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How difficult is it to ‘discover’ an evolutionary adaptation or innovation?

I here suggest that information theory, in combination with high-throughput

DNA sequencing, can help answer this question by quantifying a new

phenotype’s information content. I apply this framework to compute the

phenotypic information associated with novel gene regulation and with

the ability to use novel carbon sources. The framework can also help quan-

tify how DNA duplications affect evolvability, estimate the complexity of

phenotypes and clarify the meaning of ‘progress’ in Darwinian evolution.

This article is part of the themed issue ‘Process and pattern in

innovations from cells to societies’.
1. Introduction
Evolutionary biologists have a long-standing interest in information theory,

because it is ultimately information encoded in DNA that renders the survivors

of natural selection well adapted to their environment [1–4]. Among the first

researchers to explore the link between information and evolution was Motoo

Kimura. He built on earlier work by J.B.S. Haldane to argue that adaptive

evolution accumulates genetic information in proportion to the rate at which

alleles are replaced by better-adapted alleles [5,6].

More recently, two independent lines of research have connected evolution-

ary biology and information theory. The first is centred on organisms and their

phenotypes, which may harbour information about the environment [3,7–14].

For example, the growth rate of bacteria depends on information that cells

sense about environmental nutrients [3,7,8,10,12,14,15]. The second line focuses

on genotypes [2,16–19], where information-theoretic concepts such as Shannon’s

entropy [2,18] can help recast equations from classical population and quanti-

tative genetics, in order to describe changes of genotypes, allele frequencies

and fitness in information-theoretic terms. This line of research shows that

natural selection can increase information encoded in the distribution of a

population’s allele frequencies [2,17].

Experimental evolution, be it through in vitro selection [20–23], through

directed evolution of macromolecules [24–28] or through laboratory evolution

of organisms [29], is a powerful tool to discover novel phenotypes, such as the

ability to resist novel antibiotics, to regulate old genes in new ways and to thrive

on novel sources of energy. A fundamental question about evolutionary adap-

tations and innovations—qualitatively new and beneficial phenotypes—is how

difficult it is to acquire or ‘discover’ them. For example, it may be easier to acquire

the ability to extract energy from some novel nutrient if this ability requires only

one new enzyme (biochemical reaction) instead of two or more. I here suggest

that basic concepts from information theory, together with data from high-

throughput DNA sequencing technologies, may help us answer this and related

questions quantitatively for different kinds of phenotypes.

In the next section, I will first introduce a suitable information-theoretic

framework and illustrate its use to understand evolution by DNA or gene dupli-

cation. Second, I will apply the framework to two different kinds of phenotypes,

the DNA-binding phenotypes of transcriptional regulators [30,31] and the
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metabolic phenotypes that allow an organism to procure energy

and manufacture essential biomass molecules [32]. Third

and finally, I will show how sequence data from experimen-

tal evolution could help quantify differences in the amount of

information gained by different evolutionary adaptations.
(c) (d)

Figure 1. Sets of genotypes with the same phenotype can have various
topological relationships. Large rectangles symbolize genotype space, circles
correspond to genotypes and straight lines connect 1-mutant neighbours,
i.e. genotypes that differ by a small genetic change such as a single nucleo-
tide change. Each set of genotypes is shown as a network, because such sets
form networks in genotype space. (a) A hypothetical set (network) of geno-
types with the same phenotype. The set is shown as a single genotype
network, but I note that it could consist of multiple disconnected networks.
(b) Two sets of genotypes: the first associated with an old phenotype (black
and grey circles) and the second with a new phenotype (grey circles only, a
subset of the first set). (c) Sets of genotypes with an old phenotype (black
circles), a new phenotype (white circles) or with both an old and a new phe-
notype (grey circles). Unlike in (b), the genotype set of the new phenotype is
not a subset of the genotype set with the old phenotype. (d ) The sets of
genotypes encoding different phenotypes can be non-overlapping.
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2. Results
All evolutionary adaptations and innovations originate in

some space of genotypes. Evolving populations of organisms

or molecules explore genotype spaces through DNA

mutation, genetic drift and selection. The relationship

between genotypes and phenotypes—the genotype–pheno-

type map—has been studied for multiple different kinds of

genotype spaces, either exhaustively (for small spaces) or

through random sampling, using both computational and

experimental techniques [20,21,33–38]. Such efforts show

that, first, astronomically many genotypes usually form the

same phenotype, and these genotypes are organized into

one or more networks connected by point mutations.

Second, the genotype networks of different phenotypes are

interwoven in complex ways [35,38,39]. Third, some pheno-

types have larger genotype networks than others. This

observation is important to understand phenotypic evolvabil-

ity, the ability of an organism with a specific phenotype to

bring forth novel phenotypes through DNA mutations [40].

Both computational analyses and empirical data show that

populations evolving on large genotype networks are—

with possible exceptions [41,42]—more likely to ‘discover’

new and beneficial phenotypes, because such populations

can explore a larger proportion of genotype spaces

[38,40,43,44].

For any observed phenotype P, such as a protein’s ability to

bind or react with a specific molecule, I denote the set of geno-

types with this phenotype as GP. For simplicity, I focus on

discrete, qualitative phenotypes (e.g. binding or not) rather

than on quantitative phenotypes (e.g. binding with a specific affi-

nity), thus assuming that all genotypes with a particular

phenotype are equivalent. Consider first a genotype space G,

and the Shannon entropy of a random variable that assumes

values g [ G with equal probability 1/jGj, where jGj denotes

the number of genotypes in G. This entropy computes as

HðGÞ ¼ �
P

g[G (1=jGj)(log2(1=jGj)) ¼ �log2(1=jGj) ¼ log2jGj
[45]. The Shannon entropy for the same random variable defined

on a subset GP of genotypes with a specific phenotype

P (figure 1a) computes analogously as

HðGPÞ ¼ �
X

g[GP

1

jGPj
log2

1

jGPj

� �
¼ �log2

1

jGPj
¼ log2jGPj:

These observations give rise to the following definition.

Definition 2.1: the information content of phenotype P is

given by

IðPÞ :¼ log2jGj � log2jGPj: ð2:1Þ

Equivalently, if jGPj ¼ fPjGj, where fP indicates the fraction of

genotype space occupied by GP, then IðPÞ ¼ �log2 fP � 0.

Analogous quantities have been called self-information, func-

tional information, surprisal and (biological) complexity in

other contexts [45–48]. The greater a phenotype’s information

content is, the more information is required to encode this
phenotype. To compare data from genotype spaces of differ-

ent dimensions (e.g. proteins of different length L), it can be

useful to consider information content per monomer (I(P)/L).

Some empirical data on phenotypic information content

are available for macromolecules. For example, in vitro selec-

tion experiments identifying ATP-binding proteins from a

random library of proteins with 80 amino acids show that a

fraction fP ¼ 10211 or jGPj¼ 2080 � 10�11 � 1:2� 1093 pro-

teins of this length can bind ATP [21]. The amount of

information associated with this ATP-binding phenotype

is IðPÞ ¼ log2j2080j�log2j2080 � 10�11j ¼ �log2j10�11j ¼ 36:6

bits, which is much lower than the amount of information

needed to specify a single amino acid sequence

(log2ð2080Þ � 345:8 bits), because many proteins can bind ATP.

Unlike in vitro selection, laboratory evolution experiments

often do not start from random collections of genotypes, but

from genotypes that already have a specific phenotype POld

and acquire a novel phenotype PNew (figure 1b). For example,

in a directed evolution experiment, TEM-1 b-lactamase

molecules that convey resistance to ampicillin may acquire the

ability to cleave the antibiotic cefotaxime. Denote as GOld

the subset of genotypes with the old phenotype, and as GNew

the subset of genotypes with the new phenotype.
Definition 2.2: the information change associated with the

acquisition of a new phenotype PNew starting from some
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phenotype POld is given by

DI :¼ IðPNewÞ � IðPOldÞ ¼ log2jGOldj � log2jGNewj: ð2:2Þ

Here, one can distinguish two different scenarios. In the

first, individuals with the new phenotype have also pre-

served the old phenotype (figure 1b), which implies that

GNew # GOld and DI � 0. In this case, DI is equivalent to a

Kullback–Leibler distance or relative entropy, an important

quantity in information theory [45] (electronic supplementary

material, Results S1). In the second scenario, GNew is not a

proper subset of GOld (figure 1c). For example, consider b-

lactamase enzymes that have evolved the ability to inactivate

cefotaxime, but that may not have retained the old ability to

inactivate ampicillin. In this case, DI can be negative,

for example if more genotypes encode the ability to cleave

cefotaxime than ampicillin.

To illustrate one potential use of this framework, consider

DNA duplication, which has long been thought to increase

evolvability [49–51]. To help quantify the advantage of dupli-

cated DNA over single-copy DNA in exploring a genotype

space, consider some phenotype, such as a regulatory region’s

ability to bind a transcription factor, or a protein’s ability to cat-

alyse a specific chemical reaction, and the set of genotypes GP

associated with this phenotype. When the DNA encoding this

phenotype becomes duplicated, both copies can undergo DNA

mutation independently. Thus, they evolve in a larger geno-

type space, which comprises many more ðjGj2Þ genotypes.

Such duplication can affect the information content of P, if

only one of two copies of the duplicated DNA is sufficient

to encode P. In this case, the difference between phenotypic

information content after and before duplication is equal to

1

2L
log2

fP
2� fP

� 1

2L
ðlog2 fP � 1 Þ , 0, ð2:3Þ

per nucleotide or any other suitable unit, such as an amino acid

monomer (see electronic supplementary material, Results S2,

including for an analogous calculation of changes in absolute

information content). Here, L is the dimension of G (e.g. the

pre-duplication length of DNA). The approximation holds for

fP � 1. Importantly, this quantity is negative: duplication

decreases a phenotype’s information content per nucleotide,

because the set of post-duplication genotypes with phenotype

P occupies a larger fraction of the genotype space. This is

important, because such a larger fraction of genotypes is associ-

ated with higher evolvability [38,40,43,44]. Thus, information

theory can help link DNA duplication and evolvability. The

set of genotypes associated with P expands after duplication

by a factor ð2� fPÞ=fP � 2=fP (electronic supplementary

material, Results S2). Because this expansion factor scales as

1=fP, duplication will enhance evolvability to the greatest

extent for phenotypes formed by few genotypes (small fP).

In terms of the ATP-binding protein example above, where

jGj ¼ 2080, fP¼ 10211 and L¼ 80, duplication would

reduce the phenotypic information content by

log2fP � 1 ¼ ðlog210�11 � 1Þ=160 � �0:23 bits per amino acid.
(a) Transcription factor binding phenotypes
Numerous evolutionary adaptations and innovations have

been associated with the origin of new gene regulation

mediated by new transcription factor binding sites on DNA,

from changes in pathogen virulence to new body plans, such

as the origin of two-winged insects [52–54]. I next analyse a
genotype space of 48 ¼ 65 536 DNA sequences of length eight

nucleotides to illustrate the information change associated

with new transcription factor binding sites. To this end, I take

advantage of previously published protein binding microarray

experiments that measured how strongly each of 187 mouse

transcriptional regulators binds to all sequences in this space

[30,31] (electronic supplementary material).

The phenotypes I analyse here are a DNA sequence’s

ability to bind specific regulators. For a de novo origin of tran-

scription factor binding, the relevant phenotypic information

content is that of a binding site (definition 2.1). Among the

187 regulators, this content varies widely (figure 2a; I(P) ¼

4.48–9.31 bits, median: 5.72 bits), because the fractional

volume of genotype space bound varies among regulators.

Binding sites with lower information content would be

easier to acquire de novo [56,57]. The frequently made

assumption that individual nucleotides contribute additively

to phenotypic information [48,58,59] can lead to substantial

underestimation of phenotypic information, i.e. by up

to 8.22 bits (300-fold in terms of fP; electronic supplementary

material, figure S1 and Results S3).

If a site gets duplicated, such that the two duplicates evolve

separately, and only one of them needs to preserve regulator

binding, the change in phenotypic information content as a

result of duplication lies between 20.34 and 20.64 bits per

nucleotide (equation (2.3), with data from figure 2a, where

0.0016 , fP , 0.045), meaning that 44.4–1250 times more geno-

types can be explored. In reality, duplication will confer an

even greater advantage, because often entire regulatory regions

and not just individual binding sites are duplicated.

When a binding site for a new regulator originates from

one for an old regulator, and if binding of the old regulator

is preserved (for example, because the old regulator directs

essential gene expression in a different tissue), then pheno-

typic information increases (definition 2.2; figure 2b). For

the 187 regulators considered here, the minimal increase is

0.04 bits when a binding site for factor Myb originates from

one for factor Mybl1, because these regulators belong to the

same gene family, and 97.2% of the 1969 sites bound by

Mybl1 are also bound by Myb. The largest increase

(11.5 bits) occurs when binding sites for transcription factor

Mnt emerge from those for Sp110, because Sp110 binds to

2933 sites, but only one of them is also bound by Mnt. The

complexity increase is generally lower if the old site had

high information content (Spearman’s r ¼ 20.22; p , 10217;

n ¼ 29 290; figure 2b, inset), which shows that phenotypic

information changes can depend on ancestral phenotypes

and are thus contingent on evolutionary history.

If binding to an old transcriptional regulator need not be pre-

served after a new binding phenotype originates, then the

distribution of information change is symmetric (figure 2c),

because for every value of information change X that occurs

when binding is gained by some new regulator Y and lost by

an old regulator Z, there is an opposite value –X when binding

by Z is gained and binding by Y is lost. The maximal information

loss or gain is 4.83 bits (Sp110-binding originating from Usf1-

binding). Its minimum is zero for regulator pairs (e.g. Hbp1

and Rfx4) that bind the same number of sites.
(b) Metabolic genotypes and phenotypes
The metabolic genotype of an organism comprises all genes

encoding metabolic enzymes. Systems biologists often
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Figure 2. Phenotypic information associated with new transcription factor binding.
Data are based on experimentally measured binding of 187 mouse transcription
factors to all possible DNA-binding sites of length eight [30,31,55]. (a) Histogram
of the information content of the DNA-binding phenotype of each transcription
factor (definition 2.1 and equation (2.1)). (b) The gain in information content
associated with acquisition of a new DNA-binding phenotype, when an old phe-
notype is simultaneously preserved (equation (2.2)). The inset shows this gain in
information content (vertical axis) as a function of the information content of the
old phenotype (horizontal axis). Circles correspond to means, boxes to standard
errors and whiskers indicate 95% confidence intervals. Data in (b) are based on
all 29290 pairs of transcription factors whose sets of binding sites overlap.
(c) The change in information content associated with acquisition of a new
DNA-binding phenotype when the old phenotype need not be simultaneously pre-
served (equation (2.4)). The red line indicates the fit to a Gaussian distribution.
Data in (c) are based on all 1872 pairs of transcription factors in the dataset.
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represent this genotype more compactly, on the level of meta-

bolic reactions these enzymes catalyse, by the presence or

absence of specific reactions from a known ‘universe’ of

such reactions [60,61] (electronic supplementary material,
figure S3a). Such a genotype encodes a biochemical reaction

network that transforms environmental nutrients into essen-

tial biomass molecules, such as amino acids and nucleotides.

A metabolic genotype is viable only if it can produce all

biomass molecules that an organism needs in a given nutrient

environment. One can compute viability for any known gen-

otype under some simplifying assumptions [60], and these

predictions are often in good agreement with experimental

observations [61–64].

The metabolic genotypes of free-living organism like

Escherichia coli are members of a vast genotype space that

can only be explored by sampling. I restrict myself here to

a much smaller universe of 45 metabolic reactions from cen-

tral carbon metabolism, which gives rise to a more tractable

genotype space [39] (electronic supplementary material,

figure S2). Given the right nutrients, the biochemical network

encoded by these reactions can manufacture 13 essential bio-

mass precursors, such as ribose 5-phosphate and oxaloacetate

(electronic supplementary material, figure S2). The metabolic

genotype space I explore is formed by all possible (245) sub-

sets of these reactions. I consider 10 minimal chemical

environments that differ only in the sole carbon source they

contain (electronic supplementary material, figure S3b) and

represent a metabolic phenotype as the combination of

carbon sources on which a metabolism is viable (electronic

supplementary material, figure S3b,c). Considering all

possible combinations of 10 carbon sources on which a

metabolism could be viable, this leads to 210 possible

metabolic phenotypes.

In an earlier contribution, we have exhaustively computed

these metabolic phenotypes for all 245 � 1013 metabolic geno-

types [39], which allows me to analyse their phenotypic

information content. Some phenotypes contain much less

information than others, e.g. viability on fructose and glucose

requires 14.8 bits of information, whereas viability on all 10

carbon sources except glutamate and a-ketoglutarate requires

28.6 bits. Starting from a metabolic phenotype, viability on

an additional carbon source requires an average of 0.75

additional bits (electronic supplementary material, figure

S3d, inset). Neglecting non-additive interactions among reac-

tions underestimates phenotypic information (electronic

supplementary material, figures S3e and S4d), and duplication

causes a substantial reduction in information by up to 29 bits

(electronic supplementary material, Results S4). The distri-

bution of information gain and information change are broad

(electronic supplementary material, figure S3f,g and Results

S4–S6). Gaining viability on given carbon sources can be

informationally cheap (e.g.a-ketoglutarate) or expensive (acet-

ate). Perhaps surprisingly, gaining viability on some carbon

sources may lead to reduced phenotypic information, as a

result of complex correlations between phenotypes (electronic

supplementary material, Results S4).
(c) Inferring information content from sequence data
Tractable genotype spaces like those I have discussed so far

are the exception. Usually, astronomically many genotypes

encode the same phenotype, and because it is impossible to

identify all of them, one cannot infer the information content

of any one phenotype (definition 2.1). What is more, sequen-

cing technology does not simply enumerate genotypes but

samples them from an evolving population. I will argue next

that it may nonetheless be possible to estimate the
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information change associated with a novel phenotype (defi-

nition 2.2). In doing so, I make simplifying assumptions

whose relaxation will require future work. My main point

is that quantifying phenotypic information change may be

within reach of current technologies.

Consider two populations of which one is well adapted to

some ancestral environment (with phenotype POld) and

another one is adapted to a new environment, such as one

that harbours a novel nutrient, an antibiotic or another

stressor, and thus requires an altered phenotype PNew.

I assume that both populations comprise asexually reprodu-

cing haploid individuals, that they are in mutation–

selection–drift balance subject to Wright-Fisher dynamics

[65] and that they have equal effective sizes Ne and mutation

rates m (per genome and generation). I also assume that both

phenotypes POld and PNew are subject to strong truncation

selection, that is, mutations that disrupt each phenotype are

lethal. The two phenotypes may differ in their numbers of

associated genotypes GOld and GNew, and thus also in their

information content. The task is to estimate this difference

(log2jGOldj � log2jGNewj) from two samples of n genotypes

(DNA sequences), one from each of the populations.

I model this difference as a difference in the average rate of

strongly deleterious (lethal) mutations across all genotypes

or, equivalently, in the average rate of neutral mutations.

If lOld and lNew denote the average proportion of all strongly

deleterious (lethal) mutations in the two populations, then

the average neutral mutation rate becomes mOld ¼ ð1� lOldÞm
and mNew ¼ ð1� lNewÞm. Assuming further that mutations in

all viable genotypes are equally likely to be strongly deleter-

ious, one obtains the relationships jGOldj ¼ mOldjGj and

jGNewj ¼ mNewjGj, where jGj is the total size of genotype

space. It is then easy to see that

log2jGOldj � log2jGNewj ¼ log2

mOld

mNew

� �

¼ log2j2NemOldj � log2j2NemNewj:
ð2:4Þ

Thus, estimating the difference in phenotypic information

content requires estimating the quantities ui ¼ 2Nemi, which

are of broad importance in population genetics because

they predict a population’s amount of neutral polymor-

phisms [65,66]. If PNew harbours more information than

POldðjGOldj . jGNewjÞ, then 2NemOld . 2NemNew, and the

population with PNew would harbour more alleles. I empha-

size that the derivation of equation (2.4) involves a strong

tacit assumption, namely that the phenotypic effects of

mutants are distributed as if mutations sampled genotypes

at random from genotype space. This assumption is violated

whenever mutant phenotypes are correlated with those of the

wild type, or if some DNA sites are always neutral. It remains

to be seen whether relaxation of this assumption leads to

relationships as simple as that of (2.4).

A maximum-likelihood estimator of ui is the number of

different genotypes ki in a random sample of n genotypes

sequenced from the populations [67]. Importantly, the

sampling distribution of ki is known, and it can help infer

the minimal difference in information content detectable

from a sample of n sequences (electronic supplementary

material). Specifically, one can compute the probability of fal-

sely rejecting the null hypothesis that phenotype PNew

harbours more information than POld. Figure 3 shows the
minimally detectable information difference (see legend),

for multiple values of n and uNew ¼ 2NemNew. White regions

in the plot indicate that the information content of two

phenotypes is indistinguishable. In a region of the plot

where the test can discriminate at least x bits, p , 0.05 for

all values of uOld, such that uOld . 2xuNew.

In this analysis, I did not explore populations with

uOld, uNew , 1, because such populations are monomorphic

most of the time [66], which implies that even when sequen-

cing multiple genotypes, most of the genotypes would be

genetically identical. At the other extreme are values of

uNew � n (and thus also uOld � n), where one cannot dis-

criminate the information content of two phenotypes

(figure 3), because both populations are so highly poly-

morphic that all n sampled sequences may be different

from each other. Thus, best discrimination between the infor-

mation content of two phenotypes requires that

1� uOld, uNew � n (lower right corner of figure 3).
3. Discussion
The genotypes encoding a new phenotype may be difficult to

access by an evolving population for two reasons. First, the

phenotype may have high information content, implying

that the few genotypes encoding it may be difficult to find

through random search in a vast genotype space. Second,

the population may be distant from these genotypes, requiring

multiple genetic changes or inviable mutational intermediates

to reach them. The information-theoretic framework eliminates

the latter, historical factors from consideration, which is both

an advantage and a limitation. In the data I analysed here,

most phenotypes can be reached through few genetic changes

(electronic supplementary material), but this may not hold

in larger genotype spaces [68].

I have restricted myself here to qualitative or threshold

phenotypes (binding/non-binding and viability/non-viabi-

lity). They have proved useful in past experimental estimates
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of phenotypic information, such as that of RNA ligase ribo-

zymes (L ¼ 220) whose I(P) can be estimated at 43.2 bits [20].

Limited empirical data are also available about the information

content of quantitative phenotypes. For example, a 10-fold

increase in an RNA aptamer’s binding affinity to guanosine tri-

phosphate (GTP) requires 10 additional bits of information

[47,59]. However, extending the concepts of this paper to quan-

titative phenotypes remains a task for future work (electronic

supplementary material, Results S1).

Qualitative phenotypes are simplifications, but they also

help separate properties intrinsic to a phenotype from prop-

erties of a population with this phenotype [48,69]. The

latter depends not only on phenotypic information, but also

on many factors affecting a population’s dynamics, such as

(effective) population size Ne and genomic mutation rate m.

For example, if Nem� 1, then all members of a population

have identical genotypes most of the time [66]. A phenotype’s

information content estimated from such a monomorphic

population would be log2jGj, a highly misleading value,

because the population does not harbour any of the myriad

other genotypes that might encode the phenotype. Likewise,

during adaptive evolution, apparent phenotypic information

can rise dramatically and transiently before reaching a

mutation–selection equilibrium, for example while an

adaptive mutant genotype goes to fixation [48,69].

A typical experiment to estimate phenotypic information

changes from an evolving population would start at the end-

point of a previous (laboratory) evolution experiment, in

which a population has adapted evolutionarily to a novel

environment, such as one containing a novel nutrient or anti-

biotic. The experiment would then establish two evolving

populations, one derived from a single pre-evolution geno-

type and evolved in the ancestral environment (e.g. without

antibiotic), and the second from a single post-evolution

(adapted) genotype and evolved in the novel environment

(e.g. with antibiotic). After each population has evolved

sufficiently long to reach approximate mutation–selection

balance, one would sequence n randomly chosen individuals

from each population and infer DI from the number of differ-

ent alleles (genomes) sampled. As I argued, to best

discriminate between phenotypic information content in

both populations, one needs n� Nem� 1. This is entirely

feasible, even with multi-megabase genomes. For example,

in E. coli, where m � 1023 [70], a population of Ne ¼ 104 indi-

viduals yields Nem � 10. Current technology permits

sequencing of more than 100 clones isolated from such a

population, such that n . 100� Nem� 1.

My argument that today’s sequencing technology can help

distinguish even modest phenotypic information changes rests
on simplifying assumptions, among them that a sampled popu-

lation should not be far from mutation–selection balance. Such

a balance is approached exponentially with decay parameter

l ¼ ð1þ 4NemÞ=2Ne ([66], p. 204). For an evolving E. coli popu-

lation of 104–107 individuals with m� 1023 mutations per

genome and generation [70], the half-life of this decay is given

by ln 2=l ¼ ln 2ð2NeÞ=ð1þ 4NemÞ � 340� 370 generations,

well within the time scale of a laboratory evolution experiment.

Other assumptions, such as that of truncation selection,

unbiased mutational sampling of GP, as well as a uniform dele-

terious mutation rate for all genotypes in GP, will need to be

relaxed in more sophisticated modelling work, which will also

be required for a rigorous sampling theory estimating quantities

such as confidence intervals for phenotypic information

changes.

The information-theoretic framework can speak to broad

and fundamental questions in evolutionary biology. One of

them is whether some organisms and phenotypes are more

evolvable than others. Here, information theory unifies pre-

vious observations [38,40,43,44] to show that phenotypes

with low information content are more evolvable (with poss-

ible exceptions where genotypes form highly fragmented sets

in genotype space, figure 1d [44,71]). Relatedly, information

theory can also help quantify the extent to which DNA or

gene duplications increase evolvability (equation (2.3)). In

addition, the framework can help solve the recalcitrant pro-

blem of how to define the complexity of phenotypes and

organisms: more complex phenotypes are those with higher

phenotypic information content. Relatedly, it can help

answer under what circumstances evolution implies ‘progress’.

This is controversial, partly because adaptive evolution can be

regressive and lead to trait loss [72]. With a definition of pheno-

typic information in hand, evolutionary progress can be defined

as an increase in phenotype information content in an evolving

lineage.
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