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Abstract. Does natural selection always penetrate the web of epigenetic interactions that
produced the phenotypic character it acts upon and thereby affect individual genes? Or,
alternatively, are there instances where character evolution is partly decoupled from DNA level
events, i.e. are there characters that are ‘irreducible’, ‘emergent’, ‘collective’ features of the
system that produced them? These are two persistent questions in evolutionary biology, and
for good reasons: to answer them means to determine what level of biological organization is
relevant to our understanding of evolution. Conceptual problems associated with this notion of
collective behaviour are not the only reason for the elusiveness of these questions: they have to
be answered by experiment, but available experimental methods are insufficient to resolve them.
Since the nature of the problem is such that adequate experimental methods are not yet available,
preliminary studies on models motivated by experimental evidence are called for. Such a study
is presented here. It is based on a biochemically motivated model for sets of genes encoding
for transcriptional regulators which mutually regulate each other’s expression. The ubiquity of
these ‘gene networks’ in higher eukaryotes and their central role in development make their
evolution an important subject of study. On the basis of several statistical criteria, it is argued
that selection acting on the level of individual genes within a network is most likely a minor
factor in network evolution. Reasons are given for why these results are likely to be robust
to alterations in model architecture and why they may thus be expected to apply to real gene
networks. Possible implications of the results to evolutionary theory and molecular studies of
development are discussed.

AMS classification scheme numbers: 92A12, 92A10

1. Introduction

Do selective forces that act on a phenotypic character in general affect individual genes,
or are there ‘irreducible’, ‘emergent’, ‘collective’ features of the epigenetic system, arising
through complex interaction patterns between many gene products? In other words, can the
patterns of causation in the production of a phenotypic character be so complex that the
underlying variation in individual genes cannot be linked to character variation? ‘Gene
selectionists’, such as Dawkins (1982) and Williams (1966, 1992) argue in favour of
reducibility. Other researchers (Lewontin 1974, Wimsatt 1980) argue against it. The
discussion is ideologically charged, since an ancient philosophical problem is at stake.
The above questions are part of a more general debate on the appropriate ‘levels’ or ‘units’
of biological organization on which natural selection acts. Most of this debate has revolved
around a qualitative analysis of different levels of biological organization and their role in
the evolutionary process (Brandon 1982, Dawkins 1976, 1980, Hull 1980, Lewontin 1970,
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Lloyd 1988, Williams 1966, 1992). Much of the terminology endemic to this debate, such
as the notion of a ‘unit of selection’ itself, is used in slightly different ways by different
authors (cf Buss 1987, Wagner 1990). Its usage will therefore be avoided here as much
as possible. In this paper, a different, quantitative approach is pursued. A model system
is used in which a phenotypic character is expressed via the action of a small number of
genes that interact in a nonlinear way. To detect causal relations between the phenotypic
level and the genic level in this model, operational criteria in the form of statistical tests
are applied. Statistical approaches to a problem of this kind are not unprecedented; they
have been used in sociology (Boyd and Iversen 1982) as well as in biology (Goodnightet
al 1992) for the related problem of group selection versus individual selection.

The current emphasis on molecular studies of evolution and development indicates the
implicit assumption that much of organismal evolution and development can be understood
by studying molecules. While the molecular perspective has caused a quantum leap in our
understanding of these processes, it seems surprising that it should always be possible to
partition causally the immense number of interacting factors involved in the expression of
the phenotype of an organism. It seems that, aside from ideological reasons, two major
methodological limitations can be held responsible for this perceptional bias. Current
methods in molecular biology and genetics seldom allow for rapid, highly accurate and
simultaneous measurements of many biochemical and genetic parameters. Such data are
required to establish testable models that provide the minimal level of complexity required
to demonstrate the existence of collective behaviour. Since not even the necessary data are
available, the problem cannot be addressed adequately. Thus, one might want to resort to
predictions of existing models in mathematical evolutionary biology. A rich literature on
complex phenomena in physics (e.g. Haken 1977, Stein 1990) strongly suggests that their
occurrence is associated with nonlinear interactions among a system’s parts. Although such
nonlinear behaviour is probably the rule rather than the exception in the interaction of gene
products (Wright 1968), most existing models are based on the unrealistic assumption of
linear (additive) gene interactions and will therefore not be useful in this context. Again,
there are good reasons for this assumption. The mathematical intricacies of models involving
nonlinear (epistatic) gene interactions are formidable and rarely permit analytical approaches.
Moreover, one particular complication is characteristic for nonlinear models: while there is
only one kind of linear interaction, there are uncountably many kinds of epistatic interactions.
Crucial features of a system may change with subtle alterations in the type of interaction
involved. Robustness of results to small changes in a model and its parameters becomes a
critical issue.

The above statements regarding (i) the absence of adequate data and (ii) the peculiar
nature of nonlinear systems impose several restrictions on any attempt to answer the
questions considered here on a more than purely qualitative level. First, any such attempt
at present is likely to involve a mathematical model of a biological process rather than an
experimental system. This model should stay as close to experimental evidence as possible,
without incorporating too many immeasurable parameters. Importantly, the conclusions
drawn from the model should be robust to changes in model parameters and, if possible,
to changes in model architecture. Second, the results will most likely depend on the
particular system under consideration. The immense variety of qualitatively different
nonlinear systems in the physical sciences (e.g. Haken 1977, Stein 1990), together with
the absence of a ‘taxonomy’ for these systems suggests that no universal body of theory
is likely to cover the range of possible phenomena. Case studies will be necessary to
explore this range. Due to the methodological limitations discussed above, most available
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evidence argues in favour of a ‘reductionist’ perspective. This perspective might sometimes
be inadequate, as indicated by the results presented below.

The conceptual framework underlying this study was made explicit by Lewontin (1970),
who listed a set of conditions that are necessary for any evolutionary process to occur. First,
there has to be phenotypic variation in a population. Second, different phenotypes have to
have different fitness and, third, there has to be heritability in fitness. The notion of a
phenotype is used in a non-standard meaning here, designating only the relevant level of
organization for a particular evolutionary phenomenon. A phenotype may be a biochemical
property of an RNA molecule in a hypothetical RNA world, a morphological trait of an
organism, or some suitably defined property of a biological species. In this paper, any
feature of an organism to which one can assign fitness in a biologically meaningful way is
considered a phenotypic character. Character variation then implies variation in fitness, and
if this variation is heritable, evolution becomes possible. The expression of the character
will involve one or more genes. If more than one gene is involved, a question arises about
the role that individual genes have in the expression of the character. A closely related
question is how variation in fitness can be traced to variation on the level of individual
genes. This is the question that will be addressed here. On the basis of several statistical
criteria and for the model system under consideration, it will be argued that variation in
fitness cannot be decomposed into independent contributions to this variation by individual
genes. One important criterion used here was introduced by Wimsatt (1980) and is discussed
in detail by Lloyd (1988). It is based on a notion of non-additivity—a property already
known to be associated with collective behaviour in physical systems. According to this
criterion, a character is a higher order ‘unit of selection’, if additive variance at the fitness
level cannot be decomposed into a sum of contributions to this variance by the genic level.

Basic pattern formation processes during animal development involve evolutionarily
highly conserved proteins that regulate gene expression on the transcriptional level.
Empirical evidence suggests that these transcriptional regulators frequently interact in a
network-like fashion to establish patterns of gene expression which, in turn, determine
basic Bauplan features of the organism. Their central role in development make such
gene networks and their constituent genes an important and popular subject of research in
evolutionary and developmental biology (Ingham 1988, McGinniset al 1990, McGinnis and
Krumlauf 1992, Olson 1990, Rosenfeld 1991, Kappenet al 1989). A mathematical model
for their evolution, based on biochemical evidence, is used here to address the issues raised
above (see also Wagner 1994, 1996). The gene expression pattern produced by such a gene
network is viewed as a phenotypic character. The fitness associated with this phenotype is
defined by the extent of deviation of this expression pattern from a hypothetical, optimal
pattern. Statistical relations (i) between variation in fitness and units of genetic variation
as well as (ii) among units of genetic variation are explored. The analysis suggests that
there may be systems of only few genes, whose (nonlinear) interaction patterns are such
that it is effectively impossible to detect meaningful associations between variation on the
phenotypic level and variation on the genic level, even in the absence of noise and with
large data sets (i.e. high statistical significance). These findings are robust to changes in
all model parameters. The notions of ‘emergence’ and ‘collective’ behaviour will hereafter
be used in this rather technical sense. To decide whether the behaviour of such a system
is ‘irreducible’, because it cannot be decomposed into the behaviour of individual parts, or
whether it is ‘in principle’ reducible, because interactions among its parts are governed by
deterministic laws, is beyond the scope of this contribution. Possible implications of the
results to the theory of evolution and to molecular studies of development are discussed.
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2. The model

Only a fraction of the genes encoding transcriptional regulators are likely to be expressed in
any given cell and during any given ontogenetic stage of an organism. Moreover, expression
patterns of these genes may vary from cell to cell and from stage to stage. The model to
be used here refers to the expression pattern of transcription factor genes only in one
developmental stage and only in one cell or a body region that shares an expression pattern,
e.g. a set of nuclei in a part of aDrosophila blastoderm expressing a specific subset of
segmentation genes (Ingham 1988). A set ofN such genes, denoted as(G1, . . . , GN),
whose products mutually regulate each other’s expression on the transcriptional level, will
be referred to as a ‘network’. Due to cross-coupling between regulatory pathways (e.g.
Scḧule and Evans 1991), the number of regulatory proteins (transcriptional regulators and
others) involved in most intracellular regulatory circuits is probably large. However, those
circuits presumably relying to a large extent on transcriptional regulation may be quite
small, involving 10–100 or fewer genes, according to the available circumstantial evidence
(Ingham 1988, Heet al 1989, McGinnis and Krumlauf 1992).

Regulation of transcription from RNA Polymerase II promoters in eukaryotes is a
process in which DNA interacts with multi-protein complexes (Johnson and McKnight
1989, Mermelstein 1989). Many of the protein–protein and protein–DNA interactions
involved are poorly understood, and a considerable number of genes important for the
process are probably not even cloned and characterized (Weinzierlet al 1993). Based on
the available empirical data, it seems therefore unlikely that a good qualitative model—let
alone a quantitative theory— of transcriptional regulation will be available in the near future.
For these reasons and in order to arrive at an analytically and computationally tractable
formalism, a number of simplifying assumptions will be used in the model presented here.
It is assumed (i) that expression of the genes in the network is regulated exclusively on the
transcriptional level, (ii) that each gene of the network produces one and only one species of
an active transcriptional regulator and (iii) that enhancer elements mediating one regulator’s
effect on expression of the target gene act independently from enhancer elements for other
regulators of the same gene.

In the model used here and motivated in a more formal way by Wagner (1994), a
gene network is represented by a dynamical system whose state variables correspond to
expression states of the network’s genes. They are denoted as

ES(t) := (S1(t), . . . , SN(t)) (1)

whereSi(t) is the expression state of theith gene at some timet > 0 during a developmental
process in which the network acts. For reasons of computational simplicity, it is assumed
thatSi(t) can only assume two values, namely(+1) and(−1), corresponding to a situation in
which the geneGi is expressed or not expressed, respectively, at timet . The gene expression
state ES(0) at time t = 0 is called the initial expression state. It can be conceptualized as
being imposed onto the network by the products of one or more ‘upstream’ genes that are not
themselves part of the network. Such products might be extracellular signalling molecules,
such as growth factors or differentiation signals, but also transcriptional regulators, e.g.
a retinoic acid receptor acting on homeobox genes in a developing vertebrate limb. The
boundary of a network is therefore somewhat arbitrary: a gene is defined as ‘upstream’ by
virtue of the fact that it regulates the expression of network genes, but is not regulated by
these genes.

Starting from the initial gene expression pattern,ES(0), cross- and auto-regulatory
interactions among network genes cause the expression state to change. These changes
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are modelled by the set of difference equations

Si(t + τ) = σ

[
N∑

j=1

wijSj (t)

]
= σ [hi(t)] . (2)

Here, the expression state of geneGi at timet+τ , Si(t+τ), is a function of a weighted sum,
hi(t), of the expression state of all network genes at timet . hi(t) represents the sum of the
regulatory effects of all network genes on geneGi . σ(x) is the sign function (σ(x) = −1
for x < 0, σ(x) = +1 for x > 0 andσ(0) = 0), andτ is a time constant characteristic
for the process under consideration. Its value will depend on biochemical parameters such
as the rate of transcription, or the time necessary to export mRNA into the cytoplasm
for translation. The real constantswij represent the ‘strength’ of regulatory interaction
of the product ofGj with Gi , i.e. the degree of transcriptional activation (wij > 0) or
repression (wij < 0) that the transcriptional regulator produced by geneGj has on gene
Gi . Such regulatory interactions are known to be mediated by regulatory (enhancer) DNA
sequences. In biological terms, individualwij ’s can be thought of as some compound
measure of the binding constant and the transcriptional activation (repression) ability of
the factor produced byGj at the enhancer element that mediates its interaction withGi .
Alternatively, and in line with the structure of (2),wij can be thought of as a measure of
the influence that the product ofGj has onGi relative to other gene products. In this sense,
it is the relative size of thewij ’s that is relevant to the dynamics of (2). Theith row of w,
wi := {

wij |1 6 j 6 N
}

corresponds to the entire enhancer of geneGi with all regulatory
DNA elements that affect the expression ofGi . The ‘connectivity matrix’w = (wij )

corresponds to all DNA elements relevant to regulatory interactions among network genes.
Any non-zero diagonal element,wii 6= 0, corresponds to autoregulation ofGi by its own
gene product (e.g. Regulskiet al 1990; Sucovet al 1990). Some (or most) entries ofw may
be zero. The fewer non-zero entriesw has, the fewer regulatory interactions exist among
network genes. An important model parameter is therefore the fraction of entries different
from zero, denoted byc (c ∈ (0, 1)), which will be called the ‘connectivity density’ of the
network. The discrete-time dynamical system (2) can also be viewed as the limiting case
of a system of differential equations, in which concentrations of gene products, rather than
binary (on–off) gene expression states change (Wagner 1994), but computational limitations
prohibited the use of such a system here. It should be noted that the structure of (2) is similar
to ‘spin glass’ (Binder and Young 1986) or neural net (Amit 1989, Hopfield and Tank 1986)
type models of gene networks first introduced by Kauffman (1969, 1993). However, (2) is
conceptually different from Kauffman’s models in that a specific type of gene interaction,
namely transcriptional regulation, is considered. Recently, models conceptually similar to
(2) have been successfully used to describe and predict regulatory gene interactions in early
Drosophila embryogenesis (Mjolsnesset al 1991, Reinitzet al 1995, Reinitz and Sharp
1995).

The dynamics of (2) will lead to the attainment of an asymptotic (equilibrium) gene
expression state, which may be a fixed point of (2) or a limit cycle. The genes expressed
in the asymptotic state will affect the expression of genes outside (‘downstream’) of the
network. Possible downstream genes may include structural genes or genes encoding
proteins involved in signal transduction processes, but also transcriptional regulators that
do not themselves regulate the expression of genes within the network (Budd and Jackson
1991). Many experimental genetic studies (e.g. McGinnis and Krumlauf 1992) suggest
that deviations in a network’s expression pattern from the wild type pattern causes
developmental perturbations that often lead to deleterious effects on the adult phenotype. In
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a biological population, such individuals would be eliminated by natural selection. These
observations motivate the assumption that an optimal asymptotic gene expression state,
denoted asESopt (∞), exists for networks acting in a developmental process. For reasons of
computational tractability, it is assumed that this state is a fixed point of (2). If a network
attains an asymptotic stateES(∞) that is different from this optimal state, developmental
perturbations will result and the fitness of the respective adult organism will be reduced.
Deviations from an optimal state may occur for a variety of reasons, one of them being
mutations in genes within or outside of the network. The pattern of regulatory interactions
within a gene network represents its most interesting ‘organizational’ properties, and thus
mutations in regulatory DNA regions, represented by changes in the matrixw, will be the
focus of this study.

The evolutionary scenario envisaged here involves a gene network acting in an
ontogenetic process in each of the members of a population of organisms. It is assumed that
both the initial gene expression pattern,ES(0), and the optimal asymptotic gene expression
pattern, ESopt (∞), are the same for all organisms in that population. The organisms are
subject to mutations of regulatory DNA regions, recombination among network genes,
genetic drift, and selection on the attainment ofESopt (∞). This requires a notion of an
individual’s fitness, which is modelled in the following way. A measure,D(w), for the
distance between a network’s asymptotic state,ES(∞), to the optimal state,ESopt (∞), is given
by

D(w) = lim
T →∞

1

T

T∑
t=0

dh[ ES(t), ESopt (∞)] (3)

where

dh[ ES(t), ESopt (∞)] = 1

2
− 1

2N

N∑
i=1

Si(t)S
opt

i (∞) (4)

is the Hamming distance (e.g. Amit 1989), which counts the number of expression states of
individual genes that are different in the two states, and normalizes it to the interval(0, 1).
Note that (3) reduces toD(w) = dh[ ES(∞), ESopt (∞)], if the state ES(∞) is a fixed point
of (2). Based onD(w), the fitness of an individual is then given via a Gaussian fitness
function as

f (w) := exp

[
−D(w)2

s

]
. (5)

The notationsD(w) andf (w) indicate that mostly the dependence of fitness on the pattern
of regulatory interactions, represented byw, will be of interest here. The parameters

(s > 0) represents the strength of selection, small values ofs implying strong selection
against deviations from the optimal state. Transformations off (w) will be used for some
statistical tests.

Individual genes belonging with a network are assumed to be unlinked (subject to
free recombination), with the following rationale: with tight linkage between genes, the
whole network acts as a ‘supergene’. In the scenario considered here, the only phenotypic
differences between parents and offspring would then be those caused by mutations, which
implies high heritabilities. Heritabilities different from zero are much less intuitive if a large
amount of genetic information is shuffled in every generation. Thus, free recombination
between genesa priori provides a more stringent test for the heritability criterion that has
to be met by an evolvable system. The fact that a haploid model was chosen simplifies
the formalism considerably, and is unlikely to affect conclusions qualitatively, as will be
discussed below.
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3. Numerical methods

3.1. Population initialization

Network sizes used in the simulations ranged fromN = 5 through N = 10. Two
pseudorandom arrays in{−1, 1}N , corresponding toES(0) and ESopt (∞) were chosen
stochastically and independently withP (Si = 1) = p for each entry. Then, an ordered
set (‘population’),W := {w(1), . . . , w(P )}, of P = 500 (except where noted otherwise
below) N × N pseudorandom matricesw(k) = (w

(k)
ij ) of regulatory interaction strengths

was generated. In these matrices,cN2 entries (cN per row) were assigned a value of zero,
where c denotes the ‘connectivity density’ of a network, as introduced above. In order
to apply some of the statistical tests used here appropriately, it was necessary that matrix
entries identical to zero occur at the same position in each of the matrices. In other words,
if w

(k)
ij 6= 0, w

(l)
ij 6= 0 held for all l 6= k. The (1 − c)N non-zero matrix entries in each row

were chosen randomly and independently from those in other rows. Individual non-zero
entries were distributed identically and independently within and among matrices, following
a continuous probability densityp(x). Gaussian (p(x) = 1/(

√
2πσ) exp [−x2/(2σ 2)]) or

‘reflected Gamma’ densities (p(x) = [20(a)]−1e−|x||x|a−1, x ∈ < \ {0}, a > 0) were used,
since they cover a wide range of qualitatively different shapes of symmetric distributions.
This allows one to assess how robust results are to changes in the distribution of regulatory
interactions.

3.2. Simulated evolution

A population thus initialized was subject to a process of simulated evolution, in the course of
which various statistics (detailed below) were evaluated. The following five steps represent
one generation of simulated evolution for a population of networks. The steps were carried
out in the order given here. The number of iterations of the five steps (i.e. the number of
generations) depended on the actual statistic measured during the process as well as on the
individual population (see below), but did not exceed 5000 generations.

(i) Recombination.In pairs of consecutive matrices in the population, starting withw(1)

andw(2), rows were swapped with probability 0.5, corresponding to free recombination
between genes and tight linkage within an enhancer. Note that randomness in the order
of matrices is implied by the selection algorithm (step four).

(ii) Mutation. One per cent of all non-zero connectivities were mutated stochastically in the
following way. For each connectivity in each of the matrices in the population, starting
with w

(1)

11 , a pseudorandom numberr with uniform distribution on(0, 1) was generated.
If its value was greater than 0.01, the respective connectivity was not changed. If it
was less than 0.01, it was checked whether that connectivity was different from zero,
and if so, the connectivity was replaced by a pseudorandom number following the same
distributionp(x) as that used in the initialization of the populationW . This approach
is essentially the house-of-cards approximation that is frequently used in population
genetic modelling (see, e.g. Zeng and Cockerham 1993, Turelli 1985).

(iii) Fitness evaluation. The dynamics (2) was evaluated numerically for each of the
networks in the populationW . If a given network attained a fixed pointES(∞), its
fitness was evaluated according to (5). If a network did not reach a fixed point, it was
subjected to 100 additional time steps of (2), which is a number of steps an order of
magnitude greater than the average period of a limit cycle. In the course of this process,
the average Hamming distance toESopt (∞) was calculated using (3), and from it, the
fitness (5).
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(iv) Selection. After fitness had been assigned to all networks in the population, it was
normalized such that the maximum fitness in the population was equal to one. Then, a
network was chosen at random and a pseudorandom number,r, with uniform distribution
on (0, 1) was generated. Ifr was less than the fitness of the network, the network
‘survived’. This process was repeated until a new population of the same size as the
old population had been generated, i.e. sampling of networks was carried out with
replacement. Networks with high fitness spread through the population because of their
greater probability of survival.

(v) Adjustment of selection strength.Selection of matrices that arrive at someESopt (∞)

is a difficult optimization task in a high dimensional space. In order to facilitate
the generation of populations with high mean fitness, a technique related to simulated
annealing (Kirkpatricket al 1983) was used, in which selection strength is increased
during the course of the simulation, depending on a population’s mean fitness. In
generation one, the selection strength was set tos = 1. In each subsequent generation,
it was checked whether the mean fitness of the population exceeded a value of 0.9, and
if so, the selection parameters was decreased according tos ′ = se−λ, whereλ = 0.01.

The process of simulated evolution carried out here has two different stages, an initial
stage, in which mean fitness increases, and a second stage, in which the population is in a
(quasi-)equilibrium with respect to mean fitness. For the gene networks under consideration
here, the latter situation is probably the biologically relevant one. However, some of the
tests utilized below require a sufficient amount of intrapopulational fitness variation. Thus,
the earlier phase, during which mean fitness evolves is important here for technical reasons,
because of the higher levels of variation it provides.

3.3. Statistics

During the process of simulated evolution, various statistics were taken from the population
after fitness evaluation (step 3 above). Results obtained from these statistics were
qualitatively insensitive to variations in model parameters. They will therefore be discussed
only for N = 10, p = 0.5, Gaussian distribution of connectivities withσ = 0.1, c = 1 as
well as, for comparison,c = 0.2. Events in the underlying probability space are sufficiently
complex, e.g. the periodic shuffling of network parts by recombination, that accurate
analytical estimates for the statistics given here can most probably not be obtained. In
this section, only some general remarks are made. A more detailed discussion of individual
statistical tests is given in the next section along with the results.

Most statistics used here are based on three common measures of association among
random variates, namely Pearson product-moment correlation coefficients, linear regression
coefficients and Kendall’s coefficient of rank correlation (‘Kendall’sτ ’; Sokal and Rohlf
1981). The random variates under consideration were network connectivities or fitness. To
be precise, measures closely related to fitness were used in these calculations. For reasons
of computational simplicity, the distance measure (3) itself was used inall calculations
involving Kendall’sτ . To make distributions approximate more closely normal distributions,
− log[D(w) + 5/100] was used inall estimates of Pearson correlation and regression
coefficients. For all three measures of association, a significance test (Sokal and Rohlf
1981) was carried out for the null hypothesis that the respective measure is different from
zero. The significance test for Pearson’s correlation coefficient is based on a tabulatedt-
value for 120 degrees of freedom. Since populations used were larger than this value, the
test is slightly too conservative.

Type II errors represent a potential problem in this system because of the limited
analytical insight into its behaviour. It is difficult to find a rational, testable alternative
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hypothesis that could serve to evaluate the power of a test (e.g. Sokal and Rohlf 1981,
p 150). To address this problem, statistics were taken at two different significance levels,
namelyP = 0.01 andP = 0.001. The qualitative results discussed below turned out to
be independent of this change in significance level and they will therefore be discussed in
detail only for P = 0.01. The very large sample sizes (at least 500 for each test) lend
additional confidence to the results.

There is variation among simulations in the time needed to reach fitness equilibrium, and
there are therefore also different time courses of mean fitness evolution. This implies that
averaging results over a large number of independent simulations, although desirable, is not
feasible here, because simulations cannot be compared on a generation-by-generation basis.
Therefore, results from representative simulation runs are given below. No simulation runs
occurred in which results were qualitatively different from those reported.

4. Results

This section addresses two issues. First, is non-zero heritability in fitness (and therefore
evolution) possible in this model? Second, can variation in fitness be traced to variation
patterns of individual genes?

Figure 1. Fitness is heritable. (a) Plot of mean parental versus mean offspring fitness
(− log[D(w) + 0.05]) during mean fitness evolution. Heritability estimated from this plot was
h2 ≈ 0.68 (P < 0.01). (b) Time series of heritability estimates obtained as in (a) for a network
with connectivity densityc = 1 from generation 600 through generation 700 after the start of the
simulation. All values obtained were significantly different from zero (P < 0.01). h2 = 0.56
for the time window shown. See text for details. Other parameters:N = 10, p = 0.5, P = 500,
p(x) Gaussian withσ = 0.1.

4.1. Fitness is heritable

Fitness of two ‘offspring’ networks obtained from two ‘parents’ via recombination and
mutation was calculated for each pair of parents in a population. Figure 1(a) shows a
plot of mean parental fitness versus mean offspring fitness for all parent–offspring pairs in
one generation during the phase of mean fitness increase. The discreteness of the fitness
measure is reflected in the occurrence of data points that are horizontally or vertically
aligned. Heritability, i.e. the slope of the regression line through the set of data points is
approximately equal to 0.68 (P < 0.01). Figure 1(b) shows a time series of heritabilities



616 A Wagner

from generation 600 through 700 after initialization, corresponding to the phase of mean
fitness evolution. This time series was calculated in the same way as the individual value
obtained from figure 1(a). All values shown were significantly (P < 0.01) different from
zero. (The fact that successful selection on increasing mean fitness is possible in and by itself
implies non-zero heritability.) Although the exact values of heritabilities are irrelevant, it
should be mentioned that they are high compared to experimentally measured heritabilities
for some quantitative characters (Falconer 1981). The reason is most likely the absence
of environmental variance in the model. Non-zero parent–offspring regressions were also
observed in populations with sparsely connected networks, and in populations that were in
mean fitness equilibrium (results not shown).

4.2. Individual enhancer sites contain little information about macroscopic network
properties

The observation that the distributions or even the strengths of individual regulatory
interactions remain the same in a population with high and stable mean fitness would
provide a first indication that macroscopic network features can be traced to the action of
individual enhancer elements. Those sites, if they exist, would be prime candidates for
elements important to a network’s function. Such an observation could indicate the result
of a ‘symmetry breaking’ process among the enhancer sites, during which some sites in the
network became more important than others.

The following simulation approach addresses this issue. A population in fitness
equilibrium was ‘duplicated’ and the duplicate as well as the original population were
subject to the same regime of selection onES(∞) = ESopt (∞), except that they evolved
independently from each other after duplication. Each non-zero entrywij of the connectivity
matrix w may assume a variety of values in each of the two populations. For each non-zero
entry, a Kolmogorov–Smirnov test on the identity of its distribution in the two populations
(Sokal and Rohlf 1981, p 440) was carried out to find out whether the two sets of values
represent samples from the same underlying probability distribution. Sample sizes used for
the tests were equal to population size,P = 1000. This large population size was used
to minimize the effects of genetic drift, which tend to homogenize the distributions for
reasons unrelated to selection. The fractionξ(t) of tests for which the null hypothesis of
identity in distribution was rejected (on some significance levelP ) was recorded in each
generationt . A value ξ(t) = 1 means that none of the entries have the same distribution,
whereasξ(t) = 0 means that all entries have the same distribution. It is not trivial to arrive
at a significance measure for a compound quantity such asξ(t), given P , since high and
low order correlations between distributions of different entries in the same population may
exist. To address this issue, tests were carried out usingP -values ranging fromP = 0.01
to P = 10−6. Results obtained were qualitatively identical for all these values and are
therefore shown only forP = 0.01.

The time series{ξ(t)} is plotted for a population of densely connected networks (c = 1)
and a population of sparsely connected networks (c = 0.2) in figures 2(a) and 2(b),
respectively. In both cases,{ξ(t)} converges in a small number of generations toξ(t) = 1.
A decrease inP leads to a delay in the number of generations elapsed beforeξ(t) = 1 is
first reached. However, regardless ofP , ξ(t) = 1 is first reached before 100 generations
have elapsed. This implies that after a small number of generations,all distributions of
connectivities have diverged, even for two populations in which almost all networks have
highest fitness. Therefore, two sets of networks generating the same gene expression pattern
may have little in common in terms of individual regulatory interactions, or even in terms
of the distributions of interaction strengths. This fact is even more remarkable for a network
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Figure 2. Connectivity distributions in populations evolving in parallel diverge rapidly. A
‘duplicate’ of a population of networks in mean fitness equilibrium and under strong selection
was generated. After duplication, the duplicate and the original population were independently
subjected to the same regime of strong selection. The fraction,ξ(t), of marginal distributions
of corresponding individual connectivities that differed in the two populations was plotted for
the first 100 generations after the duplication event. (a) c = 1; (b) c = 0.2. The plot in (b)
appears more coarse grained than the plot in (a), becauseξ(t) can only assumecN2 = 20
different values, as opposed tocN2 = 100 different values in (a). Other parameters:p = 0.5,
P = 1000,p(x) Gaussian withσ = 0.1.

in which few regulatory interaction strengths are different from zero, such as that shown
in figure 2(b). In this case, a fewer overall number of enhancer sites accounts for network
dynamics, and one might suppose that some connectivities play more important roles than
others, which is not the case.

The test used here only provides a necessary criterion and a first suggestion towards the
possibility that it may be difficult to pinpoint variation in fitness to variation in individual
enhancer elements. Its main statement is that there are many possible genotypes producing
the same ‘phenotype’ (gene expression pattern), a property that this system shares with
simpler, additive polygenic systems. Thus, it has to be complemented by other criteria.

4.3. Few and varying binding sites show correlation to fitness

If there exist simple causal relations between the strengths of individual regulatory
interactions and the gene expression pattern generated by a network, the strengths of these
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interactions should be correlated with fitness. The case of a linear model, although not
comparable to the network model considered here, is instructive in this context. In such a
model, the genotypic value,G, would be represented as the sum ofn underlying genetic
variables,Xi , and the correlation between individual such variables andG would be 1/

√
n.

With a sample size as large as that used here, sample correlation coefficients would likely
be significantly different from zero, even for smallP . In the nonlinear network model
studied here, a comparable result does not hold.

Two measures of correlations were calculated in populations during the phase of mean
fitness evolution. First, Pearson correlation coefficients between fitness and individual
entries ofw were calculated for all entries ofw different from zero. Note that a calculation
of these correlations is not expedient in mean fitness equilibrium, since in that case many
of the individuals in the population may have fitness one. Only the fractionζp(t) of
those regulatory interaction strengths that showed a non-zero Pearson correlation coefficient
was recorded in each generationt . A parallel, control simulation showed that there exist
background correlations unrelated to selection that have to be accounted for. In this
simulation, a population was used that had evolved for the same number of generations
as the above population, but in the absence of selection (usings = 100 in (5)), i.e. it was
only under the influence of mutation and genetic drift. For the evaluation of correlation
measures in the control population, the fitness of each network was calculated usings = 1,
i.e. as if the population had been under selection. The time series for the control population
is denoted byζ c

p(t).
Analogously, Kendall’s rank correlation coefficientτ was calculated between

connectivities and fitness, resulting in two time series of the fraction of non-zeroτ ’s, ζτ (t)

and ζ c
τ (t), for a population under selection and a control population, respectively. This

measure of association should give more accurate results if fitness and network connectivities
are not normally distributed. In many simulations, bothζp(t) and ζ c

p(t) were consistently
greater than their counterpartsζτ (t) and ζ c

τ (t), respectively. This was interpreted to be
caused by false non-zero Pearson coefficients due to deviations from normal distributions.
Aside from this discrepancy, results were qualitatively identical for the two measures of
association, and onlyζτ (t) as well asζ c

τ (t) will therefore be discussed in detail.
Figures 3(a) and 3(b) showζτ (t) andζ c

τ (t) for a densely connected (c = 1) network. The
amount of background correlation can be seen from figure 3(b). Importantly, selection itself
does not generate a large number of significant correlations. If one usesζτ (t)−ζ c

τ (t) = 0.097
as a crude measure of the average number of correlations related to selection (where bars
indicate temporal averages over the time windows shown in figures 3(a) and 3(b)), one
finds that less than ten such significant correlations exist on average. Figures 3(c) and 3(d),
showing the same quantities but for a sparsely connected network withc = 0.2, represent
an even more extreme situation. Here,ζτ (t)− ζ c

τ (t) = 0.18, corresponding to less than four
significant correlations. How likely is it that this low a number of significantly correlated
connectivities, e.g. four or less in the case of the sparsely connected network, could account
for all variation in fitness? Further doubt in the relevance of these correlations is raised by
considering the large amount of fluctuation in all time series shown, as well as the large
amount of background correlation, especially for the sparsely connected case (figure 3(d)).
A more detailed analysis of the correlation patterns will further support these doubts.

If two snapshots of a population at timet1 and time t2 are taken, will the patterns
of correlation between enhancer sites and fitness be similar and, more specifically, will the
same enhancer elements show correlations to fitness? Such enhancer elements, if they exist,
might be important to network function. The fluctuations observed inζτ (t) (figures 3(a)
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Figure 3. Few connectivities are correlated to fitness. Fraction,ζτ (t), of non-zero Kendall’s
τ correlation coefficients between connectivities and fitness, plotted against the number of
generations,t , after start of the simulation. (a) Densely connected networks (c = 1), population
under strong selection, mean fraction,ζτ = 0.124, where the bar indicates a temporal average
over the time window shown. (b) c = 1, no selection,ζ c

τ ≈ 0.027. (c) Sparsely connected
network (c = 0.2), population under strong selection,ζτ ≈ 0.357. (d) c = 0.2, no selection,
ζ c
τ ≈ 0.173. (b) and (d) were included in order to account for correlations not caused by

selection. Both types of population were in the same stage in terms of the evolution of their
mean fitness. The differences in the time windows shown are due to differences in the time
course of mean fitness evolution in the two network types. Other parameters used:N = 10,
p = 0.5, P = 500, p(x) Gaussian withσ = 0.1. Note the large fluctuations in (a) and (c), as
well as the considerable amount of background correlations forc = 0.2, as shown in (d).

and 3(c)) already argue against such a conservation. In order to answer this question more
rigorously, two different approaches were pursued.

(i) Autocorrelation of Kendall’sτ correlation matrices based on Euclidean distance measure.
A time series ofN × N matrices{Y (t)} = {(Yij )i,j=1,...,N (t)} of Kendall’s coefficientτ ,
Yij (t), betweenwij and fitness at timet was evaluated. The question that has to be answered
is: how rapidly does the similarity between these matrices decay over time? A fast decay
implies that correlation patterns between individual enhancer elements and fitness are not
conserved. To answer this question, an autocorrelation function of matrix similarity was
designed. The distance measured between matrices is defined as

d[Y (t1), Y (t2)] := 1

2cN2

N∑
i,j=1

|Yij (t1) − Yij (t2)|,

where the normalization factor 1/(2cN2) takes into account that there arecN2 matrix
elements different from zero and that individual correlation coefficients can assume values in
(−1, +1), thus restrictingd to the interval(0, 1). Based ond, the following autocorrelation
function of the time series of matrices is defined.

ρY (δ) := 1 −
√

π

(T − δ)σ τ

T −δ∑
t=1

d[Y (t), Y (t + δ)]
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For sample sizesn > 40, Kendall’sτ follows approximately a normal distribution (N(0, σ 2
τ ),

Sokal and Rohlf 1981, p 607). It is straightforward to show that the expectation ofd,
under the assumption of identically and independently distributed correlation coefficients,
is equal toσ τ /

√
π . Thus, the normalization factors in the definition ofρY assure that

ρY (δ) = 0 for all δ > 0, if correlation coefficients within and across matrices are
stochastically independent, i.e. if correlation patterns in one generation yield no information
about correlation patterns in the following generation. Note thatρY (0) = 1 andρY (δ) 6 1,
for all δ > 0. In the simulations,σ τ was estimated as the average(1/T )

∑T
t=0 σ τ (t), where

σ τ (t) is the standard deviation of Kendall’sτ values in matrixY (t).

(ii) Autocorrelation of matrices of significant Kendall’sτ coefficients. A time series of
N × N matrices{Zτ (t)} = {(Zτ,i,j )i,j=1,...,N (t)} was constructed as follows:

Zτ,i,j (t) :=
{

1 wij is correlated with fitness at timet

0 wij is not correlated with fitness at timet
∀i, j, t .

Entries of each (binary) matrix in this series indicate which regulatory interaction strengths
are correlated to fitness. The question is, then, to what extent is the structure of these
matrices conserved over time? Given two matrices,Z(t) andZ(t + δ), the hypothesis that
the zero-one patterns in these matrices are stochastically independent was tested by a 2× 2
χ2 test for independence (Sokal and Rohlf 1981), grouping the numbers of zeros and ones
into a 2× 2 table according to their co-occurrence in the matrices. The quantity

χ(t, δ) :=
{

1 Z(t), Z(t + δ) are not stochastically independent

0 Z(t), Z(t + δ) are stochastically independent
∀t, δ

was used to define the autocorrelation functionρZ,

ρZ(δ) := 1

(T − δ)

T −δ∑
t=1

χ(t, δ), (6)

with t ∈ {1, . . . , T }. Note thatρZ(0) = 1 andρZ(δ) 6 1, for all δ > 0. The fasterρZ(δ)

decreases asδ increases, the less conserved are the patterns of zeros and ones that indicate
which enhancer sites show correlation to fitness.

Results from these different autocorrelation functions are similar, in that both
autocorrelation functions decay rapidly. They will therefore only be discussed forρZ.
Figures 4(a) and 4(b) show the autocorrelation functionρZ(δ) for a densely connected
(c = 1) network and a sparsely connected (c = 0.2) network. The significance level for
both theχ2-test and the significance test for Kendall’sτ was P = 0.01. The length of
the time series used isT = 300 generations, with a maximum lag ofδ = 50 generations.
The time window used to calculateρZ was comparable to that shown in figure 3, i.e.
the population was in the phase of mean fitness evolution. To check the performance of
the test, a time series of lengthT = 300 of N × N pseudorandom matrices with entries
zero and one was generated, in which entries were stochastically independent within and
across matrices. The probability of each entry being one was equal to 0.5. The sample
autocorrelation function of this control series was evaluated (see figure 4(c)) and the results
were as close toρ(δ) = 0 ∀δ > 0 as could be expected from the given significance level.
It is obvious from figures 4(a) and 4(b) that there is a rapid decay of ‘memory’ in the time
series, regardless of the density of connections in the network. This strongly suggests that
connectivities correlated to fitness are unlikely to be the same at timest and t + δ, even if
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Figure 4. Connectivities correlated to fitness vary from
generation to generation. The autocorrelation function,
ρZ(δ), of correlation patterns as a function of the time
lag δ, as defined in (6), for populations during the
phase of mean fitness evolution. (a) Densely connected
networks (c = 1), (b) sparsely connected network
(c = 0.2), (c) test of algorithm on a set of stochastically
independent random matrices, as described in the text.
Other parameters used:N = 10, p = 0.5, P = 500,
p(x) Gaussian withσ = 0.1.

δ is small. Qualitatively identical results were obtained for a time series similar toZτ , but
involving Pearson correlation coefficients instead of Kendall’sτ .

In sum, those regulatory interactions that show non-zero correlations to fitness are few,
their number fluctuates and they tend to show correlations only for a very short period
of time. For these reasons, pairwise correlation measures do not indicate the existence
of meaningful associations between individual enhancer elements and fitness. If there
are only few and temporally variable correlations between individual connectivities and
fitness, could there be more complex association patterns on the level of entire enhancers?
Such associations could be viewed as supporting a gene selectionist viewpoint, since the
enhancer (i.e. all binding sites influencing the expression of a transcription unit) most
closely corresponds to the classical notion of a gene. One possible measure consists in
a multiple linear regression coefficient between all binding sites on an enhancer and fitness,
or, similarly, the corresponding measure of multiple correlation. Technically, the existence
of some non-zero pairwise Pearson correlation coefficients is required for the calculation of
these quantities (Sokal and Rohlf 1981, p 618). Given that these coefficients are few and
rapidly changing, it is not likely that such quantities can even be calculated in all generations
and, therefore, that a meaningful higher order linear association pattern can be found.

4.4. Variance in fitness cannot be linearly decomposed into variance components on the
genic level

A predictor for the selection response of a quantitative characterZ, such as fitness in this
model, is the additive varianceσ 2

A(Z) of Z, which can only be predicted analytically if the
genetic architecture is sufficiently simple. Here, it will be estimated as (Falconer 1981)

σ 2
A(Z) = σ 2

T (Z)h2(Z) (7)

whereσ 2
T (Z) is the total variance in fitness, which is identical to the genetic variance in

this model.h2(Z) is the heritability ofZ. The observation thatσ 2
A(Z) cannot be accounted
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for by a linear superimposition of variance contributions of the genic level, would imply
collective behaviour (Wimsatt 1980, Lloyd 1988).

Assume that a linear decomposition ofσ 2
T (Z) is possible:

σ 2
T (Z) = Cov(Z, Z) = Cov(Z, X1 + · · · + X2) = Cov(Z, X1) + · · · + Cov(Z, Xn) (8)

which relies on the stochastical independence of individual variables. The fraction of
additive variance explained by such a linear decomposition of genetic variance is then
given by

Cov(Z, X1) + . . . + Cov(Z, Xn)

σ 2
T (Z)h2(Z)

(9)

using (8). σ 2
T (Z) can then be evaluated directly as the fitness variance in the population,

h2(Z) is calculated by parent–offspring regression, and the covariances Cov(Z, Xi) are
evaluated between enhancer elements and fitness. Their estimates are based on the
calculation of a Pearson correlation coefficient between connectivities and fitness. Two
different approaches were pursued in evaluating (9). In the first approach, only those
covariances were included in (9) that were significantly different from zero atP < 0.01.
The second approach used allcN2 covariances. Results from these two approaches were
qualitatively identical, and will therefore only be reported for the latter case. A time series
of (9) was calculated during mean fitness evolution. Results are displayed for a densely and
a sparsely connected network in figures 5(a) and 5(b), respectively. Obviously, the quantity
shown fluctuates around zero and it is consistently smaller than one. This finding indicates
that independent contributions of the genic level cannot account for variation in fitness.

Figure 5. Superimposition of variance contributions by the genic level cannot account for
variation in fitness. The quantity defined in (9) was plotted against the number of generations,t ,
elapsed after the start of the simulation. (a) Densely connected networks (c = 1), mean of time
series is approximately−0.07, (b) sparsely connected network (c = 0.2), mean of time series
is approximately−0.04. The differences between (a) and (b) in absolute generations for the
time windows shown are due to differences in the speed with which the two types of network
evolve. Other parameters:N = 10, p = 0.5, P = 500, p(x) Gaussian withσ = 0.1. See text
for details.

A conceivable alternative approach would have consisted in decomposing the total
variance, i.e. evaluating a time series for [Cov(Z, X1) + . . . + Cov(Z, Xn)]/σ 2

T (Z). This
approach would have yielded nearly identical results, since the latter formula differs from
(9) only in the factorh2(Z), and h2(Z) does not undergo large temporal fluctuations
(figure 1(b)).
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Figure 6. Low order linkage disequilibrium does not characterize optimal networks. The
eigenvalue distribution of thecN2 × cN2 sample covariance matrix of all connectivities in a
population is shown. Eigenvalues are sorted by decreasing magnitude. (a) Densely connected
networks (c = 1), stochastically initialized population in generation zero. (b) c = 1, population
close to mean fitness one, i.e. under strong selection in mean fitness equilibrium. (c) c = 1, a
population that had evolved the same number of generations as the population in (b), but in the
absence of selection (s = 100). (d) through (f ) are identical to (a) through (c), respectively,
except thatc = 0.2. Note that there is a smaller number of eigenvalues in these cases, since there
is a smaller number of non-zero connectivities. Note also the only minor differences between
(b) and (c), as well as between (e) and (f ). Other parameters:N = 10, p = 0.5, P = 500,
p(x) Gaussian withσ = 0.1.

4.5. Low order linkage disequilibrium does not characterize optimal networks

In a population of networks that all arrive at a stateESopt (∞) given ES(0), patterns
of associations between connectivities must exist. These associations along with the
distributions of individual connectivities define the set of networks. The results presented
so far indicate that there is no simple predictor of fitness that is based on individual
connectivities, and on a linear superposition of individual connectivities. Given that, a
question arises regarding the level of organization on which relevant patterns of association
among connectivities can be detected, i.e. will there be associations between pairs, triples,
quadruples etc of connectivities? This problem is potentially non-trivial, since there is a
combinatorial explosion of the number of possible correlations between connectivities as
the order of correlation is increased, i.e. there are

(
N

k

)
k-tuples of connectivities and each
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k-tuple might show correlation.
For technical reasons, empirical and theoretical population genetic studies restrict

themselves mostly to patterns of associations between two units of genetic variation
(pairwise linkage disequilibrium). For the network model considered here, the relevant
information is unlikely to be contained on this low a level of organization, and it must
therefore be represented by higher order correlations. To demonstrate this, the set of
connectivity matrices in a population was conceptualized as a sample of the distribution of
a multivariate random variable of dimensioncN2. ThecN2 × cN2 symmetric matrix of all
pairwise sample Pearson correlation coefficients between connectivities was evaluated and
its eigenvalue distribution was calculated. This was carried out for two different populations:
first, in a population in mean fitness equilibrium with a mean fitness close to one; second,
in a control population that was subject to mutation and genetic drift only. This control
population had evolved independently from the population under selection, but for the same
number of generations. Figure 6(a) shows the eigenvalue distribution for a population of
densely (c = 1) connected networks at time zero, i.e. it is the eigenvalue distribution of the
sample correlation matrix obtained from 500 random matrices with independently, normally
distributed entries. Figures 6(b) and 6(c) show the eigenvalue distribution of populations of
densely connected (c = 1) networks under strong selection and under mutation–drift balance,
respectively. Figures 6(d), 6(e) and 6(f ) are completely analogous to figures 6(a), 6(b)
and 6(c), respectively, except that the networks here were sparsely connected (c = 0.2).
No matter whether networks are sparsely or densely connected, there is little difference
in the eigenvalue distribution between selected population and control population (compare
figures 6(b) and 6(c), as well as figures 6(e) and 6(f )), especially with regard to the smallest
and the largest eigenvalue observed in the distributions. This suggests that selection does not
play an important role in the generation of second order correlations between connectivities.
In the case of sparsely connected networks, this observation moreover suggests that the
correlations and, thus, the information that they represent, are ‘distributed’ over more than
one gene.

5. Discussion

In the nonlinear system used here as a dynamical model of a network of transcriptional
regulators, fitness is a heritable quantitative character (figure 1). The observation that
selection for an optimal gene expression pattern is possible here is a non-trivial result in
and by itself. Without this prerequisite, the following, principal question of this contribution
would be meaningless. Can causal relations of individual genes to fitness be discerned? In
other words, to which extent is high fitness associated with particular genes or units of
genetic variation? First, a conceptual remark is necessary: here, the elementary units of
genetic variation are not transcription units, but the binding sites of transcription regulators
on the enhancers of genes encoding for other transcriptional regulators. A whole ‘gene’, in
terms of the concepts used here, comprises an entire enhancer with several binding sites (a
row of the connectivity matrix) as well as its associated transcription unit. It will be argued
that whatever the desired elementary level of variation, enhancer sites or genes, variation
in fitness is not determined on that level.

That individual units of genetic variation may not be related to fitness variation in any
obvious way is already suggested by the rapid divergence of the marginal distributions of
all individual regulatory DNA elements in two populations evolving in parallel (figure 2).
This result demonstrates that (i) a large number of different regulatory interaction patterns
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may generate the same gene expression pattern, and (ii) the differences in these matrices
are such that a variety of different values is admissible for any given enhancer site (matrix
entry). Although it has to be followed by more sophisticated approaches, this is a hint
towards collective behaviour: there are many degrees of freedom in the system and the
strength of any individual regulatory interaction (enhancer element) is not critical to a
network’s function. The information necessary to characterize networks may be distributed
over groups of connectivities or groups of genes.

In order to investigate which enhancer elements (regulatory interactions) in a gene
network are important to the establishment of a specific gene expression pattern, one has
to look for associations of the strength of individual regulatory interactions with fitness.
Such measures of association were obtained here. The main observations (figures 3 and 4)
are that (i) only a small fraction of all enhancer elements is associated with fitness at any
given point in time, (ii) the number of such elements strongly fluctuates over time, and
(iii) those elements that display association are unlikely to remain the same over time.
These results cast into doubt the utility of pairwise association patterns for a delineation
of the causal relations in this system. Large samples of highly accurate raw data are used
in the statistical tests here. Even in the unlikely event that an experimental system could
generate data at this level of resolution, one would not be able to identify any meaningful
pairwise association patterns. The next higher level of complexity would consist in multiple
linear regression coefficients or the corresponding measure of multiple correlation, e.g.
between all binding sites of an enhancer and fitness. As already discussed, the results
obtained for pairwise associations, especially their sparsity and their variability over time,
suggest that such patterns do not exist. This means that also on the level of a gene (an
entire enhancer) no meaningful pattern of association between DNA level variation and
variation in fitness will be detectable. Would it be possible to find some nonlinear pattern
of association between individual units of genetic variation and fitness? The model used here
implies that fitness is some nonlinear function of the connectivity matrix. Therefore, there
exists some measure of nonlinear association—represented by this function itself—between
connectivities and fitness. The likely absence of a closed form for solutions of (2) (e.g.
Binder and Young 1986) makes it very unlikely that simple nonlinear dependencies of few
enhancer elements and fitness can be found. Therefore, one can probably not do better than
measure linear association patterns in this system (as one would in experimental systems
of comparable complexity). In fact, one can view the question for nonlinear association
patterns as a paraphrase of the problem: which types of nonlinearity make multivariate
nonlinear functions exhibit collective properties?

A further case against the possibility of decomposing variation in fitness into independent
contributions of individual genetic factors is made by Wimsatt’s criterion (Wimsatt 1980,
Lloyd 1988). As shown in figure 5, variation in fitness is not accounted for by superimposing
contributions of the genic level, implying that interaction effects of different enhancer
elements, or of groups of elements are involved in its generation.

Robustness is an issue that must be addressed in models of nonlinear gene interactions.
Are the results obtained robust to changes in the model? Could a real gene network be
expected to behave in similar ways? Alterations in essentially all the parameters entering
the model were tested, although only a small subset of the results was shown: qualitatively
different distribution types for connectivities were used, and connectivity densities as well as
network sizes were varied. All statistical tests, where applicable, yielded results that support
the statements made above. Moreover, an alteration of the model towards a more realistic,
albeit much more complicated one would probably support these statements further. The
crucial simplifying assumption to make the model formally tractable was an assumption
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of linearity: the effects of proteins binding to an enhanceradditively contribute to the
activation state of a gene. However, cooperation or antagonism between transcriptional
regulators, although difficult to model, is likely to occur in nature (e.g. Hanet al 1989,
Lamb and McKnight 1989). It represents a deviation from this assumption of linearity, but
because nonlinearity is at the root of the phenomena observed here, this deviation would
most likely underscore the existence of these phenomena. The same line of reasoning holds
for other possible extensions, such as diploid models or models that take the evolution of
the transcription units themselves into account.

It has been claimed that genomes act as cohesive wholes in evolution and that linkage
disequilibrium, i.e. patterns of association between units of genetic variation, is the primarily
responsible factor. What is its role in the model analysed here? There must be patterns
of association among connectivities in a population of networks (organisms) with the same
gene expression pattern. Since the model used here is deterministic, these associations
along with the distributions of individual connectivities completely specify such a set of
networks, givenES(0) and ES(∞). Linkage disequilibrium is understood as any pattern of
association between two or more enhancer elements. Although this is not the traditional
usage of the term, which applies to transcription units and frequently implies only pairwise
correlations, it is the usage appropriate for this model. However, given the large number
of variables, it is not feasible to measure high order correlations between connectivities.
The results demonstrate that second order (pairwise) correlations are not very informative:
a population under strong selection and a control population under mutation–drift balance
have very similar eigenvalue distributions of the correlation matrix of all connectivities (see
figure 6). This strongly suggests that only correlations higher than those of second order
are useful in characterizing the networks. Rarely would it be possible to measure such
correlations experimentally in any given system. Thus, this is a case where experiments
would not have detected any amount of (relevant) linkage disequilibrium, although it must
exist. It would therefore be even less likely to find linkage patterns between entire genes
(enhancers). One further instructive point can be made by considering results from networks
with a low number of regulatory interactions. A network withN = 10 genes and connection
densityc = 0.2 has binding sites for two different transcriptional regulators on the enhancer
of each gene. Thus, no correlations higher than second order are needed to describe the
organization of elements within any given enhancer. If contributions of individual genes to
a network’s function could be singled out, one might hope to detect patterns of correlations
among enhancer elements within genes. The eigenvalue analysis forc = 0.2 does not
support this possibility, since no conspicuous pairwise correlations occur. However, the
cautionary remark made above regarding possiblenonlinear enhancer-fitness associations
applies also to associations among regulatory DNA elements.

What are the consequences of these findings for experimental studies of gene networks
whose properties resemble those of the model used here? The study of eukaryotic enhancers
is an important topic in and by itself, but caution may be necessary in the prediction
of organizational network features by studying individual genes. Some of the results
reported above may seem quite intuitive to the mathematically oriented biologist, given
the nonlinear nature of the network model, but they may have important implications on the
amount of information that can be obtained by currently common experimental techniques.
Experimental alteration of individual enhancer elements (e.g. via mutagenesis or deletion)
is a common strategy used to understand the role of enhancers in gene regulation, and to
understand regulation in gene networks. As the above analysis shows, even in the unlikely
event that one could arrive at a complete understanding of the composition and function of
all the enhancers in a network, it might sometimes not be possible to describe how their
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interaction makes a gene expression pattern emerge. An accumulation of genetic data on
phenotypic effects of mutations in regulatory regions may not be sufficient to elucidate how
a wild-type expression pattern is generated: it may be impossible to infer a simple law from
studies of individual genes, if the necessary information is ‘distributed’ over a network’s
genes. Given current methods, it is hard to conceive of an experimental approach to this
problem. A similar issue arises for studies of network evolution. If many degrees of freedom
are involved in the evolution of gene networks, it will be difficult to draw conclusions about
network organization and, thus, network function by comparing the structure of enhancers
between different taxa. Even if the biochemical function and the expression pattern of a
set of genes is highly conserved in evolution, the interactions that produce these expression
patterns might be very different. The added complication caused by sometimes obscure
relations between the structure (sequence) and function (regulatory specificity) of enhancers
elements (e.g. Gehringet al 1994) is likely to further complicate comparative studies.

A conceptual distinction is important with regard to what has been said so far. There
are instances where the expression of a gene in a body region of an embryo determines the
developmental fate of that body region. Examples of such ‘homeotic’ genes are abundant
in arthropods. They include genes encoding transcriptional regulators (Ingham 1988). The
existence of such genes might be taken as evidence against the results presented here: the
fact that mutations of an individual gene can be responsible for homeotic transformations of
a whole body part might indicate that only that gene would be ‘causal’ to the formation of the
part. This argument neglects, however, that it is most likely to be complex crossregulatory
and autoregulatory interactions between a number of genes that lead to theestablishmentof
a stable expression pattern of every one of these genes. Whether the information necessary
for regional determination is distributed over a set of genes or concentrated in an individual
gene may depend on the system studied. However, it must be distinguished from the
question of how the gene expression pattern is established.

The possible existence of phenotypic characters, on whatever level of organization,
whose variation cannot be traced to genic variation, would raise conceptual problems. What
if a set of genes has two different functions during different times in the life cycle: how
could pleiotropy be defined if effects of individual genes cannot be discerned in either
context? Would it be likely that an organizational hierarchy exists in the epigenetic system,
each level of which would be an emergent feature of the next lower level, or would there
merely be overlapping sets of genes, within each of which a task would be distributed
over the whole set? What would happen at the intersection of such sets? Finally, if there
were characters whose variation was most efficiently described on a high level of epigenetic
organization, whereas in others a description in terms of the genic level was more efficient,
how would selective forces have to be partitioned between these different levels?

Complex, nonlinear processes with multiple components are abundant in biological
systems: networks of enzymatic reactions, cross-talking signal transduction pathways
with complicated feedback mechanisms, and intercellular communication processes in
development are but three examples. Whether such systems cannot be described efficiently
on the level of their individual parts can only be decided by experiment. One has to be
aware, though, that collective properties of the system analysed here may represent the rule
rather than the exception.
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