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ABSTRACT 
The influence of epistasis on the evolution of reproductive isolation by peak shifts is studied in a 

two-locus  two-allele model of a quantitative genetic character under stabilizing selection. Epistasis is in- 
troduced by a simple multiplicative term in the function that maps gene effects onto genotypic values. 
In the model with  only additive effects on  the trait, the probability of a peak shift and the  amount of 
reproductive isolation are always  inversely related, i .  e . ,  the  higher the peak shift rate,  the lower the  amount 
of reproductive isolation caused by the peak shift. With epistatic characters there is no consistent rela- 
tionship between these two values. Interestingly, there  are cases where both transition rates as  well  as the 
amount of reproductive isolation are increased relative to the additive model. This effect has two main 
causes: a shift in the location of the transition point, and the hybrids  between the two alternative optimal 
genotypes have  lower  average  fitness in  the epistatic case. A review  of the empirical literature shows that 
the fitness relations resulting in  higher peak shift rates and more reproductive isolation are qualitatively 
the same  as those observed for genes causing hybrid inferiority. 

F OR sexually reproducing populations, speciation 
consists  in the acquisition of genetic differences 

that cause reproductive isolation of one such population 
from other populations. Of  all the possible modes of 
speciation genetic differentiation of isolated popula- 
tions seems to be prevalent in animals [MAYR (1942) ; see 
also COYNE (1992) for  a  recent review]. In this report, we 
consider  a scenario in which a small population gets 
separated from the main population without undergo- 
ing  a  founder event or several crash/flush cycles.  We 
further assume that genetic differentiation is mainly 
caused by random  drift, i . e . ,  there is no difference in 
selection on  the main population and the  daughter 
population.  In this case, genetic differences are  either 
neutral  and  therefore irrelevant for speciation, or they 
constitute transitions among adaptively equivalent geno- 
types. In the  latter case, the  population has to cross an 
adaptive valley (a “peak shift” occurs) (WRIGHT 1952). 
Such a transition event will cause a reproductive barrier 
between the source population and its isolate. This is 
because not all  of the possible hybrid and back  cross 
phenotypes can be adaptively optimal, otherwise the dif- 
ference would be neutral. 

Genetic analysis  suggests that initial stages  of  specia- 
tion may be caused by a small number (mostly pairs) of 
interacting loci (ORR 1987,  1989; ORR and COYNE 1989). 
Therefore, peak shifts among alternative genotypes are 
likely to involve  only few genes, if genetic differentiation 
is due to drift. We model this process in the framework 
of a two-locus  two-allele model. We  will  ask  how the ge- 
netic architecture influences both,  the  rate of transition 
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between alternative optimal genotypes as  well  as the 
amount of reproductive isolation  between those 
genotypes. 

Considerable effort has been devoted to obtaining es- 
timates of the peak-shift rates by modeling specific  evo- 
lutionary scenarios (BARTON and CHARLESWORTH  1984; 
BARTON and ROUHANI 1987; LANDE 1985). In principle, 
two kinds of models can be distinguished: In  “pheno- 
typic” models distinct phenotypes can occupy  local 
maxima in the fitness landscape. In “genotypic” models, 
on the  other  hand, different combinations of genes may 
lead to the same, optimal phenotype. The model studied 
below is an example for the  latter kind of models. 

Assumptions about modes of interactions between 
gene effects are essential for genotypic models. The 
most elementary of these assumptions is that  genes have 
linear (additive) effects on the genotypic value  of a 
quantitative character. Peak-shift scenarios under the as- 
sumption of purely additive gene effects  have been ex- 
tensively studied (LANDE 1985; FOLEY  1987; BURGER 1988; 
CHARLESWORTH and ROUHANI 1988; BARTON 1989a). 
BARTON (1989a),  for example, showed that peak  shifts 
can occur at  an appreciable rate,  although  the  amount 
of reproductive isolation obtained  per peak shift is small. 
The overall rate of accumulation of reproductive isola- 
tion has been estimated to be of the  order of the 
mutation rate. 

To what extent  the slow pace of evolution predicted 
by additive models carries over to epistatic models is 
unclear  [for  a review,  see BARTON (1989b) 1. The discus- 
sion is  mostly framed in terms of the contrast between 
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type I architectures, where many genes have approxi- 
mately  additive  effects, and type I1 architectures, where 
there  are few genes with strongly epistatic effects and 
many “modifier” loci. The results are difficult to gen- 
eralize, since there  are countless many ways to model 
epistatic gene interactions. In  the  present  paper we con- 
centrate on  an epistatic model of a quantitative charac- 
ter under stabilizing selection. The relative strength of 
epistasis can be adjusted by changes in one parameter 
(see below). Thus,  a one parameter class of models with 
different  degrees of epistasis in  the quantitative  char- 
acter is defined.  This class includes  a purely additive 
case. A member of this class which shows a  high  rate 
of evolution of reproductive  isolation is analyzed in 
detail  and  compared  to  the  additive case. A  compari- 
son of this member to data  about  genes causing  hybrid 
inferiority suggests that  it is representative of many 
genes involved in the  emergence of reproductive 
isolation. 

THE MODEL 

We consider a diploid randomly mating population 
with overlapping generations  that is either dioecious or 
monoeciouswith the same pattern of selection acting on 
both sexes. Heritable fitness differences  are assumed to 
be due to the variation in one quantitative character P. 
No genotype-environment interaction is assumed to  be 
present, such that  the genotypic value G and  the 
environmental contribution E are  independent: 

P =  G + E .  (1) 

The environmental effect E is supposed to be normally 
distributed with mean zero and variance one. 

Selection is supposed  to  be stabilizing with P = 0 as 
the  optimal  phenotype. More precisely, we assign to 
each  phenotypic value P a  fitness value mp( P )  , defined 
as 

m,(P) = 1 - SPZ, (2) 

where s denotes a  measure  for  the  strength of stabi- 
lizing selection. However, since the  environmental ef- 
fect E is assumed  to be  superimposed  onto G, it is 
necessary to evaluate the  mean  fitness m( G )  of a  geno- 
type with genotypic value G. By using (2) and  the 
above assumptions about  the  distribution of E, %( G )  
becomes 

= 1 - s - sG2. 

Because the selection dynamics with overlapping  gen- 
erations is invariant  to  the  addition of a  constant  to 
the fitness, we can  ignore  the  term s in %( G ) .  

Furthermore, we assume that  the genotypic value G of 
the quantitative character under consideration is deter- 
mined solely by the genetic composition of  two loci X 

and Y, with two alleles each: X, and X, at locus X and Yo 
and Y, at locus Y.  Contributions  to G by the underlying 
variables  which are influenced by locus X are  denoted 
by the lowercase letters x,, x,, x, for genotypes &Xo, 
XoX,and XIXI, respectively. An analogous notation is 
used for  contributions y k + ,  of the genotypes YkYl at 
the locus Y. The genotypic values for the underlying 
variables are arbitrarily chosen to be x, = yo = 3, 
x, = y1 = 2 and x, = y2 = 1. Additionally, we suppose 
that  there exists a smooth function g( x,y) of the  under- 
lying  variables x and y which determines the geno- 
typic  value G, G := g( x, y ) .  In this paper we  will be 
concerned onlywith two special cases  of such a  function, 
a  linear (additive) one, and a “mildly” non-linear 
(epistatic) one. 

The linear  function g, is given by g, (x, y ) : = e, + cIx + 
c g ,  c,, c, and c, being arbitrary real numbers. To specify 
the coefficients ci in the above functions, we introduce 
the following three assumptions. First, since we want to 
study the transition between alternative genetic adap- 
tations, it is assumed that two complementary double 
homozygous genotypes have the same genotypic value 
zero, i. e . ,  g, ( x,, y,) : = 0 and g, (x,, yo) : = 0. Further, we 
assume that the contributions of the loci are symmetrical, 
i.e., 9 = I+ These  assumptions specify the additive  geno- 
type phenotype map up to a multiplicative  constant: 

g,(x, y) := c (x + y - 4). (44  

Since  fitness  only depends on the product of s t  the con- 
stant c can be chosen  arbitrarily  without loss  of generality 
a s c =  1. 

As a  model of the epistatic  genotype  phenotype  map 
g2( x, y)  we use a  modification of GIMELFARB’S (1989) 
additive/multiplicative  model, which one  obtains by 
adding a multiplicative term to the additive model: 

g,(x, y) = g,(s y) + 4 x 9  9 7  

where 

v(x, y) = c, xy + e,. 

Since we want  to  maintain that  the two complemen- 
tary double homozygous genotypes have the same ge- 
notypic value zero in order to have the same optimal 
genotypes in both models, the  interaction  term u( x, y) 
has to  be  zero  for  these two genotypes too. This 
specifies its coefficients up to  a multiplicative con- 
stant: u( x, y) = b( xy - 3) .  In the resulting  model for 
the epistatic  character 

g,(x, y) := c’(x + y - 4) + b (xy - 3)  

the  strength of  epistasis is determined by the  ratio P = 
b /c ’  . It is thus convenient to rewrite g2( x,y) as 

g,(x, y) := c’[(x + y - 4) + P (q - 3 ) ] .  (4b) 

As in the  linear  model, e‘ only enters  the fitness as set*, 
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( 4  

Mz yoyo  YOYl  YlYl 
XoXo 1 - 4 ~ ( 1 +  3P)' 1 - s(1 + 3P)' 1 
XoX1[ 1 - s ( l +  3P)Z 1 - spz 1 - $1 + P ) Z  

XlXl 1 1 - ~ ( l  + P)z  1 - 4 ~ ( 1 +  P)' I 
x.x,[l-gs 1-T 1 - ;  
XIXl 1 1"; 1-48 3 

( 4  

Mz Yoyo  YoYl  YlYl 
XoXo 1 - 3 6 s  1-9s 

FIGURE 1.-Genotype  and  fitness  values. (a) Genotype  val- 
ues, G,,  for an additive  character G, resulting  from (4a), or 
from (4b) with p = 0 ( c  = 1). (b) Genotype  values, G2, for  an 
epistatic  model  resulting from (4b) ( c  = 1). ( c )  Fitness  matrix 
M2 resulting  from (4b) ( c = 1) .  (d) Fitness  matrix M2, as in ( c )  , 
but for p = -%. See text for details. 

and can be  treated as an arbitrary constant c' = 1 without 
loss  of generality. The factor /3 defines a class  of models 
where the  amount of  epistasis in the geno- 
type-phenotype map  depends  on  the  parameter p 
(N. BARTON, personal  communication). 

The resulting matrices for genotypic values, G, for  the 
additive model ( p  = 0) and G, ( p  # 0) for  the epistatic 
model,  are shown in Figure la  and  lb, respectively. A p  
plying (3) to  the genotype matrices G, : = (g',") and 
G2 := (g';)), and setting the maximum fitness equal to 
one, we obtain  a set of fitness matrices denoted as Mk = 
(ml,k)),where ml,k) = 1 - s,(g',))>' ( k E ( 1 ,  21, i , j € { O ,  1, 2)). 
M2 is depicted in Figure IC. 

Note that we use here a  coeffkient sk instead of s to 
specify the intensity of  stabilizing selection. Since the 
additive and the epistatic character model lead to dif- 
ferent average  allelic  effects, they also lead to different 
selection intensities at  the genic level. When these two 
models are going to  be  compared, these differences 
have to be taken into  account. Since there  are several 
ways to correct  for these effects, we  will maintain dif- 
ferent coefficients for  the selection on the additive and 
the epistatic character. 

For investigating the selection  forces that act on 
the  gamete  frequencies we  will use the following 
standard  model of ordinary  differential  equations 

(CROW and K~MURA 1970). 

p ,  = - dP1 = p,(m(J) - - ( j )  

dt m ) - a + P(A + h - (54 

p;, = - d A  = &(X$) - d j j )  + rD + p(p, + p4 - 2A) (5b) 

p; = - = p (  dP3 ( j ) -  , m3 d j j )  + + p(p, + p, - 2 ~ 3 )  (5c) 

dt 

dt 

dP4 p, = 2 = P4(my' - &'I) - rD + I*.(& + p, - 2p4), (54 

where p,, p,, p,, p ,  denote  the  frequencies of gametes 
&Yo, &Y,, X ,  Yo, X ,  Y,, respectively. Linkage disequilib- 
rium is denoted by D := p,p4 - p& and  the recombi- 
nation  rate between loci is denoted by r. Forward and 
backward mutations  at each locus are assumed to occur 
at the same frequency, p.  Furthermore, 

4 

m(i) : = x mWp 
kl 1 (6) 

1= 1 

is the marginal mean fitness of the  gamete pk ,  and 

4 
~ ( j )  = x m ( j )  

k P k  (7) 
k= 1 

represents  the mean fitness of the  population. 
Certain restrictions apply to the usage  of equations 

(5) (CROW and KIMURA 1970; CHARLESWORTH 1970). First, 
selection has to be weak  with no  dominance in the 
death rates and small differences  in the  birth rates. 
Furthermore  it is assumed that  the  interaction be- 
tween mutation  and selection  can be  neglected, al- 
lowing for  an additive  contribution of the  change of 
pi  due to  mutation to the total change of p,. Also, in a 
continuous time model the parameter ris in  fact the prod- 
uct  of the recombination hction and the birth rate of the 
double heterozygote. Therefore, r 5 0.5 need not neces 
sarily hold. 

The results are  presented in four parts: first, the struc- 
ture of the fitness matrices resulting from the assump 
tion of  epistasis on the  character will be discussed, which 
leads to the identification of a special case that is ana- 
lyzed in detail; second,  the  amount of reproductive iso- 
lation between alternative optimal genotypes is calcu- 
lated and compared to the additive  case; third,  a 
deterministic analysis  of the epistatic model sets the 
stage for  a numerical estimation of the rates of peak 
shifts  between alternative genotypes, which is the  fourth 
part of the results. 

RESULTS 

Qualitative  comparison  between  additive  and  epi- 
static  character  models: Epistasis  is introduced as a mul- 
tiplicative term in the  function g specifying the genetic 
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effects on the variation of the quantitative character. 

g, (xty) : = (x + y - 4) 

gZ(x,y) := [(x + y - 4) + - 311. 

The parameter p regulates the  strength of  epistasis at  the 
character level such that  the additive model can be con- 
sidered a special  case ( p  = 0) of the epistatic model. 
Epistasis on the level  of the quantitative character is to 
be distinguished from epistasis in fitness. Whereas in the 
additive model there  are only additive effects  of the ge- 
netic level on the quantitative character,  the  quadratic 
fitness function we use to model stabilizing selection in- 
troduces negative  epistasis  in fitness, E < 0. The measure 
for  the  amount of  epistasis we use here is the coefficient 
of  epistasis  in fitness, E := rn, - m2 - m, + m4, intro- 
duced by CROW and KIMURA (1970). (Note  that this E 
differs from the E in (l).) The epistatic model, on  the 
other  hand,  incorporates epistasis  also on the level  of the 
character, such that  an increase in I p I leads to  an in- 
crease in  epistasis on this  level. The outcome in terms of 
the  amount of epistasis  in fitness is no longer  a mono- 
tonic function of p, as  can be seen from Figure 2, which 
shows the coefficient of  epistasis E in fitness as a  function 
of the  parameter p. It indicates that for /3 = 0 (additive 
character) epistasis for fitness is strong ( E  # 0) and  that 
it approaches zero from below,  as p approaches -0.4 
(for p ,  = X). For p > -0.4 it deviates from zero again. 
For  positive  values of 0, I E I always increases. 

For all  values of /3 the two homozygous genotypes 
&&Yl Yl and XIX, Yo Yo have the highest fitness mZ2 = 
m33 = 1. Further, in the case of an additive character,  the 
double heterozygous genotype also has maximal fitness. 
This is the genotype of the F, hybrid between the alter- 
native optimal genotypes. Whenever p is unequal to 
zero, the double heterozygous genotype is  less fit than 
the two optimal homozygous genotypes. 

The fitness matrix in the additive character model is 
symmetric. In particular, m22 = m3, = 1 and ml, = m44 
< 1 holds. As epistasis is introduced, this symmetry of m,, 
and m44 does in general  not hold. For /3 E (- ?4, O ) ,  m44 
< mll and for /3 < -%, m44 > m,,. Interestingly, for fJ = 
-%, mll  = m44 as in the additive case, and the fitness 
landscape for this parameter value resembles the fitness 
landscape with an additive quantitative character. Most 
importantly, the fitness of mIl or mq4 (depending  on P )  
can be larger than  the fitness of the  double heterozygous 
genotype (Figure 3). Consider, for example, the differ- 
ence between m44 and mI4, m,, - m14. This value is larger 
than zero in the interval -2 5 p 5 -%; it is maximal 
for p = "$4. Similarly, there exist  values for p for which 
m,, is larger than  the fitness of the  double heterozygote 
genotype. Hence,  depending on /3 there may be geno- 
types intermediate to the two alternative optimal geno- 
types,  which  have higher fitness than  the F, hybrid. This 
means that  the fitness valley  which has to  be crossed to 

E 

FIGURE Z.-Coef€icient of epistasis in fitness E as  a function 
of p, The coefficient of epistasis  in fitness, E (CROW and KIMURA 
1970), defined as m, - m2 - m3 + m, is  shown  as  a function 
of p in the center of the simplex ( p ,  = p2 = p3 = p ,  = ?A). It 
is closest to zero for /3 = -0.4. Note that, since the fitness 
function used is nonlinear, E for a completely additive  char- 
acter ( p  = 0) is not equal to zero. 

reach the alternative genotype can be less deep than  the 
fitness  valley in which the hybrids are located. Below, we 
will use the special case  of g2( x, y)  with p = -% as  ex- 
ample for  the deterministic analysis and  the Monte- 
Carlo simulations. This case will  allow us to demonstrate 
most clearly the difference between the additive char- 
acter case and the epistatic character case. The fitness 
matrix M2 for p = -% is shown in Figure Id. 

One  further  remark seems appropriate. The existence 
of genotypes with high fitness between the alternative 
homozygous genotypes does  not imply that  there is no 
adaptive valley separating them. For instance, in the case 
of an additive character under stabilizing selection, the 
double heterozygous genotype has maximal fitness. 
However, there exists an adaptive valley between the two 
optimal homozygous genotypes, because the offspring 
of double heterozygous individuals have a high segre- 
gation variance and  therefore low average  fitness under 
stabilizing selection. The existence of intermediate 
genotypes with high fitness alone is therefore  not 
sufficient to predict how  easy an alternative optimum 
genotype can be  reached. 

The amount of reproductive isolation: In this section 
it is discussed  how  epistasis in the  character influences 
the  amount of reproductive isolation between the alter- 
native optimal genotypes. Since our model is based on 
viability selection, only the evolution of  postzygotic  iso- 
lation can be considered here. In this case, the  amount 
of gene flow between partially isolated populations de- 
pends on the intensity of selection against hybrids. We 
analyze the fitness of the Fl hybrids and the genotypes 
that result from back  crosses B into  one of the  parental 
populations. These values directly measure the selection 
against the most frequent hybrid genotypes (F, and B) . 
An alternative would be to use the mean fitness of  a 
hybrid population  interbreeding  among themselves 
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P 

FIGURE 3.4omparison of fitness ofF, hybrid ( m29) with m,, 
and m44. The  difference  between m,, or mW, whichever is 
larger,  and  the  fitness, ?,, of the F, hybrid  between  the  two 
optimal  genotypes, Le. ,  ma%( m,,, m,,) - ?s, is  shown  as a 
function of p. Positive  values  indicate  that  there are genotypes 
intermediate between  the two alternative  optimal  genotypes 
which  have higher  fitness  than  the F, hybrids.  These are the 
cases  where  the  population  has to cross an adaptive  valley 
which is less deep than  the  fitness of the  hybrids. For ad- 
ditive  characters,  this  value is zero.  In  the case of p = -%, 
m,, is maximal  compared  to  the  hybrid  fitness,  and  the  dis- 
crepancy  between  the  adaptive valley and  the  hybrid  fitness 
is largest.  This is also  the case  which is analyzed in detail 
below. 

(BARTON 1989a). However, hybrids usually do  not exist 
in isolated populations, but are  part of a hybrid zone 
interbreeding with the two parental populations. Gene 
flow between parental  populations is caused by matings 
between hybrids and members of the  parental popula- 
tions (back crosses). We therefore think that  the fitness 
of hybrid genotypes is a more  adequate measure of re- 
productive isolation than  the mean fitness of a isolated 
hybrid population. 

Because the two alternative adaptive genotypes are 
the  double homozygous genotypes X,X,YoYo and 
%XoY,Y,, the F, hybrids are  the  double heterozygous 
genotypes X,,X,YoY,. For the additive character  model, 
these genotypes have always the same genotypic values 
as the optimal ones. In  the epistatic case, the  mean fit- 
ness in the F, generation is 1 - s$‘, because the epistatic 
effects cause a displacement from the  optimum of the 
mean  phenotype of the F, hybrids. The mean fitness of 
the back  crosses B with one of the  parental populations 
depends  on  the  recombination  rate, because the F, hy- 
brids produce all four possible gametes by recombina- 
tion. Consequently, four genotypes have to be taken into 
account  to estimate selection against the back  cross 
genotypes with,  say, the  population consisting of 
X , X ,  Yo Yo genotypes: 

?E@) = - 
l - r  l - r  r r 

2 m z Z + ~ m z , + p i + p .  

For the additive character case the  mean fitness of  back 

crosses is 

and in the epistatic case it is 

In  both cases, recombination between the two interact- 
ing loci increases the  amount of reproductive isolation, 
because it produces  unbalanced genotypes. Further- 
more, if s, = s, the  mean fitness of the back  cross geno- 
types  is  lower in the case  of an epistatic character  than 
for an additive character, whenever /3 > 0 or /3 < -S/(l 
+ 9r). For /3 = -% the  mean fitness of the back  cross 
genotypes is 

? q B ) = l - %  - + -  (: ‘:3 
which is much less than  for additive characters, even  if 
s, is larger than s, by a factor of four to five. 

Both the Fl hybrids and  the back  crosses are less fit in 
the epistatic case than in the additive model. Conse- 
quently, for a wide range of values of the ratio sl/s2, the 
amount of reproductive isolation caused by peak shifts 
is higher in the epistatic character model than in the 
additive character model. 

Deterministic analysis: The fitness matrix M, gener- 
ated by the genotype matrix G, is a special  case  of the 
fitness matrix of the so-called  symmetric  viability model, 
which has found considerable attention since it has been 
first investigated by WRIGHT (1952). Rigorous analytical 
work  in the case  of p = 0 has been carried out by KARLIN 

and FELDMAN (1970) as  well  as by BODMER and FELSEN- 
STEIN (1967). More recently, BURGER (1989) has carried 
out a global analysis  of  exactly the dynamics generated 
by M I  using (5). Since his results for  the special  case  of 
p = 0 are of interest to our analysis and since they will 
be used in  the sequel, we shall  briefly recapitulate 
them using the  notation  introduced above.  First, it has 
been shown that all orbits in the  linear model converge 
to the  plane p ,  = p,. Second,  there exists an unstable 
equilibrium point F1 in this plane, given by 

f j 1 = l j 4 = ? 4 + D 1 ,  f j * = f j 3 = ? 4 - D 1 ,  

where 

SI 1 L)’=--ivw+; 
Orbits starting in the  interior of the manifold defined by 
p ,  = p ,  converge to F1. Third, two locally stable “vertex” 
equilibria, F2(F3), existwith coordinates j ,  = 1 (b3 = 1) .  
Their  domain of attraction is the  set where p ,  > p ,  ( p ,  < 
p,) . The above results imply that  the equilibrium state of 
the  population is influenced by its initial state. Transi- 
tions from  the region of S where p ,  < p ,  holds, to the 
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(4 
P4” 

Pg=l 

P4= 1 

FIGURE 4.-Phase  diagrams  for  epistatic  and  additive model. 
Numerical  integration of (5) for a series of initial  conditions  close 
to the  intersection of the  plane  where f+ = A (gray shading)  and 
the  plane  where p ,  = 0 in  the domain f+ > py  5 = 0.001; r = 0.01; 
p = 0; (a) Additive model; (b) Epistatic model; In  the  additive 
case,  the  trajectoriesapproach  the  (invisible) planep, = p4 before 
converging to f+ = I ,  whereas  in  the  epistatic  case  trajectories  are 
approaching pi = 1 before  converging to f+ = 1 very close to the 
edge where pL + pi = 1. 

region where p ,  > p ,  can only be  expected if there is also 
a stochastic component  that influences the gamete 
frequencies, such as genetic drift. 

Analysis  of the dynamics  of (5) with p = 0 and  the 
fitness matrix M, with p = -% (Figure Id), i.e., the 
epistatic case,  reveals  dynamics that  are qualitatively  dif- 
ferent from the additive case. Here we only present a 
summary  of a  more detailed analysis  which  is carried out 
in the APPENDIX. In the epistatic case there also exist two 
locally stable vertex equilibria p2 = 1 ( p ,  = 1)  with the 
set p ,  > p , ( p ,  < p,) as domain of attraction,  and one 
unstable equilibrium point within the plane p ,  = p,. The 
\atter tq-dibiurn i3 a sa&d’~e, i. t . ,  it has a WD- 
dimensional stable manifold that is located within that 
plane p ,  = p,. Thus,  the  number  of equilibria and  their 
stability properties  are very similar in the additive and in 
the epistatic model. However, an important  difference 
between the additive and  the epistatic model is that  the 
respective equilibrium points in p ,  = p ,  are “semi- 
qmmeuical (A # A )  in &e episatic case (see MPEW 

DIX), but “symmetrical” ( p l  = p4) in the additive case 
(BORGER 1989). In fact, the saddle point within the p2 = 
p ,  plane is shifted towards the vertex p4 = 1 in the epi- 
static  case. A further, qualitative difference can be seen 
in the  path  that trajectories leading to the vertex equi- 
libria take in the two models. Trajectories in the epistatic 
model do in general not  approach  the plane p ,  = p4 but 

cross it. They spend more time  in the vicinity  of p ,  = 1 
than those in the additive model. This becomes evident 
by numerically integrating (5) for different initial con- 
ditions, as shown  in  Figure 4 for the additive and for the 
epistatic case,  respectively. Although the final outcome 
for both models in the absence of mutation will be the 
same (in that  the stable equilibria in this case reduce to 
p ,  = 1 or p ,  = l ) ,  these differences in the dynamics  of 
the two models are  important for the stochastic  analysis 
carried out below, since it is the location of the saddle 
points within the plane p2 = p3,  as well as the path of the 
trajectories that define the region where  peak  shifts  take 
place and  the above differences are responsible for the 
difference between the additive and the epistatic model. 

Peakshift probabilities estimated by Mont4arlo 
simulations: Stochastic perturbations of the determin- 
istic  dvnamical  system defined in ( 5 )  were  used to com- 
pare transition rates for the additive and  the epistatic 
model. The differential equations used are identical to 
those in ( 5 ) ,  except for an additive  stochastic term 
5 := ( q ,  . . . , v4), Le.,  they are given by (6j5/6t),,,, := 
(6j5/6t),,, + 5, where (6j3/6t)del represents the right 
hand side of ( 5 ) .  The stochastic term 5 represents the 
effects  of genetic drift. It is generated as a pseudo- 
random multidimensional Gaussian  deviate that has the 
exact co-variance matrix, i e . ,  the one corresponding to 
a multinomial distribution 

( V i )  = 0 
/ 1  

where N, is the effective population size. This Gaussian 
approximation is adequate provided the  components of 
$are  not too small.  Because the equations used here  are 
continuouwalued approximation of a discrete 5, allele 
fixation has to be enforced for small pi. In order to r e p  
resent  the effects  of mutations correctly, the following 
algorithm was used: if p i  E [0, 1/2N,], it is reset to 1/2N, 
witkpm~~a~~ity23cg~a~~t~Owithp~~a~l~~1 -?X$,. 
After  any such fixation step, normalization  of gamete 
frequencies to a sum  of 1 was performed. 

For estimates of  shift  times  between p ,  > p ,  and p2 < 
p ,  a population was initialized at the optimum genotype 
( p ,  = 1 )  and let to evolve until genetic drift caused it to 
cross the plane of symmetry corresponding to the valley 

tive landscape ( p ,  = p, ) .  Crossing  time and crossing 
coordinates in the simplex  were recorded and  the S ~ S -  

tem was reinitialized. The following  results  were derived 
from the statistical distribution of crossing events thus 
obtained. 

Simulations were carried out with large or small popu- 
lation sizes ( Nr5, > 1 or Nrs, < 1 )  in the regime of small 

hat sepamtes rhr two basjns oFattmct;on.c ;n the .*J.*p 
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FIGURE 5.4omparison  of  transition point distributions. 
Histograms of the frequency p4 at the crossing point ( p2 = p , ) .  
(a) Additive model: N,s, = 2.34; r = 0.5; N,p = 0.06. (b) Epi- 
static model: Nts2 = 15.6; r = 0.5; N,p = 0.4. Standard errors 
for  all values given are 2%. Note that  in the epistatic model the 
transitions occur at much higher frequencies of p4 than  in the 
additive model (see text for explanation). 

mutation rates ( N,p << 1). Histograms of the distribu- 
tion of p,coordinates of the crossing points are pre- 
sented in Figure 5, a and b,  for  the additive and  the 
epistatic character, respectively. They show that, pro- 
vided that Nrsk  is large enough,  the trajectories tend to 
cross the dividing plane p2 = ps near  the unstable 
equilibrium points. Note that the locations of the  saddle 
points are very different  for the two models, as predicted 
above. 

It follows from  examination of the Kolmogorov- 
Fokker-Planck equation (EWENS 1979) which describes 
the evolution of the probability distribution of the  popu- 
lation state that  the shift frequency r = 1 /T  is a  homG 
geneous  function of order (+ 1) in the  four  arguments 
(p, s, l/Nr, r ) .  One can deduce from this symmetry that 
r/p is a  function of three  arguments only, for instance, 
( N,s, p/sk, sJr ) .  If r is much  larger  than sk one can ar- 
gue  that  recombination will enforce linkage equilibrium 
but will not  further affect the  solution, since the regime 
will have entered  the asymptotic region where sk/r is 
nearly null. Under this condition,  the shift time nor- 
malized to  the mutation  rate will depend asymptotically 
on two arguments only, N,sk and p/sk. We were able to 
verify numerically that this asymptotic regime was 
reached, since r/p was not affected by varying N,, p and 

FIGURE  6.4omparison  of peak shift frequencies. Transi- 
tion frequency r normalized to mutation rate p as a function 
of N,s,. (a) Additive model: sI = 0.156; r = 0.5. (b) Epistatic 
model: s2 = 0.156; r = 0.5. Standard  errors  for  all  values given 
are 2%. Note that the exponential approximation of r as a 
function of N,s, only holds for small mutation rates. 

sk within an order of magnitude while keeping N,s, and 
p/sk  constant (results not shown). 

In Figures 6, a and b, for the additive and  the epistatic 
case,  respectively, crossing times Tare plotted as a func- 
tion of  effective population size N,, selection coefficient 
sk, and mutation rate p. More  precisely, crossing rates 
normalized to the mutation rate, r/p, are shown. 

Our numerical results show that  the transition fre- 
quency is  well approximated by an  exponential function 
of N,sk. One obtains for the additive model 

rl/p - O.Gexp(-0.96N,sl) 

with a mean fitness at  the saddle point of 6") = 1 - 
0 . 8 5 ~ ~ .  In the epistatic case one finds 

r 2 / p  - 1.2exp(-0.2Nf%) 

and a mean fitness at  the saddle point of d 2 )  - 1 - 
0 . 2 3 ~ ~ .  Note the  dependence of r on  the mutation rate 
(Figure 6b). For  small NIsk, r is proportional to p .  How- 
ever, for larger values  of N,s, r is proportional to a power 
of p higher  than  one:  according to the analytical results 
given by BARTON and ROUHANI (1987), r should be 
proportional to p 2  for very large values  of N,s. 

The ratio of the transition probabilities R is 

R = - = 2.0  exp(N,(0.96sl - 0.2%)) > 1. 

As mentioned above, the effect of a  gene substitution is 
different in the additive and  the epistatic character 
model. Therefore,  the intensity of stabilizing selection 

r2 

rl 
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has to  be scaled such that  the transition probabilities can 
be compared. Below  we  will discuss three ways  of scaling, 
one with s1 = sp, one where the average effect of a  gene 
substitution is held  constant and  one where the fitness 
at  the transition point is kept  the same for  the two mod- 
els. The ratio of the transition rates R implies that  for s2 
< 4 . 8 ~ ~  peak shifts are  more likely in the epistatic char- 
acter case than in the additive case. The exact magni- 
tude of the advantage depends on how one scales the 
selection intensities on the additive and  the epistatic 
character  and what  values  of N,s are reasonable. 

Values for the intensity of stabilizing selection have 
been compiled by ENDLER (1986). He uses the effects  of 
stabilizing selection on phenotypic variance to measure 
the intensity of  stabilizing selection 

V h  - VP j = ~ 

VP 

where V, and V,, denote  the phenotypic variance before 
and after selection, respectively. In terms of our model 
and using V, = 1 one obtains 

- j  
I + VP(1 + 11. sk= . 

Assuming a heritability of about 0.5, one obtains 

- j  s, = - 5j + 3' 

Given the values ofj compiled by ENDLER, sk = 0.1 is quite 
realistic  in  wild populations. This selection coefficient 
easily leads to values for Nesk that  are of the  order of 10. 
If selection on the epistatic character is  as strong as on 
the additive character, s1 = sq, then  the  predicted ratio 
of peak shift probabilities easily exceeds three  orders of 
magnitude. 

Another way to adjust for the differences in the epi- 
static and the additive character model is to hold the 
average effect on  the  character of a  mutation  at one of 
the loci constant. For p = -%, the  appropriate adjust- 
ment is sp = 0 . 6 4 ~ ~  = s. Under these conditions, the ratio 
of the transition probabilities exceeds four  orders of 
magnitudes as Nes exceeds a value  of 11. Finally, it is 
possible to adjust the selection intensity such that  the 
mean fitness at  the saddle point is the same for the epi- 
static and  the additive character (s2 = 3 . 7 ~ ~ ) .  This is the 
most  conservative assumption. Under these conditions, 
the ratio still exceeds one  order of magnitude.  Hence, 
for moderately large populations and realistic strengths 
of  stabilizing selection (ENDLER 1986) epistasis in the 
genotype phenotype map is expected  to have a substan- 
tial influence on the rate of peak shifts as compared to 
an additive character. 

DISCUSSION 

The question considered in this contribution is:  how 
does  the genetic architecture of a quantitative character 

under stabilizing selection influence the rate of  accu- 
mulation of reproductive isolation by peak shifts in a 
small and isolated, but stable population. More  specifi- 
cally, we are interested in the influence of epistatic in- 
teractions among quantitative trait loci on  the  rate of 
evolution of reproductive isolation. A class  of  two-locus 
two-allele models was analyzed, for which the  degree of 
epistasis among quantitative trait loci was adjustable via 
a  parameter, p. p = 0 results in a completely additive 
character, whereas deviations from /3 = 0 yield continu- 
ously  varying degrees of  epistasis. The value /3 = - %, as 
discussed above, allows  us to illustrate most  clearly our 
central claim, namely that epistasis may  allow for  a con- 
siderable increase in peak shift rate, in comparison to an 
additive trait. We therefore focused on a comparison of 
the cases P = 0 and p = -%, referring to them in the 
following  as the additive model and the epistatic model, 
respectively. It has to be  pointed  out  that this property 
of increased peak shift rates is not  a property of epistatic 
interactions in and by themselves, but  rather of a certain 
type  of  epistasis.  Cases are conceivable where epistasis 
will decrease peakshift rates. However, it will be argued 
below that  there is empirical evidence in  favor of the 
fitness scenario presented  here. 

The impact on speciation of the  architecture of the 
genetic system has been discussed mainlywith reference 
to the contrast between the so-called  type I and type I1 
architectures (TEMPLETON 1982;  BARTON and CHARLES- 
WORTH, 1984; CARSON and TEMPLETON 1984; BARTON 
1989b). Type I architecture assumes  many genes with 
small and approximately additive effects,  while  type I1 
architecture assumes strong epistasis  between genes and 
genes with unequal effects (TEMPLETON  1982). The im- 
plications of  type I architecture for the accumulation 
of reproductive isolation are  quite well understood 
(BARTON and CHARLESWORTH 1984; BARTON 1986, 
1989a,b),  and essentially state that slow accumulation of 
small contributions to postzygotic isolation is the most 
likely mode of speciation with  type I  architecture. While 
there is ample evidence for the involvement of epistati- 
cally interacting genes in species differences [see reviews 
by CARSON and TEMPLETON (1984) and COWE (1992) 1, 
the  importance of  epistasis for the speciation process is 
controversial. It has been shown that certain type I1 mod- 
els predict approximately the same rate of accumulation 
of reproductive isolation as the type I model (BARTON 
1989b). Below, it will be discussed how the  higher rate 
of divergence, predicted by the epistatic model analyzed 
here, is related to  the genetic architecture assumed in 
the model. 

The genetic architecture of the trait considered in the 
epistatic model results from two assumptions. First, it is 
assumed that  the effect of the two genes on the  pheno- 
typic characters is mediated by their  independent  effects 
on two underlying physiological or developmental traits. 
Second, it is assumed that these underlying variables in- 
teract nonlinearily to produce  the phenotypic character, 
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which leads to epistatic interactions between the genes. 
In  the epistatic model analyzed here, we assume the low- 
est possible degree of nonlinearity, namely a mixed sec- 
ond  order term of a polynomial. Two differences to  the 
additive model in the  genetic  architecture  are thereby 
introduced. First, the  double heterozygote genotype, 
i .  e. ,  the hybrids between the two alternative adaptations 
&X,Y, Y,  and X,X,  YOYO, are not optimal. In  the additive 
case the  double heterozygote has the same phenotype as 
the two alternative homozygote genotypes due to the 
mathematical properties of  additivity. The second dif- 
ference is the effect of a gene-substitution at one of the 
optimal genotypes. In the additive model used for com- 
parison,  the allele substitution at  either locus has the 
same effect on the  phenotype and is thus a simple model 
of type I architecture. In the epistatic model, effects of 
substitutions at  the X and the Y locus are  not  the same, 
representing  a type I1 architecture. For /3 = -%, if one 
considers the effect of allele substitutions at  the geno- 
type &&Y,Y,, the substitution of X, by X ,  would  have 
an effect of -Vi on  the  character p ,  while a substitution 
at  the Y locus would  have the effect 3. Hence, Y may be 
called the major locus and  Xthe minor locus in this case. 
However, the  role of the major and the  minor locus 
switches if  we consider  the alternative genotype 
X,X,Y,Y,. In this case the X locus has a  much  greater 
effect than  the Y locus. Hence  the  nonlinear genotype- 
phenotype  map  induces  a  context dependent type I1 
architecture of the trait p .  The role of the major and  the 
minor locus depends  on  the genotype we consider. This 
contextdependent type I1 architecture of a quantitative 
trait resembles, if combined with stabilizing selection, 
the  phenomenon of complementary deleterious alleles 
[see, e.g., SAUNDERS (1952)l: in the simplest case the two 
populations have the complementary two-locus geno- 
types LIL1l$, and llllL2L2, where in the hybrids each 
genotype containing  both L, and L, alleles are lethal or 
have reduced viability,  while the genotypes 1, l,L,l,, 
L, I, 1212 and 1, I, 41, are less affected or  not  at all affected. 
This context dependent type I1 architecture is the major 
difference of the  present epistatic model to the epistatic 
models criticized by BARTON (1989b). In BARTON’S model 
the identity of minor loci and major loci is predeter- 
mined by the model and epistasis  only defines which 
gene combination is “coadapted.” Due to the multipli- 
cative interaction between the primary gene effects in 
our model, however, these roles are  context  dependent. 

The key feature of the epistatic model considered 
here is that  a chain of genotypes with high fitness exists 
that  connects  the two alternative optimal genotypes. In 
our notation, these genotypes are X,&Y,Y, ,   X ,X,y ,y , ,  
and X,X,Y,Y, (see Figure Id). These genotypes differ 
only by one allele substitution per  step and connect  the 
alternative genotypes X,X,Y,Y, and X,X,YoY,. All these 
genotypes are  much  more fit than  the  double heterozy- 
gote or the other genotypes, e.g., the &&,YOYO geno- 
type. Hence, peak shifts can trace this chain of  relatively 

fit genotypes to  reach  the alternative genetic adaptation. 
The fitness of the  intermediate stages  in a peak shift is 
independent of the fitness of the inter-population hy- 
brids or the backcrosses between the F, and  one of the 
parental populations. The existence of such a chain of 
relatively fit genotypes provides a qualitative explana- 
tion of  the mathematical results presented in this paper. 
For instance, in our epistatic model the saddle point in 
the plane p ,  = p ,  is displaced towards the vertex p ,  = 1 
of the simplex, as opposed to the additive model where 
the  corresponding fixed point occupies a location close 
to  the  center of the simplex. The displacement of this 
fixed point in the epistatic model is due to much stron- 
ger selection against the gamete X,  Yo as compared to the 
gamete X,Y, .  (In  the additive model, selection against 
these two gametes is equally strong.) This can be seen 
from the lower fitness of the genotype XoX,Y,Y, relative 
to the fitness X,X,Y,Y,  (Figure Id).  Hence, selection 
pushes the  population towards higher frequencies p ,  of 
X,   Y , ,  i e . ,  towards the vertex p,  = 1 of the simplex. The 
location of the saddle point within p ,  = p3 is important, 
since peak shifts occur in its neighborhood (Figure 5). 
Its displacement in the epistatic case  avoids the produc- 
tion of genotypes with  very  low fitness, such as X,,& YOYO, 
during  the peak shift. Metaphorically speaking, the 
population shifting between  peaks  follows a  path  around 
the adaptive valley. 

The presence of context dependent type I1 architec- 
ture is detectable by the genetic techniques used by ORR 
and COYNE (1989) for  the analysis of species hybrids. The 
prediction is that  the epistatic interaction between pairs 
of  loci causing postzygotic isolation leads to an inversion 
of the relative magnitude of  effects  of gene substitutions 
at  the  different loci in the two parental genotypes. Epi- 
static models have been used by DOBZHANSKY (1937) and 
MULLER (1942) to show that  there is no necessity for 
crossing an adaptive valley during  the evolution of  in- 
compatible genotypes. The model assumes epistatic 
interaction between two loci A and B which  diverge in- 
dependently in two isolated populations from A,A,B,B, 
to A,A,B,B, and A1A1B2B2, respectively. Reproductive 
isolation occurs if the alleles A,  and B, are incompatible. 
In this case no adaptive valley  has to be crossed to evolve 
reproductive isolation. The epistatic model analyzed in 
this paper is similar to  the DOBZHANSKY-MULLER model, as 
it involves epistatic interactions and does  not  require  the 
populations to cross an adaptive valley that is  as deep as 
the fitness of the  inter-population hybrids. The differ- 
ences  are  that, in our model, the two gene substitutions 
required to get reproductive isolation take place in the 
same population and that  the build-up of reproductive 
isolation occurs by peak shifts. 

Both, the DOBZHANSKY-MULLER model as well as the 
present model assume that reproductive isolation is pri- 
marily due to a few epistatic loci. Not much is  known 
about  the genetic basis  of reproductive isolation, but 
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there  are several examples that  demonstrate  strong e p  
istasis among a limited number of  loci causing reduced 
hybrid fitness and hybrid break down  (WIEBE  1934; 
SAUNDERS 1952; HERMSEN 1963; OKA 1974; MACNAIR and 
CHRISTIE  1983; CHRISTIE and MACNAIR 1984; ORR 1987, 
1989; ORR and COYNE 1989).  Furthermore, it has been 
demonstrated in five  cases that  the loci  involved act as 
complementary deleterious/lethal genes with fitness re- 
lations qualitatively similar to our case p = -4/3 (WIEBE 
1934; SAUNDERS 1952; CHRISTIE and MACNAIR  1984; 
ANDERS et al. 1984; TEMPLETON et al .  1985). 

Of particular interest is tumorigenesis in  hybrids  be- 
tween Xiphophorus  maculatus and Xiphophorus helleri 
(GORDON 1927; ~ U S S L E R  1928; KOSSWIC 1928) [for re- 
view see ANDERS et al. (1984)], because its molecular 
basis  is  well understood in comparison to other systems. 
This form of hybrid inviability  is caused by the interac- 
tion between a dominant  oncogen Tu, which is a tyrosine 
kinase gene,  and a regulatory gene R (WIITBRODT et al .  
1989). Melanoma formation occurs whenever the Tu al- 
lele is separated by recombination from its regulator 
gene  at  the R locus. This system exhibits the same kind 
of context dependent type I1 architecture that is char- 
acteristic of the  model analyzed here. Startingwith geno- 
type TuTuRR a substitution of the R allele has a major 
effect on viability  while a substitution of Tu has at most 
a minor effect. In  contrast, if  we start with the comple- 
mentary genotype that is  fully  viable, t,t,rr, a substitution 
at  the Tu locus, replacing tu by Tu, has a major effect, 
while a substitution of r by R has only minor effects. 
Hence, epistasis that results from interactions between 
regulatory genes and primary genes  are a realization of 
the model analyzed in this report. 

Another example for which the molecular basis of a 
context dependent type I1 architecture is known, is the 
abnormal  abdomen syndrome ( a a )  of Drosophila mer- 
catorum (TEMPLETON et al. 1985). Two loci interact  in 
causing the aa syndrome. One is a 5-kb insertion into 
some copies of the  28s rRNA genes, the second is an 
allele at a different locus responsible for differential r e p  
lication of the  noninserted copies of the 28s rRNA genes 
during polytenization. The aa phenotype  requires  the 
presence of inserts in the rRNA genes as  well  as a failure 
to replicate the  noninserted rRNA genes differentially. 
There  are two optimal homozygous genotypes, one with 
the insertions and  the  gene for differential replication 
of the  noninserted genes and  one with neither  the in- 
sertion nor  the differential replication allele. However, 
the genotype without insertions and with the differential 
replication gene is  also  viable. Here, again, two alter- 
native genotypes are  producing imbalanced hybrids 
(with the aa syndrome),  but  are nevertheless connected 
by a chain of viable genotypes. 

In summary, according to the results presented  here, 
epistatic gene  interactions  are likely to  contribute  to  the 
evolution of reproductive isolation. They may lead to a 

context-dependent type I1 architecture, in which a chain 
of viable genotypes connects alternative optimal states, 
while F1 hybrids between these optimal genotypes are 
inviable or lethal. This ultimately allows a much  higher 
rate of accumulation of postzygotic  isolation than  for 
other genetic systems.  However, the question remains 
whether  at all peak shifts are a reasonable model for  the 
evolution of reproductive isolation. This question has to 
be raised, since the  rate of transitions in the epistatic 
model is still  only  of the  order of the mutation rate 
(see RESULTS). 

To evaluate the plausibility  of the peak shift model as 
an explanation of speciation we use the  data of COMVE 
and ORR (1989) on the  degree of reproductive isolation 
between  closely related species of Drosophila. They have 
shown that  the  degree of  postzygotic  isolation increases 
approximately linearly with the  NEI'S genetic distance D. 
Postzygotic isolation reaches avalue of 1 (total isolation) 
among species pairs with an average D of 1 (COYNE and 
ORR 1989, Tab. 2). NEI (1987) suggests that in many 
species D = 1 corresponds on  the average to a diver- 
gence time  of  5,000,000  years,  which is also in agreement 
with molecular, biogeographic and paleontological data 
for Drosophila (POWELL and DESALLE 1994). Taking into 
account  the  generation time of Drosophila, this  easily 
leads to a number of generations in  excess  of 1 07. Hence, 
in Drosophila, postzygotic isolation evolves during a pe- 
riod of more  than lo' generations in allopatry. 

The additive model can not be compared to this data 
since it always predicts optimal phenotypes for  the F1 
hybrids. Our epistatic model assumes that each peak 
shift reduces  the fitness of the F1 hybrids by about - sbp2. 
With our value of p = -4/3 and a sq value of 0.05 (see 
above for  estimates),  it takes about 10 peak shifts to 
reach total postzygotic isolation. Thus, the question is 
how large the transition probability has to  be in order 
to expect  about  10 transitions in lo7 generations? OB 
viously,  any transition probability of the  order of 1O"j  is 
sufficient to  reach total postzygotic  isolation  within the 
time frame observed for Drosophila. Assuming a muta- 
tion rate at the relevant loci  of about  to  the 
predictions of our epistatic simulation model are com- 
patible with the Drosophila data. Even though one 
should not  put too much weight on the exact numerical 
values, the calculations show that  the model is in quali- 
tative agreement with observed rates of speciation. 

The reason why  low transition rates are compatible 
with the observed rates of divergence is that a peak shift 
model has to assume the existence of  several pairs of loci 
able to undergo a peak shift to an alternative optimal 
genotype, each contributing a fraction of the total re- 
productive isolation. In our example we  have to assume 
that  there  are  at least 10 independent pairs  of interact- 
ing loci contributing to total postzygotic isolation. If 
there  are ten pairs of loci, and the transition probability 
at each locus is of the order of the mutation rate, the 
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total probability to  get any transition is approximately 
ten times as large. Hence, due to  the fact that a peak shift 
model has to assume the existence of  many genes con- 
tributing  to postzygotic isolation, the probability of  any 
transition taking place is higher  than  the probability for 
each locus. 

The scenario analyzed  above is one where two stable, 
moderately large populations exist for a long time in 
allopatry. The present  model  does not predict a higher 
rate of speciation in the case  of bottle necks or founder 
events. The reason is that  the  amount of polymorphisms 
existing in mutation selection equilibrium is not much 
higher in our epistatic model  than in the additive model 
(A. WAGNER, unpublished  results).  Hence,  the likeli- 
hood  that a founder  population is shifting to a different 
peak is roughly the same in the additive and  the epistatic 
model. 

A.W. and G.P.W. are  indebted to REINHARD BURGER, JIM CHEWRUD 
and ALAN TEMPLETON for  numerous helpful suggestions to improve the 
manuscript and to NICK  BARTON for  the generalization of the original 
model. This article is communication no. 4 from the Center for Com- 
putational Ecology of the Yale Institute for Biospheric  Studies. 

LITERATURE CITED 

ANDERS, F.,  M. SCHARTL, A. BARNEKOW and A. ANDERS, 1984 Xiphopho- 
rus as an in  uiuo model for studies on normal and defective con- 
trol of oncogenes. Adv. Cancer Res. 4 2  191-275. 

BARTON, N. H., 1986 The effects of linkage and  densitydependent 
regulation on gene flow. Heredity 57: 415-426. 

BARTON,  N. H., 1989a The divergence of a polygenic system subject 
to stabilizing selection, mutation and drift. Genet. Res. 5 4 :  59-77. 

BARTON, N. H., 1989b Founder effect speciation, pp. 229-256 in Spe- 
ciation  and  Its  Consequences, edited by  D. Otte  and J. A. Endler. 
Sinauer Associates, Sunderland, Mass. 

BARTON, N. H., and B. CHARLESWORTH, 1984 Genetic revolutions, 
founder effects, and speciation. Annu. Rev.  Ecol.  Syst. 15: 
133-164. 

BARTON, N. H., and S. ROUHANI, 1987 The frequency of shifts  between 
alternative equilibria. J. Theor. Biol. 125: 397-418. 

BODMER, W.  F., and J. FELSENSTEIN, 1967 Linkage and selection: theo- 
retical analysis  of the deterministic two locus random mating 
model. Genetics 57: 237-265. 

BURGER,  R., 1983a On the evolution of dominance modifiers. I. A 
nonlinear analysis. J. Theor. Biol. 101: 585-598. 

BURGER,  R., 198313 Nonlinear analysis  of some models for the evo- 
lution of dominance. J. Math.  Biol. 16: 269-280. 

BURGER,  R., 1983c Dynamics  of the classical genetic model for the 
evolution of dominance. Math. Biosci. 67: 125-143. 

BURGER,  R., 1988 Mutation-selection  balance and continuum-of- 
alleles models. Math.  Biosci. 91: 67-83. 

BURGER,  R., 1989 Linkage and  the maintenance of heritable variation 
by mutation-selection balance. Genetics 121: 175-184. 

CARSON, H. L., and A. R. TEMPLETON, 1984 Genetic revolutions in 
relation to speciation phenomena: The founding of  new popu- 
lations. Annu. Rev.  Ecol.  Syst. 1 5  97-131. 

CHARLESWORTH, B., 1970 Selection in populations with overlapping 
generations. I. The use  of Malthusian parameters in population 
genetics. Theor. Popul. Biol. 1: 352-370. 

CHARLESWORTH, B., and S. ROUHANI, 1988 The probability of peak 
shifts  in a founder population. 11. An additive  polygenic trait. 
Evolution 42: 1192-1 145. 

CHRISTIE, P., and M.  R. MACNAIR, 1984 Complementary lethal factors 
in two North American populations of &e yellow monkey  flower. 
J. Hered. 75: 510-511. 

C O ~ E ,  J. A. 1992 Genetics and speciation. Nature 355 511-515. 
COYNE, J. A., and H. A. Om, 1989 Patterns of speciation in Drosoph- 

ila.  Evolution 4 3  362-381. 

CROW, J. F., and M. KIMURA, 1970 A n  Introduction to Population  Ge- 
netics  Theory. Harper & Row,  New  York. 

DOBZHANSKY, T., 1937 Genetics of the  Evolutionary  Process. Columbia 
University  Press, New  York. 

ENDLER, J. A,, 1986 Natural Selection in  the Wild. Princeton 
University  Press, Princeton, N.J. 

EWENS, W. J., 1979 Mathematical  Population  Genetics. Springer, 
Berlin. 

FOLEY, P., 1987 Molecular  clock rates at loci under stabilizing  selec- 
tion. Proc. Natl.  Acad.  Sci. USA 8 4  7996-8000. 

GIMELFARB, A., 1989 Genotypic  variation for a quantitative character 
maintained under stabilizing selection without mutation: epista- 
sis. Genetics 123 217-227. 

GORDON, M., 1927 The genetics of a viviparous topminnow Platy- 
poecilus; the inheritance of  two kinds of melanophores. Genetics 
12: 253-283. 

~ U S S L E R ,  G., 1928 fiber Melanombildingen bei  Bastarden  von 
Xiphophoms helleri und Platypoecilus maculatus var. rubra. Klin. 
Wochenschrift 7: 1561-1562. 

HERMSEN, J. G. T., 1963 The genetic basis of hybrid  necrosis in wheat. 
Genetica 33: 245-287. 

HOFBAUER, J., and K SIGMUND, 1988 The  Theory of Evolution  and 
Dynamical  Systems. Cambridge University  Press, Cambridge. 

KARLIN, S., and M.  W. FELDMAN, 1970 Linkage and selection: two locus 
symmetric viabi!ity model. Theor. Pop. Biol. 1: 39-71. 

KOSSWIC, C., 1928 Uber Kreuzungen zwischen den Teleosteern Xi- 
phophorus helleri und Platypoecilus  maculatus. Z. Indukt. 
Abstammungs Vererbungsl. 47: 150-158. 

LANDE, R., 1985 Expected  time for random genetic drift of a popu- 
lation between stable phenotypic states. Proc. Natl.  Acad.  Sci. USA 

MACNAIR, M.  R., and P. CHRISTIE, 1983 Reproductive isolation as a 
pleiotropic effect of copper tolerance in Mimulus  guttatus. 
Heredity 50: 295-302. 

MAW, E., 1942 Systematics  and  the  Origin of Species. Columbia 
University  Press,  New  York. 

MULLER, H. J., 1942 Isolating mechanisms, evolution and tempera- 
ture. Biol.  Symp. 6: 71-125. 

NEI, M., 1987 MolecularEuolutionary  Genetics. Columbia University 
Press, New  York. 

Om, H.-I., 1974 Analysis  of genes controlling F1 sterility  in  rice by 
the use  of  isogenic  lines. Genetics 77: 521-534. 

Om, H. A., 1987 Genetics of male and female  sterility in hybrids of 
Drosophila  pseudoobscura and D .  persimilis. Genetics 116: 
555-563. 

Om, A., 1989 Genetics of sterility  in  hybrids  between two Subspecies 
of Drosophila. Evolution 4 3  180-189. 

Om, H. A., andJ. A. COWE, 1989 The genetics ofpostzygotic  isolation 
in the Drosophila  uirilis group. Genetics 121: 527-537. 

POWELL, J. R., and R. DESALLE, 1994 Drosophila molecular phylog- 
enies and their uses.  Evol.  Biol. 2 8  (in press). 

SAUNDERS, A.  R., 1952 Complementary lethal genes in the cowpea. 
S. Afr. J. Sci. 48: 195-197. 

TEMPLETON, A.  R., 1982 Genetic architectures of speciation, pp. 
105-121 in Mechanisms of Speciation, edited by C. BARAGOZZI. 
Alan R. Liss,  New  York. 

TEMPLETON, A. R., T. J. CREASE and F. SW, 1985 The molecular 
through ecological genetics of abnormal abdomen in Drosophila 
mercatorum. I. Basic genetics. Genetics 111: 805-818. 

WIEBE, G. A., 1934 Complementary factors in barley  giving a lethal 
progeny. J. Hered. 25: 273-274. 

WI~BRODT,  J., D. ADAM, B. MALITSCHEK, W. ~ U E L E R ,  F. RAULF et al.,  
1989 Novel putative receptor tyrosine  kinase encoded by the 
melanoma-inducing T u  locus in Xiphophorus. Nature 341: 
415-421. 

WRIGHT, S., 1952 The genetics of quantitative variability, pp. 5-41 in 
Quantitative  Inheritance, edited by K. MATHER. Her Majesty’s Sa- 
tionary Office, London. 

82: 7641-7645. 

Communicating editor: M. SLATKIN 

APPENDIX 

In  the sequel, we use an approach based on Ljapunov 
functions (cJ HOFBAUER and SIGMUND 1988) in order to 
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qualitatively determine  the global dynamical behavior of 
(5) in the epistatic case ( p  = - 3 4 )  , using the fitness 
matrix M,. The specific Ljapunov functions used 
throughout have been first introduced by B~JRGER 
(1983a-c) and used by BURGER (1989) to carry out  the 
global analysis in the  linear case. 

Using the matrix of genotypic values M, shown in Fig- 
ure Id, we rescale, purely for technical convenience, the 
selection parameter s such that S' := 9s/16. The quali- 
tative results presented below do  not  depend  on the 
magnitude of s. The rescaling leads to a convenient al- 
gebraic form for the marginal mean fitnesses mi of 
gamete p, ,  in  which the terms mZ3, m3,, m14 and m,, are 
equal  to 1 - s f .  The marginal mean fitness values  be- 
come 

4 z ' = 1 - s ' ( 1 6 P l + p 3 + z p 4 )  81 1 

and  the mean fitness of the population 

81 1 
d 2 )  = 1 - s f 7  p:  + $4 + (; p,  + , p , ) ( p ,  + p, )  

1 

1 

In  the first place, we observe by inspection of (Al), that 
no interior  equilibrium  point $ can occur if r = 0 and 
p = 0, since there is no 6 E intS, such that  the necessary 
and sufficient condition m(,2)(5) = mi')($), Vk, 1 E 
(1, 2, 3, 4} for the existence of an  interior equilibrium 
point is met. An analogous argument applies to  the 
boundary faces  of S. 

The flow along  the edges of S behaves  as  follows: 
Along the edges p ,  + p2 = 1 and p ,  + p ,  = 1 it  points 
towards the vertex p2  = 1, along p1 + p3 = 1 and p ,  + 
p ,  = 1 it  points towards p ,  = 1 and along p ,  + p4 = 1 
it points towards p ,  = 1. An unstable equilibrium exists 
at p 3  + p2 = 1 with p2 = p 3  = %. At this edge  the flow 
points towards p 3  = 1 for p 3  > % and  into  the opposite 
direction for p ,  < %. This equilibrium vanishes  as soon 
as r > 0. Furthermore, one can exclude the  occurrence 
of a symmetric interior equilibrium point even if r # 0, 
i. e. ,  an equilibrium where 6, p 4  and p2 = p, holds. This 
is due to the fact that for all fi€ intS, m\,) # miz) holds, 
so that  there is no ?, E intS with e, = p ,  ( m ,  - KG) - rD 
= p,( m4 - m) - rD = p4, this also representing a fun- 
damental difference to the  linear case (p = 0) analyzed 
in the main text. Since mi2) = mi2) iffp, = p,, the  plane 

p2 = p ,  represents an invariant manifold that divides the 
simplex into two disjoint domains of attraction. We focus 
our attention now on orbits starting in the  interior of p ,  
> p ,  and show that every orbit converges to p ,  = 1. Sym- 
metric arguments hold for p ,  < p,. Orbits starting at a 
point ', where p ;  > p: holds, cannot reach the  domain 
of S where p 2  < p ,  and vice  versa. 

Let us  assume that  there exists a stationary equilib 
rium ?, E intS  for some initial condition ?, ' E intS. First 
we consider the  function 2 = p2p3/p1p4, observing that 
D = plp4(  1 - 2) .  Given 2, it is  easy to show that 

89 33 

and 

T(P) = P l  P 2 P 3  + P l  P 2 P 4  + Pl P 3 P 4  + P 2  P 3 P 4  > 0. 

By the above relations we conclude  that, starting in 2 5 
1, i. e . ,  D > 0,  Z > 0 holds and for orbits starting anywhere 
in intS 2 > 1 will eventually hold, so that D < 0 holds if 
the trajectory remains in intS. Next we show that if D < 
0, then d/dt&/p,  - 1)2 > 0 holds. Indeed, if D < 0 

"(" dt P 3  - 1)2 = 2k - 1) ! p )  
= 2 - 1) [la," ,""I (A4) 

= 2(: - 1)2 ( d p 2  - ;) > o  

holds. Thus, provided there is negative linkage disequi- 
librium, the distance of each orbit to the plane 9, = p ,  
increases. But this is in contradiction to our assumption 
of the existence of an  internal equilibrium point, since 
at any such point 8, D < 0 must hold, which in turn 
implies that d /d t (p2 /p3  - 1)'1;> 0. Therefore jcan  not 
be  an equilibrium point  and any orbit starting in p ,  > p ,  
approaches one of the vertex equilibria. Inspection of 
the Jacobian matrix A = (akl)  = dP;,/dp, of (5) shows 
that its eigenvalues evaluated at the vertex equilibrium 
p ,  = 1 are 

3's 
4 

A r <  0 

3's 
16 

A 2 = A 3 = - > 0  
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A, is irrelevant here, since it corresponds  to trajectories 
outside the simplex S. The signs  of A,, A, and A, imply 
that  there exists  only a onedimensional stable manifold 
for  the vertex equilibrium p, = 1. It is therefore not 
locally stable. That p, = 1 can also not be a locally stable 
equilibrium  point can be seen by analyzing the behavior 
of (5a) with m, specified by (Ala)  and m specified by 
(A2) in a sufficiently  small neighborhood of p, = 1. In 
such a neighborhood pf = 0,  i E {2,3,4} and by using 
p, = 1 - p, - p, - p, one observes that p: - 1 -2p, - 
2p3 - 2p, holds. Thus,  (5a) becomes 

which  shows that in this neighborhood p, is decreas- 
ing. Therefore we can  conclude  that starting in 
{?, E SI p20 > p30) trajectories will converge to p, = 1. 
Completely analogous arguments show that  for initial 
conditions in {?, E SI $20 < p30) all orbits will converge 

The case  of p ,  = p, is  of  less importance for the equi- 
librium behavior of the system, since it is only an  un- 
stable set of measure zero within the simplex and small 
stochastic perturbations would immediately lead the dy- 
namics away from it  and to one of the equilibrium points 

top, = 1. 

p, = 1 or p, = 1. Within this plane, however, there exists 
a further equilibrium point, which can be explicitly  cal- 
culated for r = 0 and is  given by b1 = 0,  = p, = 3/20, 
and j4 = 7/10. For r > 0 no analytical solution for  the 
equilibrium point within p, = p, was obtained. However, 
the existence of an  internal fixed point for r > 0 follows 
from a stability  analysis  of p, = 1. For examining the 
stability  of p, = 1 within the  plane p, = p, the differential 
equation describing the dynamics of p, is substituted by 
p := p, = p, and in an  approach similar to (A6) one 
arrives at 

p 4 - p l ( y - r )  - p T .  3 s’ 

If r > 3s‘/4, p ,  will be negative and p, will therefore be 
unstable. Since there is no  other equilibrium point on 
the  boundary of the  plane,  there has to be an equilib 
rium point in the  interior oft ,  = p,. No analytical results 
regarding stability  of  this equilibrium point within p, = 
p, have been  obtained,  although we have calculated its 
approximate coordinates numerically for specific  values 
of r and s, and numerical integration of the system (5) 
within  this manifold indicated its  stability (results not 
shown). 


