science 2002;296:1858—60.
Hay A, Tsiantis M. The genetic basis for differences in leaf form
between Arabidopsis thaliana and its wild relative Cardamine
hirsuta. Nat Genet 2006;38:942—7.

Johnson AE, Tanner ME. Epimerization via carbon-carbon bond
cleavage. L-ribulose-5-phosphate 4-epimerase as a masked class
II aldolase. Biochemistry 1998;37:5746—54.

Cheng CC-H. Evolution of the diverse antifreeze proteins. Curr
Opin Genet Dev 1998;8:715—20.

Shackleton NJ, Backman J, Zimmerman H, Kent DV, Hall MA,
Roberts DG, et al. Oxygen isotope calibration of the onset of ice-
rafting and history of glaciation in the North-Atlantic region.
Nature 1984;307:620—3.

Chen LB, DeVries AL, Cheng CHC. Convergent evolution of
antifreeze glycoproteins in Antarctic notothenioid fish and Arctic
cod. Proc Natl Acad Sci USA 1997;94:3817—22.

Rothschild LJ. The evolution of photosynthesis... again? Philos
Trans Ro Soc B Biol Sci 2008;363:2787—801.

Rodrigues JF, Wagner A. Evolutionary plasticity and innovations
in complex metabolic reaction networks. PLOS Comput Biol
2009;5:e1000613.

Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M.
KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids
Res 1999;27:29—34.

Samal A, Rodrigues JFM, Jost J, Martin OC, Wagner A. Geno-
type networks in metabolic reaction spaces. BMC Syst Biol
2010;4:30.

Rodrigues JF, Wagner A. Genotype networks in sulfur metabo-
lism. BMC Syst Biol 2010;5:39.

Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR,
Karp PD, et al. A genome-scale metabolic reconstruction for
Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and
thermodynamic information. Mol Syst Biol 2007;3.

Stone J, Wray G. Rapid evolution of cis-regulatory sequences via
local point mutations. Mol Biol Evol 2001;18:1764—70.
Martchenko M, Levitin A, Hogues H, Nantel A, Whiteway M.
Transcriptional rewiring of fungal galactose-metabolism circuitry.
Curr Biol 2007;17:1007—13.

Tanay A, Regev A, Shamir R. Conservation and evolvability in

regulatory networks: The evolution of ribosomal regulation in
yeast. Proc Natl Acad Sci USA 2005;102:7203—8.




e

Chapter | 13 Genotype Networks and Evolutionary Innovations in Biological Systems 263

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

(70]

(71]

[75]

[76]

(77

[78]

[79]

Gasch AP, Moses AM, Chiang DY, Fraser HB, Berardini M,
Eisen MB. Conservation and evolution of cis-regulatory systems
in ascomycete fungi. PLOS Biol 2004;2:2202—19.

Wray G, Hahn M, Abouheif E, Balhoff J, Pizer M, Rockman M,
et al. The evolution of transcriptional regulation in eukaryotes.
Mol Biol Evol 2003;20:1377—419.

Ludwig MZ, Bergman C, Patel NH, Kreitman M. Evidence for
stabilizing selection in a eukaryotic enhancer element. Nature
2000;403:564—7.

Maduro M, Pilgrim D. Conservation of function and expression of
unc-119 from two Caenorhabditis species despite divergence of
non-coding DNA. Gene 1996;183:77—85.

Romano L, Wray G. Conservation of Endol6 expression in sea
urchins despite evolutionary divergence in both cis and trans-
acting components of transcriptional regulation. Development
2003;130:4187—99.

Jaeger J, Surkova S, Blagov M, Janssens H, Kosman D, Kozlov K,
et al. Dynamic control of positional information in the early
Drosophila embryo. Nature 2004;430:368—71.

Sanchez L, Chaouiya C, Thieffry D. Segmenting the fly embryo:
logical analysis of the role of the segment polarity cross-
regulatory module. Int J Dev Biol 2008;52:1059—75.

Albert R, Othmer HG. The topology of the regulatory interactions
predicts the expression pattern of the segment polarity genes in
Drosophila  melanogaster. Journal of Theoretical Biology
2003;223:1—18.

Ingolia NT. Topology and robustness in the Drosophila segment
polarity network. PLOS Biol 2004;2:805—15.

MacCarthy T, Seymour R, Pomiankowski A. The evolutionary
potential of the Drosophila sex determination gene network. J
Theor Biol 2003;225:461—8.

Mjolsness E, Sharp DH, Reinitz J. A connectionist model of
development. J Theor Biol 1991;152:429—53.

Reinitz J, Mjolsness E, Sharp DH. Model for cooperative
control of positional information in Drosophila by bicoid and
maternal hunchback. J Exp Zool 1995;271:47—56.

Reinitz J. Gene circuits for eve stripes: reverse engineering the
Drosophila segmentation gene network. Biophys J 1999;76:
A272—A272.

Sharp DH, Reinitz J. Prediction of mutant expression patterns
using gene circuits. BioSystems 1998;47:79—90.

Azevedo RBR, Lohaus R, Srinivasan S, Dang KK, Burch CL.
Sexual reproduction selects for robustness and negative epistasis
in artificial gene networks. Nature 2006;440:87—90.

Bornholdt S, Sneppen K. Robustness as an evolutionary principle.
Proc R Soc Lon B Biol Sci 2000;267:2281—6.

Wagner A. Does evolutionary plasticity evolve? Evolution
1996;50:1008—23.

Siegal M, Bergman A. Waddington’s canalization revisited:
developmental stability and evolution. Proc Natl Acad Sci USA
2000;99:10528—10532

Bergman A, Siegal M. Evolutionary capacitance as a general
feature of complex gene networks. Nature 2003;424:549—52.
Nochomovitz YD, Li H. Highly designable phenotypes and
mutational buffers emerge from a systematic mapping between
network topology and dynamic output. Proc Natl Acad Sci USA
2006;103:4180—5.

[84]

(85]

(86]

(87]

[88]

[89]

[90]

[91]

[93]

[94]

[95]

[96]

(971

[98]

[99]

[100]

[101]

[102]

Raman K, Wagner A. Evolvability and robustness in a complex
signaling circuit. Mol BioSyst 2011;7:1081—92.

Ciliberti S, Martin OC, Wagner A. Innovation and robustness
in complex regulatory gene networks. Proc Natl Acad Sci USA
2007;104:13591—13596

Ciliberti S, Martin OC, Wagner A. Circuit topology and the
evolution of robustness in complex regulatory gene networks.
PLOS Comput Biol 2007;3(2):e15.

Maynard-Smith J. Natural selection and the concept of a protein
space. Nature 1970;255:563—4.

Lipman D, Wilbur W. Modeling neutral and selective evolution of
protein folding. Proc R Soc Lon'B 1991;245:7—11.

Schuster P, Fontana W, Stadler P, Hofacker I. From sequences to shapes
and back — a case-study in RNA secondary structures. Proc R Soc Lon
B 1994;255:279—84.

Berman H, Battistuz T, Bhat T, Bluhm W, Bourne P, Burkhardt K,
et al. The Protein Data Bank. Acta Crystallogr B Biol Crystallogr
2002;58:899—907.

Hofacker I, Fontana W, Stadler P, Bonhoeffer L, Tacker M,
Schuster P. Fast folding and comparison of RNA secondary
structures. Monatshefte fuer Chemie 1994;125:167—88.

Flamm C, Fontana W, Hofacker I, Schuster P. RNA folding at
elementary step resolution. RNA 2000;6:325—38.

Fontana W, Schuster P. Shaping space: the possible and the
attainable in RNA genotype—phenotype mapping. J Theor Biol
1998;194:491-515.

Sumedha, Martin OC, Wagner A. New structural variation in
evolutionary searches of RNA neutral networks. BioSystems
2007;90:475—85.

Wagner A. Robustness and evolvability: a paradox resolved. Proc
R Soc Lon B Biol Sci 2008;275:91—100.

Jackson R, Kaminski A. Internal initiation of translation in
eukaryotes: The picornavirus paradigm and beyond. RNA
1995;1:985—1000.

Mandl C, Holzmann H, Meixner T, Rauscher S, Stadler P,
Allison S, et al. Spontaneous and engineered deletions in the 3’
noncoding region of tick-borne encephalitis virus: construction of
highly attenuated mutants of a
1998;72:2132—40.

Iserentant D, Fiers W. Secondary structure of messenger-RNA
and efficiency of translation initiation. Gene 1980;9:1—12.

Feist AM, Palsson BO. The growing scope of applications of

flavivirus. J  Virol

genome-scale metabolic reconstructions using Escherichia coli.
Nat Biotech 2008;26:659—67.

Cotterell J, Sharpe J. An atlas of gene regulatory networks reveals
multiple three-gene mechanisms for interpreting morphogen
gradients. Mol Syst Biol 2010;6:425.

Doolittle R. The origins and evolution of eukaryotic proteins.
Philos Trans Ro Soc B Biol Sci 1995;349:235—40.

Thornton J, Orengo C, Todd A, Pearl F. Protein folds, functions
and evolution. J Mol Biol 1999;293:333—42.

Todd A, Orengo C, Thornton J. Evolution of protein function,
from a structural perspective. Curr Opin Chem Biol
1999;3:548—56.

Bastolla U, Porto M, Roman HE, Vendruscolo M. Connectivity
of neutral networks, overdispersion, and structural conservation
in protein evolution. J Mol Evol 2003;56:243—54.




264

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

SECTION | I

Rost B. Enzyme function less conserved than anticipated. J Mol
Biol 2002;318:595—608.

Aronson H, Royer W, Hendrickson W. Quantification of tertiary
structural conservation despite primary sequence drift in the
globin fold. Prot Sci 1994;3:1706—11.

Hardison RC. A brief history of hemoglobins: Plant, animal,
protist, and bacteria. Proc Natl Acad Sci USA 1996;93:5675—9.
Goodman M, Pedwaydon J, Czelusniak J, Suzuki T, Gotoh T,
Moens L, et al. An evolutionary tree for invertebrate globin
sequences. J Mol Evol 1988;27:236—49.

Copley RR, Bork P. Homology among (Bc)g barrels: Implications
for the evolution of metabolic pathways. J Mol Biol
2000;303:627—40.

Wierenga RK. The TIM-barrel fold: a versatile framework for
efficient enzymes. FEBS Lett 2001;492:193—8.

Schuster P. Molecular insights into evolution of phenotypes. In:
Crutchfield JP, Schuster P, editors. Evolutionary dynamics: Exploring
the Interplay of Selection, Accident, Neutrality, and Function. New
York, NY: Oxford University Press; 2003. p. 163—215.

Ferrada E, Wagner A. Evolutionary innovation and the organi-
zation of protein functions in sequence space. PLoS ONE
2010;5(11):e14172.

Huynen MA. Exploring phenotype space through neutral evolu-
tion. J Mol Evol 1996;43:165—9.

Eigen M. Viral Quasi-species. Scientific American 1993;269:42—9.
True JR, Carroll SB. Gene co-option in physiological and
morphological ~evolution. Annu Rev Cell Dev Biol
2002;18:53—80.

Panganiban G, Rubenstein JLR. Developmental functions of the
Distal-less/DIx homeobox genes. Development 2002;129:4371—86.
Huang W, Petrosino J, Hirsch M, Shenkin P, Palzkill T. Amino
acid sequence determinants of beta-lactamase structure and
activity. J] Mol Biol 1996;258:688—703.

Rennell D, Bouvier S, Hardy L, Poteete A. Systematic mutation
of bacteriophage T4 lysozyme. J Mol Biol 1991;222:67—87.
Weatherall DJ, Clegg JB. Molecular genetics of human haemo-
globin. Annu Rev Genet 1976;10:157—78.

Kleina L, Miller J. Genetic studies of the lac repressor. 13.
Extensive amino-acid replacements generated by the use of
natural and synthetic nonsense suppressors. J Mol Biol
1990;212:295-318.

Wang Z, Zhang J. Abundant indispensable redundancies in cellular
metabolic networks. Genome Biol Evol 2009;1:23—33.

Blank LM, Kuepfer L, Sauer U. Large-scale C-13-flux analysis
reveals mechanistic principles of metabolic network robustness to
null mutations in yeast. Genome Biol 2005;6:R49.

Stelling J, Klamt S, Bettenbrock K, Schuster S, Gilles ED.
Metabolic network structure determines key aspects of function-
ality and regulation. Nature 2002;420:190—3.

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

Dynamic and Logical Properties of Biological Systems

Segre D, Vitkup D, Church G. Analysis of optimality in natural
and perturbed metabolic networks. Proc Natl Acad Sci USA
2002;99:15112—7

Edwards JS, Palsson BO. The Escherichia coli MG1655 in silico
metabolic genotype: its definition, characteristics, and capabil-
ities. Proc Natl Acad Sci USA 2000;97:5528—33.
Bornberg-Bauer E, Chan H. Modeling evolutionary landscapes:
mutational stability, topology, and superfunnels in sequence
space. Proc Natl Acad Sci USA 1999;96:10689—94

Meiklejohn C, Hartl D. A single mode of canalization. Trends
Ecol Evol 2002;17:468—73.

Wagner A. Robustness and Evolvability in Living Systems.
Princeton, NJ: Princeton University Press; 2005.

Wagner GP, Booth G, Bagherichaichian H. A population genetic
theory of canalization. Evolution 1997;51:329—47.

Papp B, Teusink B, Notebaart RA. A critical view of metabolic
network adaptations. HFSP J 2009;3:24—35.

Soyer OS, Pfeiffer T. Evolution under fluctuating environments
explains observed robustness in metabolic networks. PLOS
Comput Biol 2010;6:e1000907.

Vitkup D, Kharchenko P, Wagner A. Influence of metabolic
network structure and function on enzyme evolution. Genome
Biol 2006;7:R39.

Papp B, Pal C, Hurst LD. Metabolic network analysis of the
causes and evolution of enzyme dispensability in yeast. Nature
2004;429:661—4.

Nishikawa T, Gulbahce N, Motter A. E. Spontaneous Reaction
Silencing in Metabolic Optimization. PLOS Comput Biol
2008;4:¢1000236

Freilich S, Kreimer A, Borenstein E, Gophna U, Sharan R,
Ruppin E. Decoupling environment-dependent and independent
genetic robustness across bacterial species. PLOS Comput Biol
2010;6:¢1000690.

Reed JL, Vo TD, Schilling CH, Palsson BO. An expanded
genome-scale model of Escherichia coli K-12 (iJR904 GSM/
GPR). Genome Biol 2003;4:R54.

Thomas GH, Zucker J, MacDonald SJ, Sorokin A, Goryanin I,
Douglas AE. A fragile metabolic network adapted for cooperation
in the symbiotic bacterium Buchnera aphidicola. BMC Syst Biol
2009;3:24.

Pal C, Papp B, Lercher MJ, Csermely P, Oliver SG, Hurst LD.
Chance and necessity in the evolution of minimal metabolic
networks. Nature 2006;440:667—70.

Yus E, Maier T, Michalodimitrakis K, van Noort V, Yamada T,
Chen WH, et al. Impact of genome reduction on bacterial
metabolism and its regulation. Science 2009;326:1263—8.
Benfey PN, Mitchell-Olds T. Perspective — from genotype to
phenotype: systems biology meets natural variation. Science
2008;320:495—7.




