
The Large-scale Structure of Metabolic
Networks: A Glimpse at Life’s Origin?

Mapping an Organism’s Network Structure

M etabolism comprises the network of interactions that provide energy and
building blocks for cells and organisms, a network sustaining the living and
allowing it to grow and reproduce. For well-studied organisms, especially

microbes such as Escherichia coli, considerable information about metabolic reac-
tions has been accumulated through decades of experimental work. This informa-
tion, originally scattered through thousands of articles of original literature, has
increasingly found its way into larger collections including encyclopedias [1]
and online databases [2,3]. With easier availability of this information, it has
become feasible to map the structure of large pieces of an organism’s metabolic
network.

REPRESENTING METABOLIC NETWORKS
David Fell and I [4,5] assembled a list of 317 stoichiometric equations involving 287
substrates that represent the central routes of energy metabolism and small-mole-
cule building block synthesis in E. coli. Because there is considerable variation in the
metabolic reactions realized under different environmental conditions, we included
only reactions that would occur under one condition: aerobic growth on minimal
medium with glucose as sole carbon source and O2 as electron acceptor. We also
deliberately omitted (i) reactions whose occurrence is reportedly strain dependent
[1], (ii) biosyntheses of complex cofactors (e.g., adenosyl-cobalamine), which are not
fully understood, and (iii) syntheses of most polymers (RNA, DNA, protein) because
of their complex stoichiometry.

When faced with a complex assemblage of chemical reactions, the problem arises
immediately of how to represent the resulting reaction network. Importantly, for
most reactions only qualitative information is available— one may know the sub-
strates and stoichiometry of a reaction but not much more. A mathematical repre-
sentation that captures such qualitative information is that of a graph, for example,
that of a substrate graph GS � (VS, ES). Its vertex set VS consists of all chemical
compounds (substrates) that occur in the network. Two substrates S1, S2 are adjacent
if there exists an edge e, i.e., e � (S1, S2) � ES, the edge set of this graph, if the two
substrates occur (either as substrates or products) in the same chemical reaction.
Such a network representation has the advantage of being intuitive and simple.
Other graph-like representations of metabolic networks are possible, including bi-
partite graphs and hypergraphs [6]. However, hypergraphs are much less intuitive
constructs than graphs, and the many analysis tools available for graphs have not yet
been developed to the same extent for other graph representations. One might argue
that the existence of irreversible chemical reactions would suggest a directed graph
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[6] representation, i.e., a graph where

each edge has a direction. However, a

directed graph representation would be

inappropriate for an important applica-

tion of graph representations of biolog-

ical networks: to assess qualitatively

how perturbations of either enzyme

concentrations—via mutation— or sub-

strate concentrations—via changes in

consumption or availability—propagate

along the network. The reason is that

even for irreversible reactions, the con-

centration of a reaction product poten-

tially affects the reaction rate by occu-

pancy of the enzyme’s active site.

Reaction products can thus affect sub-

strate concentrations “upstream” of ir-

reversible reactions.

What is the structure of the E. coli

substrate graph? It has much in com-

mon with graphs found in areas as dif-

ferent as computer science (the world-

wide Web) and sociology (friendship

and collaboration networks). It is a

small world network [7], meaning that

any two nodes (substrates) can be

reached from each other through a path

of very few edges, fewer than in other

graphs of comparable size. Also, the dis-

tribution of the vertex degree d, the

number of edges d connecting each

substrate to other substrates is consis-

tent with a power law, i.e., the proba-

bility P(d) of finding a vertex with de-

gree d is P(d) � d�� (Figure 1). (The

exponent is less than two but can not be

estimated very accurately due to small

network size.) This degree distribution

has also been found for reaction net-

works derived from different organisms

[8]. It seems to be a universal character-

istic of metabolic networks.

POWER LAWS AND ROBUSTNESS
Two complementary hypotheses figure
prominently in explaining power-law
degree distributions. First, Albert and
collaborators [9] found that networks
with power-law distributed degrees are
robust to random perturbations in the
following sense. Upon removal of ran-
domly chosen nodes, the mean distance
between network nodes that can still be
reached from each other (via a path of
edges) increases only very little. This
distance is also known as the network
diameter. In graphs with other degree
distributions, network diameter can in-
crease substantially upon node re-
moval. Also, graphs with power-law de-
gree distributions fragment less easily
into large disconnected subnetworks
upon random node removal. These
findings have led Jeong and collabora-
tors [8] to suggest that metabolic net-

work graphs with power-law distributed
degrees have such a degree distribution
because this distribution provides ro-
bustness against perturbations.

It is difficult to assess the merit of
this hypothesis for metabolic networks
directly, for doing so would require
comparing large metabolic networks of
different structure. However, the en-
semble of core metabolic reactions is
very similar in most free-living organ-
isms, and thus the global structure of
metabolism is highly conserved. In ad-
dition, it is not easy to identify (i) the
kinds of perturbations to which a met-
abolic networks would have adapted
over billions of years and (ii) the rea-
sons why short path lengths would pro-
vide an advantage to the organism. At
most, one can venture an informed
speculation. For metabolic networks, a
possible advantage of small mean path
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FIGURE 1

Connective distribution of Escherichia coli core metabolism. Metabolites were ranked according to the
number of connections (degree) they have in the substrate graph. Shown is metabolite rank versus
degree on a log-log scale. If D is a random variable describing metabolite degree, this rank plot
estimates the counter-cumulative probability function P (log D � k). The data are consistent with a
power-law distribution of D, i.e., P(log D � k) � e�k� and thus P(D � k) � k��. However, little
confidence can be placed in the estimated value of the exponent � � 1.3 because of the small
network size. The following metabolic functions were included in the network whose degree
distribution is presented: Glycolysis (12 reactions), pentose phosphate and Entner-Doudoroff pathways
(10), glycogen metabolism (5), acetate production (2), glyoxalate and anaplerotic reactions (3),
tricarboxylic acid cycle (10), oxydative phosphorylation (6), amino acid and polyamine biosynthesis
(95), nucleotide and nucleoside biosynthesis and folate synthesis (72) and 1-carbon metabolism (16),
glycerol 3-phosphate and membrane lipids (17), riboflavin (9), coenzyme A (11), NAD(P) (7), porphy-
rins, heme, and sirohaem (14), lipopolysaccharides and murein (14), pyrophosphate metabolism (1),
transport reactions (2), glycerol 3-phosphate production (2), isoprenoid biosynthesis and quinone
biosynthesis (13).
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lengths stems from the importance of
minimizing transition times between
metabolic states in response to environ-
mental changes [10 –12]. Networks with
robustly small average path lengths
thus might adjust more rapidly to envi-
ronmental change.

In contrast to this weak case for the
selectionist explanation of the degree
distribution, there may be a stronger
case against it. One might ask whether
power-law degree distributions might
not be features of many or all large
chemical reaction networks, whether
part of an organism or not, and regard-
less of whether they perform any func-
tion that benefits from a robust network
diameter. If so, then metabolic network
degree distributions would join the club
of other power-laws (such as Zipf’s law
of word frequency distribution in natu-
ral languages) whose existence does not
owe credit to a benefit they provide.

Gleiss et al. [13] have assembled

public information on a class of large
chemical reaction networks that exist
not only outside the living, but on spa-
tial scales many orders of magnitude
larger than organisms. These are the
chemical reaction networks of plane-
tary atmospheres, networks largely
shaped by the photochemistry of their
component substrates. The available
data stems not only from earth’s atmo-
sphere, but also from other solar plan-
ets including Venus and Jupiter, planets
with chemically vastly different atmo-
spheres. These planets’ atmospheres
have been explored through remote
spectroscopic sensing methods and
through visits by planetary probes. The
chemical reaction networks in these at-
mospheres, despite being vastly differ-
ent in chemistry, have a degree distri-
bution consistent with a power law [13].
This suggests that power-law distribu-
tions may be very general features of
chemical reaction networks. The rea-

sons why we observe them in cellular
reaction networks may have nothing to
do with the robustness they may pro-
vide.

POWER LAWS AND DEEP TIME
Metabolic networks have a history.
They have not been assembled in their
present state at once. They have grown,
perhaps over billion years, as organisms
increased their metabolic and biosyn-
thetic abilities. Having to take into ac-
count this history raises a question:
How does a network arrive at a power-
law degree distribution if it grows? The
perhaps simplest mathematical model
capable of growing power-law distrib-
uted networks involves only two simple
rules [14]. First and unsurprisingly, it
adds nodes to a graph. Second, it con-
nects this node to previously existing
nodes according to a second rule, where
already highly connected nodes are
more likely to receive a new connection

than nodes of lesser connectivity. Over
many node additions, a power-law de-
gree distribution emerges. A great vari-
ety of variations to this model have
been proposed (reviewed in {15]). They
differ greatly in detail but retain in some
way or another the rule that new con-
nections preferably involve highly con-
nected nodes. But more importantly,
many of these models make a key pre-
diction: Highly connected nodes are old
nodes, nodes having been added very
early in a network’s history.

We may never know enough about
the history of life and metabolism to
distinguish between different ways in
which metabolism might have grown.
However, we can address this latter pre-
diction, common to many different
growth models. Are highly connected
metabolites old metabolites? The answer
will contain a speculative element, be-
cause the oldest metabolites are those
that arose in the earliest days of the

FIGURE 2

Highly connected metabolites in Escherichia coli are evolutionarily old. The list shows the 12 most
highly connected metabolites in the E. coli core intermediary substrate network. The numbers in
parentheses shows the degree (number of neighbors) of a metabolite in the substrate network as
defined in the text. Green indicates the proposed remnants of a surface metabolism or an RNA world;
red indicates the proposed early amino acids, and blue, the proposed early metabolites (in the
tricarboxylic acid cycle or in glycolysis). The network was generated after the elimination of the
compounds NAD, ATP, and their derivatives. These are even more highly connected than the
compounds shown here. They are also evolutionarily ancient. See text for further details.

The ensemble of core metabolic
reactions is very similar in most
free-living organisms, and thus

the global structure of
metabolism is highly conserved.
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living, close to life’s origins. Also, that

life forms as different as bacteria and

humans have very similar metabolic

structure suggests that the growth of

metabolism has essentially been com-

pleted at the time the common ancestor

of extant life emerged. The detailed

structure of metabolism at this early

time may remain in the dark forever.

However, origin of life hypotheses make

some clear predictions on the chemical

compounds expected to have been part

of early organisms. There are several of

these hypotheses, and they are comple-

mentary in the respect most important

here: They emphasize the origins of dif-

ferent aspects of life’s chemistry. Some

emphasize the origins of early genetic

material (RNA). Others make postulates

about the composition of the earliest

proteins. Yet others ask about the earli-

est metabolites in energy metabolism.

Each of them makes a statement about

a different aspect of early life’s chemis-

try.

Figure 2 shows the 12 most highly

connected metabolites of the E. coli

metabolic network graphs. Every single

one of them has been part of early or-

ganisms according to at least one ori-

gin-of-life hypothesis. Colored in green

are compounds such as coenzyme A,

thought to have been a part of early

RNA-based organisms [16]. The RNA

moieties they contain are present in all

organismal lineages. Some compounds

in this group, such as tetrahydrofolate

and coenzyme A, are thought to have

played a role in precellular life that may

have taken place on polykationic sur-

faces. Their merit in this regard is that

they are elongate molecules with one

anionic terminus. They are therefore

able to flexibly tether other molecules to

the substrate, thus localizing them

while simultaneously increasing their

potential to react with other com-

pounds [17]. Colored in red in Figure 2

are amino acids that were most likely

part of early proteins. This postulate is

based on likely scenarios for the early

evolution of the genetic code [18].

Shown in blue are compounds likely to

be a part of the earliest energy and bio-

synthetic metabolism. Glycolysis and

the TCA cycle are perhaps the most an-

cient metabolic pathways, and various

of their intermediates (�-ketoglutarate,

succinate, pyruvate, 3-phosphoglycer-

ate) occur in Figure 2 [16,18 –22]. The

potential relation between evolutionary
history and degree connectivity of me-
tabolites corroborates a postulate put
forth and defended forcefully by
Morowitz [20], namely that intermedi-
ary metabolism recapitulates the evolu-
tion of biochemistry.

Thus, although the structure of met-
abolic networks may not be a reflection
of their robustness, it may teach us
about their history. Functional genomic

experiments are unearthing the struc-
ture of many other genetic networks
[23–25], some of which show a power-
law degree distribution [5,26,27]. Per-
haps their structure can also teach us
important lessons about their ancient
history.

ACKNOWLEDGMENTS
I gratefully acknowledge financial sup-
port through National Institutes of
Health grant GM63882.

REFERENCES
1. Neidhardt, F.C. Escherichia coli and Salmonella. ASM Press: Washington, DC, 1996.
2. Karp, P.; Riley, M.; Paley, S.; Pellegrini-Toole, A.; Krummenacker, M. EcoCyc: Electronic encyclopedia of E. coli genes and metabolism. Nucleic Acids Res 1999,

27, 55.
3. Ogata, H., Goto, S. et al. KEGG-Kyoto Encyclopedia of genes and genomes. Nucleic Acids Research 27, 29–34, 1999.
4. Fell, D.; Wagner, A. The small world of metabolism. Nat Biotechnol 2000, 18, 1121–1122.
5. Wagner, A.; Fell, D. The small world inside large metabolic networks. Proc Roy Soc London Ser B 2001, 280, 1803–1810.
6. Graham, R.L.; Groetschel, M.; Lovasz, L. Handbook of combinatorics. MIT Press: Cambridge, 1995.
7. Watts, D.J. Small Worlds. Princeton University Press: Princeton, NJ, 1999.
8. Jeong, H.; Tombor, B.; Albert, R.; Oltvai, Z.N., Barabasi, A.L. The large-scale organization of metabolic networks. Nature 2000, 407, 651–654.
9. Albert, R.; H. Jeong, Barabasi, A.L. Error and attack tolerance of complex networks. Nature 2000, 406, 378–382.

10. Easterby, J.S. The effect of feedback on pathway transient-response. Biochem J 1986, 233, 871–875.
11. Schuster, S.; Heinrich, R. Time hierarchy in enzymatic—reaction chains resulting from optimality principles. J Theor Biol 1987, 129, 189–209.
12. Cascante, M.; Melendezhevia, E.; Kholodenko, B.; Sicilia, J.; Kacser, H. Control analysis of transit-time for free and enzyme-bound metabolites: Physiological

and evolutionary significance of metabolic response-times. Biochem J 1995, 308, 895–899.
13. Gleiss, P.M.; Stadler, P.F.; Wagner, A.; Fell, D.A. Small cycles in small worlds. Adv Complex Systems 2001, 4, 207–226.
14. Barabasi, A.L.; Albert, R.; Jeong, H. Mean-field theory for scale-free random networks. Physica A 1999, 272, 173–187.
15. Albert, R.; Barabasi, A.-L. Statistical mechanics of complex networks. 2002, 74(1), 47–97.
16. Benner, S.A.; Ellington, A.D.; Tauer, A. Modern metabolism as a palimpsest of the RNA world. Proc Natl Acad Sci USA 1989, 86, 7054–7058.
17. Wachtershauser, G. Before enzymes and templates: Theory of surface metabolism. Microbiol Rev 1988, 52, 452–484.
18. Kuhn, H.; Waser, J. On the origin of the genetic code. FEBS Lett 1994, 352, 259–264.
19. Taylor, B.L.; Coates, D. The code within the codons. Biosystems 1989, 22, 177–187.
20. Morowitz, H.J. Beginnings of cellular life. Yale University Press: New Haven, 1992.
21. Waddell, T.G.; Bruce, G.K. A new theory on the origin and evolution of the citric acid cycle. Microbiol Sem 1995, 11, 243–250.
22. Lahav, N. Biogenesis. Oxford University Press: New York, 1999.

Although the structure of
metabolic networks may not be a
reflection of their robustness, it
may teach us about their history.

18 C O M P L E X I T Y © 2003 Wiley Periodicals, Inc.



23. Hughes, T.R.; Marton, M.J.; Jones, A.R.; Roberts, C.J.; Stoughton, R.; Armour, C.D.; Bennett, H.A.; Coffey, E.; Dai, H.Y.; He, Y.D.D.; Kidd, M.J.; King, A.M.; Meyer,
M.R.; Slade, D.; Lum, P.Y.; Stepaniants, S.B.; Shoemaker, D.D.; Gachotte, D.; Chakraburtty, K.; Simon, J.; Bard, M.; Friend, S.H. Functional discovery via a
compendium of expression profiles. Cell 2000, 102, 109–126.

24. Uetz, P.; Giot, L.; Cagney, G.; Mansfield, T.A.; Judson, R.S.; Knight, J.R.; Lockshon, D.; Narayan, V.; Srinivasan, M.; Pochart, P.; QureshiEmili, A.; Li, Y.; Godwin,
B.; Conover, D.; Kalbfleisch, T.; Vijayadamodar, G.; Yang, M.J.; Johnston, M.; Fields, S.; Rothberg, J.M. A comprehensive analysis of protein-protein interactions
in Saccharomyces cerevisiae. Nature 2000, 403, 623–627.

25. Ito, T.; Chiba, T.; Ozawa, R.;Yoshida, M.; Hattori, M.; Sakaki, Y. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad
Sci USA 2001, 98, 4569–4574.

26. Jeong, H.; Mason, S.P.; Barabasi, A.-L.; Oltvai, Z.N. Lethality and centrality in protein networks. Nature 2001, 411, 41–42.
27. Wagner, A. The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. Mol Biol and Evol 2001, 18, 1283–1292.

© 2003 Wiley Periodicals, Inc. C O M P L E X I T Y 19


