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Networks of evolving genotypes can be constructed from the worldwide

time-resolved genotyping of pathogens like influenza viruses. Such genotype

networks are graphs where neighbouring vertices (viral strains) differ in a

single nucleotide or amino acid. A rich trove of network analysis methods

can help understand the evolutionary dynamics reflected in the structure of

these networks. Here, I analyse a genotype network comprising hundreds

of influenza A (H3N2) haemagglutinin genes. The network is rife with

cycles that reflect non-random parallel or convergent (homoplastic) evolution.

These cycles also show patterns of sequence change characteristic for strong

and local evolutionary constraints, positive selection and mutation-limited

evolution. Such cycles would not be visible on a phylogenetic tree, illustrating

that genotype network analysis can complement phylogenetic analyses. The

network also shows a distinct modular or community structure that reflects

temporal more than spatial proximity of viral strains, where lowly connected

bridge strains connect different modules. These and other organizational pat-

terns illustrate that genotype networks can help us study evolution in action at

an unprecedented level of resolution.
1. Introduction
The human influenza A virus causes up to half a million deaths annually

and infects more than 5% of the world’s population [1,2]. The virus evades

the human immune system through antigenic change, requiring costly regu-

lar updates of influenza vaccines [3,4]. A major target of the immune response

is the viral haemagglutinin (HA) protein, a surface glycoprotein that enables

the virus to bind and enter host cells via sialic acid residues on cell surface recep-

tors [5]. HA is a homotrimeric membrane protein whose monomers form

three globular heads, as well as a helical coil that resides in the membrane [6].

The globular heads contain epitopes—those parts of a foreign molecule recogni-

zed by the immune system—which can be bound by antibodies that prevent

HA’s interaction with host cells [7]. Influenza A subtypes are classified accord-

ing to the their variants of HA and neuraminidase, a viral protein that is

important to release viruses from the cell surface. The H3N2 subtype (HA subtype

3, neuraminidase subtype 2) dominates the seasonal flu that recurs annually

in temperate regions. Intense monitoring of influenza epidemiology and evol-

ution [1] make this virus ideal for novel, data-intensive approaches to

understand the evolutionary dynamics of pathogens, such as the framework of

genotype networks.

Genotype networks are graphs whose nodes are genotypes with the same

broadly defined phenotype. This phenotype could be as coarse-grained as

‘being viable’, or as fine-grained as the enzymatic activity or catalytic site confor-

mation of a protein. Two genotypes are neighbours and connected by an edge in

such a network if they differ minimally, e.g. in a single nucleotide or amino acid.

Genotype networks and their structure can shed new light on many long-standing

problems in evolutionary biology, such as how new evolutionary adaptations
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originate [8]. Thus far, genotype networks have mainly been

characterized in systems where phenotypes need to be predic-

ted computationally from genotypes [9–12]. High-throughput

genotyping technologies can alleviate this limitation and help

build genotype networks from experimental data, by character-

izing many closely related genotypes and their phenotypes

[13–17]. Casting such data in the form of a network immedi-

ately makes many analytical tools from graph theory

available [18]. Their use has contributed to fields as different

as ecology, systems biology and the social sciences [19–25].

For example, they can help identify ‘modules’ of cooperating

molecules, interactions in ecological networks that affect their

stability, or network properties that can influence the spreading

of traits, such as innovations or diseases [19,24,26].

The conventional way to study evolutionary processes with

genotypic data (but see [27,28]) is to construct phylogenetic

trees that reflect the evolutionary relationships among genes,

individuals or species [29]. Different genotypes are leaf nodes

on such a tree. Internal (non-leaf) nodes correspond to usually

extinct ancestors. Modern phylogenetic methods permit a

probabilistic reconstruction of such ancestors, in the sense

that they can compute a probability that a given genotype

was the true common ancestor of the actually observed leaf

nodes. They allow one to choose the most likely such genotype

as the best candidate common ancestor [29,30]. In both phylo-

genetic trees and genotype networks, the distance between two

sequences reflects their evolutionary relatedness, but genotype

networks differ from phylogenetic trees in at least two respects.

First, when constructed from a population sample, they do not

require reconstruction of ancestors, but contain these ancestors

as their internal nodes. Second, as opposed to trees—which are

by definition acyclic graphs—they can contain cycles, paths of

edges that return to their origin, which can indicate unusual

patterns of evolution.

I here construct a genotype network from a large dataset of

viable influenza genotypes to illustrate some of its applications

to evolutionary genetics. Specifically, I construct a genotype

network based on more than 1000 influenza A HA sequences

isolated from H3N2 viruses between 2002 and 2007 [31] to

illustrate how graph-theoretical concepts and methods can

shed light on the evolution of this pathogen.
2. Results
(a) Structure of the protein genotype network
The protein-based genotype network is a graph whose nodes

are HA protein sequences from different viral strains. Edges

connect two sequences if they differ in a single amino acid.

The network based on the dataset used here [31] has 1565

sequences, 33763 edges, and is organized into 284 com-

ponents—subgraphs where any two sequences can be

connected via a path of edges (electronic supplementary

material, figure S1). After removal of all but one identical

sequences from this network, the non-redundant network

still contains 742 sequences, with 539 edges between them,

which are partitioned among 265 connected components of

various sizes (figure 1a). Most components (238) consist

of a single isolated sequence, 27 components contain two or

more sequences and the single largest ‘giant’ component

[33] comprises 246 sequences connected by 285 edges.

Figure 1b shows this largest component. The distribution of

sequence degrees—a sequence’s number of neighbours—is
highly skewed towards sequences with few neighbours

(figure 1c). The network is disassortative [34], meaning that

sequences with high degree tend to be neighbours of sequences

with low degree (electronic supplementary material, figure S2).

It has a highly modular or community structure (electronic

supplementary material, figure S3), where a strain’s member-

ship in a module is most significantly associated with its year

of isolation (electronic supplementary material, Supplemen-

tary Results and figure S4). An analogous network, based on

DNA sequences rather than protein sequences, is highly frag-

mented and thus less informative (electronic supplementary

material, figure S5).
(b) Abundant cycles in the genotype network cannot
be explained by random homoplasy

Although cycles cannot occur in a phylogenetic tree by

definition [29], they can occur in genotype networks. Such

cycles can reflect constrained evolution and in particular

homoplasy, parallel or convergent evolution, where two

sequences do not diverge or even become more similar over

time. The HA protein genotype network contains remarkably

many cycles. Specifically, among the 504 sequences in the

network that are not isolated, 122 (24%) form part of a

cycle. All of those cycles are contained in the six largest com-

ponents, in which 28.6% of sequences form part of a cycle. In

the largest component itself, 79 of 246 sequences (32.1%) are

contained in cycles. To better visualize the extent of cycles,

one can display the so-called 2-core of the genotype network

(figure 2a), defined as the largest subgraph, where every

sequence has at least two neighbours. All 122 sequences of

this 2-core form part of a cycle. The 2-core thus reveals the

extended cyclic structure of the protein genotype network.

Detailed examination shows that all cycles in the network

are decomposable into triangles and squares (electronic

supplementary material, tables S1, S2). First, the network con-

tains 24 triangles that involve only 48 sequences, implying that

many triangles share sequences and edges (see also figure 2a).

Second, the network contains 40 squares that involve a total

of 94 sequences which are shared among squares. Twenty

sequences are shared between triangles and squares, implying

that 28 sequences in a cycle occur only in a triangle and 74

sequences in a cycle occur only in a square (figure 2b). The net-

work contains many longer cycles of five or more edges, but

none of them is an elementary cycle (electronic supplementary

material, figure S6)—all of them can be decomposed into

triangles and squares.

I next developed an algorithm (see Material and methods)

to ask whether the cycles in the genotype network could

have arisen by chance alone, i.e. from the limited amount

of homoplasy to be expected in independently evolving

sequences. With this algorithm, I created 1000 random

genotype networks, and counted the number of sequences

involved in cycles in them. Among 1000 random genotype

networks of the same size as the largest component of the

HA genotype network, 999 contained no cycle at all, one con-

tained a triangle and none contained a square. Not a single

network contained more than a triangle or square. Similarly,

1000 random networks of the same size as the second and

third largest component did not contain a single cycle. The

number of cycles observed in the HA genotype network

cannot be explained by chance alone.

http://rspb.royalsocietypublishing.org/
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Figure 1. Protein genotype network without redundant sequences. (a) Component size distribution of the HA protein genotype network, where groups of identical
amino acid sequences are represented by only one member. (b) The largest connected component, where circles correspond to sequences, and edges connect
sequences that differ in a single amino acid. The component’s layout is computed by a force-directed algorithm [32]. Larger circles and darker hues of blue corre-
spond to sequences with higher degree (more neighbours). (c) Degree distribution of the entire genotype network. The left-most bar in the histogram includes
isolated nodes with no neighbours as well as nodes with one neighbour. Note the many low-degree nodes.
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(c) Global evolutionary constraints cannot explain
abundant cycles

Because the HA gene is important to the viral life cycle,

its evolution is constrained, i.e. not every amino acid can be

substituted for any other amino acid. To find out whether

such constraints could explain the extent of cycles in the gen-

otype network, I first quantified these constraints. Among the

329 amino acids in the protein coding sequence, 156 vary in

this dataset. On average, each of these 156 sites is involved

in 3.5 change events (edges), but with a distribution that is

broad and ranges from one edge to 16 edges (electronic sup-

plementary material, figure S18a). The total number of

different amino acids that occurs at each variable position

ranges from two to four (electronic supplementary material,

figure S18b), with a mean of 2.67. Positions that are involved

in more change events also harbour significantly more amino

acids (Spearman’s R ¼ 0.74, n ¼ 156; p , 10217).

Next, I created random genotype networks that reflect

these constraints in a conservative way. That is, they are

based on sequences with 156 variable positions, but I assumed

that each position can only admit two different amino acids.

The distribution of the number of sequences that form cycles
in 1000 such random networks is shown in the electronic sup-

plementary material, figure S18c (note the logarithmic vertical

scale). A total of 905 of these networks contain no cycle at all,

and the maximum number of sequences in cycles is 12 for

any of the networks. Not a single random network contains

79 sequences in cycles, as does the largest component of the

actual network. These observations suggest that the abundance

of cycles in the genotype network cannot be explained from

global constraints on sequence evolution.
(d) Squares and triangles reflect two different kinds of
constrained evolution

All triangles involve change at only a single amino acid site

(electronic supplementary material, table S1), as in the example

of the triangle between strains Miyazaki/39/2005, Nagoya/

26/2006 and Osaka/4/2006 (figure 2c), which differ only in

position 222. If the Miyazaki strain is the ancestor of the

other two strains, then the arginine (R) at its position 222

gave rise to a lysine (K) in the Nagoya strain and an isoleucine

(I) in the Osaka strain. Analogous scenarios hold if either the

Nagoya or the Osaka strain are ancestral. This triangular

http://rspb.royalsocietypublishing.org/
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Figure 2. The protein genotype network contains many cycles. (a) The 2-core of the protein genotype’s largest component shown in figure 1. Apparent differences
between the local topologies of the two graphs are a consequence of the embedding algorithm [32]. The 2-core of the entire genotype network contains all 122
nodes that are part of a cycle. Larger circles and darker hues of blue correspond to sequences with higher degree (more neighbours). (b) Venn diagram showing the
number of nodes contained in triangles (48 ¼ 28 þ 20 nodes, left ellipse), in squares (94 ¼ 20 þ 74 nodes) and in both (20 nodes).These numbers refer to the
entire protein genotype network, not just the largest component. (c) An example of a triangle in the protein genotype network. Circles correspond to HA sequences
from strains whose names are shown above each circle. Edges are labelled with the amino acid difference between two neighbouring strains, e.g. K222I indicates
that strain Nagoya/26/2006 contains lysine (K) at position 222, whereas strain Osaka/4/2006 contains isoleucine (I) at that position of the HA amino acid sequence.
(d ) A square in the genotype network. Note that amino acids at two positions (159 and 226) change in this square. The amino acid differences are read from the
left node to the right node in each sequence. (e) The topology of a subtree of the maximum-likelihood HA phylogeny from the electronic supplementary material,
figure S13, containing the four different influenza isolates from (d ). Each tree branch connecting two nodes corresponds to exactly a single amino acid change
(dashed arrow). The dashed line at the root would connect this clade to the much larger HA sequence tree.
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pattern of change reflects strongly constrained sequence evol-

ution: out of all possible positions that could have changed in

the common ancestor, only one did change.

Figure 2d illustrates that squares also reflect a pattern of

constrained evolution, but of a different kind that leads to tem-

porary sequence convergence. If Mae Hong Son/33/2003 is the

most recent common ancestor of its two neighbouring strains,

then it underwent a valine to isoleucine substitution at position

226 (I226V), which created strain Singapore/95/2003, as well

as a tyrosine to phenylalanine substitution at position 159

(Y159F), which produced strain Ukraine/UA-2003918069/

2003. Thus, unlike in a triangle, two different positions

changed in the ancestor. Then either the Singapore strain

underwent the same Y159Y change involved in creating

the Lipetsk strain or the Ukraine strain underwent a I226V

change (or both kinds of changes occurred). Regardless of

this order, and regardless of which strain is the common
ancestor of the others, the characteristic pattern is that its des-

cendants temporarily become more similar to one another,

such as the Lipetsk strain which differs in only one amino

acid from the Ukraine strain, whereas its Singaporean ancestor

differs in two amino acids from the Ukraine strain. This tem-

porary sequence convergence characterized by the same two

substitutions on opposing edges of a square (figure 2d) exists

for all but one square (electronic supplementary material,

table S2). This only exception is a square where sequence

change occurred at only one site (electronic supplementary

material, figure S7), but this square is really just a composite of

two triangles. I note that a square cannot involve substitutions

at more than two positions, because that would make cycle-

closure after four edges impossible. Figure 2e illustrates

how the group of four strains from figure 2d would appear

in a maximum-likelihood phylogenetic tree of the HA

sequences considered here (electronic supplementary material,

http://rspb.royalsocietypublishing.org/
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figure S13). The four-strain subtree correctly captures the single

amino acid change that separates the pairs of isolates Lipetsk-

Ukraine, Lipetsk-Singapore and Singapore-Mae Hong Son, but

it incorrectly suggests that Lipetsk-Mae Hong Son are two

amino acid changes apart, whereas they actually differ in

only one amino acid. Other instances of squares would show

the same misleading phylogenetic topology.

(e) Cycles are enriched with changes in epitopes
HA sequences are subjected to positive selection of beneficial

mutations [35–39] that frequently occur in antibody-binding

epitopes whose mutational change helps a virus evade the

host’s immune response [7,40]. Such changes are also

involved in the HA genotype network, because amino acid

change in this network is almost twice as likely to occur in

an epitope than outside an epitope (electronic supplementary

material, figure S8; p , 4 � 1023). More importantly, epitope-

affecting changes are especially prevalent in cycles. That is,

significantly more amino acid changes in cycles affect epi-

topes than outside cycles. This difference also holds for

triangles and squares when they are considered separately

(electronic supplementary material, Supplementary Results).

( f ) Tolerable or beneficial mutations are especially rare
in cycles

A frequently used indicator of positive selection in protein-

coding DNA is the ratio dN/dS of non-synonymous changes

dN per non-synonymous site and synonymous changes dS

per synonymous site [37–39,41–45]. Using it to identify

whether individual amino acid changes have been beneficial

is not straightforward. First, only in highly divergent

sequences does a ratio dN/dS . 1 indicate positive selection

[37,43]. In sequences with low divergences like those con-

sidered here, positive selection can be at work even if dN/dS

is significantly smaller than one. Second, neighbouring

sequences in the genotype network differ in only a single

amino acid and often show no synonymous change (electronic

supplementary material, figure S9), such that this ratio cannot

even be determined for many individual amino acid changes.

These considerations show that any analysis of dN/dS needs to

focus on groups of edges in this genotype network. If one con-

siders all amino acid changes in the network, one finds more

than 100 edges (117 of 539, 21.7%) in the genotype network

where an amino acid change occurred without any synon-

ymous change, suggesting that positive selection occurred at

least in some of the sequences considered here.

In closely related sequences, the relative incidence of

synonymous changes to amino acid changes can be useful to

indicate the average time between occurrences of tolerable or

beneficial amino acid changes. Many synonymous changes

per amino acid change indicates a long waiting time. Under

neutral evolution, the expected number of synonymous

changes per amino acid change in the dataset considered

here is approximately 0.36 (+0.02 s.e.m; see Material and

methods). The mean number of synonymous changes per

amino acid change in the whole network is much higher at

2.12 (+0.08 s.e.m, n ¼ 539). What is more, this number is

even higher for edges in cycles (2.51+0.16 s.e.m, n ¼ 180),

and it is lower for all edges outside cycles (1.93+0.09 s.e.m,

n ¼ 359), a difference that is significant ( p ¼ 0.0089, Mann–

Whitney U-test, electronic supplementary material, figure
S10a). Even in the edge with the lowest synonymous distance

within any one cycle, this distance is significantly greater

than that of comparable edges outside cycles (electronic sup-

plementary material, figure S10). In summary, tolerable or

beneficial mutations are rarer in cycles than in the rest of the

network. An additional pertinent observation is that cycles

are enriched with codons experiencing amino acid change

through double or triple nucleotide change, and the HA

sequences in which these codons reside also show greater

synonymous divergence (electronic supplementary material,

figures S11, S12).

(g) Highly central strains and bridge strains reflect the
trunk-like genealogy of haemagglutinin sequences

Phylogenetic trees of evolving HA sequences have a trunk-like

structure: relatively few sequences in the trunk propagate the

lineage further, whereas sequences in side branches are evol-

utionary dead-ends [39,46–48]. This topology is responsible

for a disassortative network organization (electronic supple-

mentary material, figure S2). One can quantify the ‘trunkness’

orcentrality of a sequence through the graph-theoretical concept

of a node’s betweenness centrality B—the number of shortest

paths connecting pairs of nodes that pass through that node.

Figure 3a shows the largest component of the HA genotype net-

work where the most central strains (electronic supplementary

material, table S3) are highlighted. The most central strain is

Taiwan/TW-1554/2004, with B ¼ 20020 shortest paths passing

through it, followed by Okayama/15/2005 (B ¼ 17 528 paths)

and Osaka/18/2006 (B ¼ 15 213 paths). These strains form

part of the trunk of the HA phylogeny, giving rise to many des-

cendants in the HA phylogenetic tree (electronic supplementary

material, figure S13).

The more surviving descendants a virus leaves—the higher

its number of neighbours in a genotype network—the greater

should be the likelihood that it is a trunk strain, because

chances are greater that one of its descendants propagates

the lineage further. The quantitative analysis of figure 3b
supports this assertion by showing that strains with many

neighbours are significantly more central (Spearman’s r ¼
0.91, p , 10217, n ¼ 246). But more remarkable than this rule

are its exceptions, because several central strains have few

immediate neighbours. These include the strains Osaka/18/

2006, ranked third in terms of centrality, but having only six

neighbours, as well as Lipetsk/15/2004 (rank 5, eight neigh-

bours), Hong-Kong/2982/2004 (rank 9, two neighbours),

Perth/20/2005 (rank 10, three neighbours). Because such unu-

sual strains visibly link major clusters of sequences, I refer to

them as bridge strains (see also the electronic supplementary

material, table S3). That all these bridge strains are mere arte-

facts of undersampling in time or space is possible, but made

less likely by the observation that: (i) sampling in time for the

sequences shown in figure 3a is quite even, ranging from

113 isolates in 2002 to 173 isolates in 2006; and (ii) three of

the four bridge strains above come from the top four (out

of 53) sampled countries Japan, China and Australia. That

such strains bear some biological significance is also suppor-

ted by the observation that highly central and bridge strains

(B . 2500 and degree � 10) are significantly enriched in

cycles and, more specifically, squares (figure 3c,d; p , 10217;

Mann–Whitney U-test). Such enrichment does not exist for tri-

angles ( p . 0.29). Central and bridge strains thus show an

elevated incidence of convergent evolution (see electronic

http://rspb.royalsocietypublishing.org/
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Figure 3. Central sequences in the genotype network include some bridge sequences with few neighbours. (a) The largest connected component of the genotype
network, where circles correspond to sequences, and edges connect sequences that differ in a single amino acid. The topology of this network is the same as that of
figure 1b, apparent differences being a consequence of the embedding algorithm [32]. Circles in purple correspond to those 11 sequences in the largest component
of the protein genotype network whose betweenness centrality exceeds 2500, i.e. those sequences through which the most shortest paths between other sequences
must pass. The component’s layout is computed by a force-directed algorithm [32]. (b) Scatterplot of betweenness centrality B for strains where B . 0 (horizontal
axis) versus their number of neighbours (vertical axis). Note the logarithmic scale on each axis. A few strains have high betweenness centrality but relatively few
neighbours. The names of three such bridge strains are written immediately underneath the three circles representing their centrality and degree. (c) Mean
(+s.e.m.) of betweenness centrality for sequences that are part of a cycle (left) and not part of a cycle (right). (d ) Mean (+s.e.m.) of betweenness centrality
for sequences that are part of a square (left) and not part of a cycle (right). The differences are highly significant in both cases ( p , 10217; Mann – Whitney U-
test), showing that sequences in squares tend to be central.
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supplementary material, supplementary results for their

possible biological significance).
3. Discussion
The HA genotype network differs in a major respect from

phylogenetic trees—those acyclic graphs used to describe
groups of sequences related by descent—because cycles

permeate this network. For example, the diameter of the

subgraph formed by those strains that are part of a cycle

(figure 2a) equals nine edges, only one fewer than the

whole network’s diameter of 10 edges, which implies that

one can traverse almost the entire network along cycles.

Most of these cycles are squares, which reflects an extent

of sequence homoplasy that can neither be explained by

http://rspb.royalsocietypublishing.org/
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chance alone nor by global constraints on sequence evolution

(electronic supplementary material, figure S18). All observed

cycles are very short and involve change at only one or two

sites, which suggests that sequences in a cycle can experience

very few tolerable or beneficial amino acid changes. This is

further underscored by the observation that some amino

acid sites are involved in multiple homoplastic cycles, such

as site 50, which is involved in seven different squares

(electronic supplementary material, table S2). The limited

overlap between sites that undergo homoplastic change

here and in previous studies further highlight this sequence

context specificity [39,41,42]. For example, among the 25

sites reported by Kryazhimskiy et al. [41] to have undergone

directional evolution, a form of homoplasy, only 13 are impli-

cated in such change here, and among 11 sites reported

by Wolf et al. [39], only two are implicated in this dataset.

(All of these common sites are part of an epitope.) More gen-

erally, the genotype network approach reveals the extent of

homoplasy to be more extreme than hitherto realized. Pre-

vious analyses indicated homoplastic changes between leaf

sequences on different branches of a HA phylogenetic tree,

usually separated by multiple further additional amino acid

changes [39,41,42], but convergent changes in this dataset

occur in the same square, only one amino acid change

apart. I note that the amino acid changes that occur in squares

are suggestive of epistatic interactions [13,42,49–52], which

demonstrably exist in influenza HA evolution [42] and can

be a source of homoplasy.

Is the observed homoplasy only caused by extremely few

tolerable amino acid changes, or do positive selection and ben-

eficial mutations contribute to it? Positive selection is pervasive

in HA evolution [35–39,41,44,53]. Unfortunately, one promi-

nent criterion to detect it, a ratio dN/dS . 1 is only valid for

sequences much more distantly related than those considered

here [43], whose pairwise nucleotide divergence of 3.22 �
1023 is similar to that within a single influenza outbreak

(3.4 � 1023) [54]. For such lowly diverged sequences that coex-

ist in the same population, the ratio dN/dS can be significantly

lower than one, yet positive selection may be rampant [43].

However, at least some of the homoplastic changes observed

here are likely to be beneficial, because, first, 32 of 117 edges

(27.3%) that involve no synonymous change at all occur in

cycles. Second and more importantly, amino acid changes in

cycles are significantly more likely to affect epitopes than

changes outside cycles (electronic supplementary material,

Supplementary Results). Given past observations on the associ-

ation of beneficial changes with epitopes [37,39,41,53], this

observation is not consistent with the notion that homoplasy

occurs only because of increased selective constraints.

In principle, the rate of antigenic evolution in influenza

could be limited by the rarity of mutations that cause anti-

genic change [31,39,47], or by immune-mediated selection

in the host. In the latter case, only a limited number of

antigenic types exist, which circulate in a population. Tem-

porally changing patterns of host immunity can then cause

different types to rise to prominence over time [55,56]. This

data can speak the question whether mutation limitation con-

tributes to HA evolution, because the ratio dN/dS can help

estimate the waiting times between successive amino acid

changes: if synonymous changes occur according to a mol-

ecular clock, as is the case for influenza [57], then a higher

number of synonymous changes per amino acid change

imply a longer waiting time. It is of particular interest to
study changes in cycles, because such changes are signifi-

cantly associated with epitopes (electronic supplementary

material, Supplementary Results). Based on the significan-

tly higher average number of synonymous changes inside

than outside cycles (electronic supplementary material,

figure S10, 2.51 versus 1.93, or 2.54 � 1023 and 1.96 � 1023

per nucleotide site), and given an estimated 3.4 (+1.1 �
1023) [57] silent changes per site per year, the expected waiting

time between two amino acid changes is 273 days inside cycles

and 210 days outside cycles. Moreover, the HA sequences with

non-synonymous codons that carry double nucleotide changes

have a higher number of 3.17 (+0.38 s.e.m.) synonymous

changes than HA sequences where these codons experienced

only a single nucleotide change (2.05+0.08 s.e.m.), a difference

that is significant ( p ¼ 0.002; Mann–Whitney U-test) and

that amounts to an increase in the expected waiting time of

54% (from 223 to 344 days). These observations suggest

that mutation limitation plays some role in HA evolution.

The episodic occurrence of beneficial mutations [39,47,58] and

results from recent epidemiological modelling [47,48] also sup-

port this notion.

Genotype networks and phylogenetic trees are graphs with

complementary strengths for the analysis of evolutionary data.

First, phylogenetic analysis uses sophisticated algorithms [29]

to infer a tree’s structure from data on its leaf nodes, whereas

the structure of a genotype network immediately follows

from the raw data. Second, in a tree the genotype of interior

(ancestral) nodes need to be inferred probabilistically [29,30],

whereas in a genotype network these nodes are plainly visible.

Third, a phylogenetic tree has inherent ancestor-descendant

directionality, which would need to be inferred in a genotype

network. Fourth and conversely, although phylogenetic

analysis can detect homoplasy [39,41,59], homoplasy is a con-

founding factor in tree reconstruction and not readily visible

from a tree itself, whereas cycles make homoplasy plainly

visible in a genotype network. Fifth and finally, trees are

well suited to study evolutionary relationships of sequences

with arbitrarily high divergence, whereas genotype net-

works would be highly fragmented and thus of limited use

for such sequences. But once abundant data on closely rela-

ted sequences are available, genotype networks become

highly useful tools to understand evolutionary processes at

fine-grained temporal resolution.
4. Material and methods
I obtained DNA sequences and the amino acid sequences they

encode for 1565 influenza A HA genes from the National Center

for Biotechnology Information (NCBI; www.ncbi.nlm.nih.gov),

using database accession numbers published in table S1 of [31].

These sequences come from influenza A (H3N2) isolates obtained

worldwide between 2002 and 2007. Their antigenic properties,

identified through HA inhibition assays, were reported and ana-

lysed in [31]. I aligned DNA and amino acid sequences with the

program MUSCLE [60] using default parameters. The resulting

alignments contained no gaps. To build a genotype network of

amino acid sequences from this alignment, I defined a graph

(V,E) whose set of nodes V comprises all genotypes (amino acid

sequences), and where two nodes v and w are connected by an

edge (v,w) in the set of edges E if they differ in exactly one

amino acid. A cycle is a sequence of edges in a graph that returns

to the sequence’s starting node, but does not visit any node or

edge more than once. I computed the number of nodes that are

part of a cycle, and performed all other graph computations

http://www.ncbi.nlm.nih.gov
http://rspb.royalsocietypublishing.org/
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and visualizations with the aid of the perl package GRAPH

(v. 0.94; www.cpan.org), as well as with gephi (v. 0.8.2) [61].

I associated each HA sequence in the network with information

about its year and country of isolation, which I extracted from

the annotated sequence files in table S1 of [31], and analysed categ-

orical data with the aid of the R package ‘vcd’. Methods are

described in greater detail in the electronic supplementary

material, Supplementary Methods.
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