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Abstract

Motivation: The question addressed here is how cooperative
interactions among transcription factors (TFs), a very
frequent  phenomenon in eukaryotic  transcriptional
regulation, can be used to identify genes that are regulated by
one or more TFs with known DNA binding specificities.
Cooperativity may be homotypic, involving binding of only
one transcription factor to multiple sites in a gene's regulatory
region. It may also be heterotypic, involving binding of more
than one TE. Both types of cooperativity have in common that
the binding sites for the respective TFs form tightly linked
‘clusters’, groups of binding sites often more closely
associated than expected by chance alone.

Results: A statistical technique suitable for the identification
of statistically significant homotypic or heterotypic TF
binding site clusters in whole eukaryotic genomes is
presented. It can be used to identify genes likely to be
regulated by the TFs. Application of the technique is
illustrated with two transcription factors involved in the cell
cycle and mating control of the yeast Saccharomyces
cerevisiae, indicating that the results obtained are biologically
meaningful. This rapid and inexpensive computational
method of generating hypotheses about gene regulation thus
generates information that may be used to guide subsequent
costly and laborious experimental approaches, and that may
aid in the assignment of biological functions to putative open
reading frames.

Availability: Software used for statistical analysis is available
from the author upon request.

Contact: wagnera@unm.edu

Introduction

The identification of regulatory regions in eukaryotic DNA
has been the focus of great research interest in areas as diverse
as microbial genetics and mammalian developmental biology.
With several eukaryotic genome projects nearing completion,
the unprecedented challenge of characterizing regulatory
regions in entire genomes has arisen. The statistical
techniques developed and applied here are concerned with a

genome-wide characterization of regulatory regions
mediating transcriptional regulation of protein coding genes.

All eukaryotes share a highly conserved mechanism of
transcriptional regulation (Ptashne, 1988; Ptashne and Gann,
1997). Central to this mechanism are proteins called
transcription factors (TFs), which bind to specific, short DNA
sequence motifs in the cis-regulatory region (promoter,
enhancer) of a gene and activate or repress its transcription.
Because experimental characterization of enhancers is
difficult, computational techniques leading to their tentative
characterization have a long tradition. However, the success
of these techniques is often very limited. It is common practice
among molecular biologists to screen the DNA region near a
gene of interest for the occurrence of specific DNA sequence
motifs that are binding sites for known TFs, an approach that
is easily extended to a genome-wide scale (Das et al., 1997).
The hope is that the encountered binding sites point towards
TFs that play a role in the transcriptional regulation of that
gene. This is often not the case, because several factors, such
as chromatin structure, may influence the ability of a TF to
bind a site or to regulate transcription. Also, encounters of
non-functional TF binding sites are to be expected, given that
many binding sites are abundant in genomic DNA.

A key feature of eukaryotic transcriptional regulation is that
genes are often regulated by more than one TF. An illustrative
example from higher eukaryotes is the developmental gene
Cyllla from the sea urchin Strongylocentrotus purpuratus. Its
promoter comprises 2300 bp upstream of the coding region.
At least nine different TFs regulate the expression of this gene
via 23 binding sites contained in the 2.3 kb regulatory region
(Kirchhamer et al., 1996). Interactions among DNA-bound
factors at such a promoter can be homotypic, in which case
they involve interactions among multiple bound factors of the
same kind; heterotypic, involving interactions among TFs of
different kinds; or both (Figure 1). The method presented here
will take advantage of the ubiquitous occurrence of homo- and
heterotypic interactions at eukaryotic promoters, and the
associated close spacing of TF binding sites. Groups
(‘clusters’) of very closely spaced TF binding sites within the
regulatory region of a gene are unlikely to have occurred ‘by
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a) A homotypic group of 5 binding sites for the yeast TF al42 at the HO promoter
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b) A homotypic group of 7 binding sites for the yeast TF SBF at the HO promoter
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Fig. 1. An example for homotypic and heterotypic groups of TF binding sites from the S.cerevisiae HO endonuclease promoter on chromosome
IV (after Lewin, 1994, p. 1073). The five binding sites for TFy, al/a2, are located at positions X(y,... XD} 4 where X1} would correspond
to the al/o2 binding site closest to the left telomere of chromosome IV. Similarly, the positions for the binding sites of TF», SBF, are indexed

X@,

. X@p 6. If binding sites for TF; and TF, are independently Poisson distributed with parameters (probabilities of site occurrence)

AL and L@, respectivelyrand if the positions X®; of the two TFs are considered jointly [as indicated in (c)], then the joint site distribution

is Poisson with parameter A(D + A(2)

chance alone’ (in contrast to individual sites). Rather,
clustering of TF binding sites may indicate that the respective
TFs are involved in the gene’s regulation. The key idea
underlying the technique developed below is that this
observation, when formulated in a statistically rigorous way
and applied to an entire genome, can be used to detect the
‘best’ candidate genes for regulation by one or more TFs.
These are the genes whose cis-regulatory regions contain
clusters of TF binding sites so closely linked that they are
unlikely to have occurred by chance alone. The technique is
not designed to identify as many genes as possible that are
regulated by one or more TFs of interest, but only the best
candidates. The price paid for such conservativism is that
many genes regulated by a TF will not be detected. Itis a price
well worth paying, because a conservative approach will
generate candidate genes that seriously merit further
experimental investigation. Given the ubiquity of
cooperativity in transcriptional regulation, it is perhaps
surprising that no statistically rigorous techniques are
currently available to ask questions about the combinatorial
transcriptional regulation of specific genes.

The genome of the yeast Saccharomyces cerevisiae,
currently the only eukaryote for which a complete,

well-annotated genome sequence is available, will be used to
illustrate two simple applications of the technique. Yeast has
advantages as well as disadvantages for this type of analysis.
Because of its fairly short (~600 bp on average) and less
complex upstream regulatory regions compared to higher
eukaryotes, yeast is probably not the best eukaryotic organism
to screen for cooperative interactions among known TFs. On
the other hand, the small size and organization of the yeast
genome provide a number of advantages, such as that
potential yeast promoter regions are in general located
upstream of the coding region (Struhl, 1989, 1995), and that
the yeast genome does not contain many tandemly repeated
sequences other than rDNA and CUP genes (Olson, 1992).

Method and results

The statistical tests in this section are designed for the
identification of clusters of TF binding sites. Tests are detailed
for two TFs with different binding sites, TF; and TF,.
Generalization to three or more TFs is straightforward.

The point of departure is a null hypothesis, which is here
that binding sites for TF; are Poisson distributed in genomic
DNA with parameter A(? (Karlin and Taylor, 1975). This
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hypothesis ‘is somewhat problematic, because it can be
violated for reasons that have nothing to do with cooperative
interactions in transcriptional regulation. However, the two
most important confounding factors can be eliminated. The
first has to do with the structure of the site itself. Very short
sites, longer sites in which a large number of mismatches or
nucleotide ambiguities are allowed, or sites with a repetitive
structure (e.g. 5-GGGGG-3) will not follow a Poisson
distribution even in random DNA with independently
distributed nucleotides. Because such sequence features may
not always be obvious, it is best to eliminate this possibility by
testing whether site distribution is consistent with a Poisson
distribution in a long stretch of computationally generated
pseudorandom DNA. This is most conveniently done via a
goodness-of-fit test that assesses whether the distances
between adjacent sites are exponentially distributed (Sokal
and Rohlf, 1981). The second confounding factor concerns
the parameter A, which is the probability of finding a binding
site for a TF at an arbitrarily chosen position in the genome.
The enormous compositional heterogeneity of genomic DNA
implies that site occurrence probability may vary across
regions of the genome, such that the assumption of a constant
probability A is unrealistic (for an example, see Figure 2). This
issue is more difficult to address. Despite some advances in
statistical modeling of DNA sequences (e.g. Almagor, 1983;
Kleffe and Langbecker, 1990; Henderson et al., 1997; for a
review, see Li, 1997), there currently exists no satisfactory
statistical model of DNA-r that accounts for both the
heterogeneity and non-stationary properties (Bernardi et al.,
1988; Karlin and Brendel, 1993) of genomic DNA. However,
while there is currently no completely satisfactory solution to
this problem, it will be alleviated here by incorporating
information on both global (genome-wide) and local DNA
composition into the statistical analysis.

The following section first reviews a significance test that
asks whether & consecutive binding sites for one TF, ie. a
homotypic group of binding sites, are more tightly linked than
expected by chance alone (Wagner, 1997). It then extends the
test to groups of binding sites for two TFs, i.e. heterotypic
groups of binding sites. The section after that is concerned
with variation in site occurrence probability due to
compositional variation along a chromosome.

Significance measures for groups of binding sites

Denote as (X, ..., Xx) the positions at which a transcription
factor binding site S or its reverse complement are
encountered on the DNA. Further, define as Xg the beginning
(5" end of the top strand) of the DNA sequence (genome) to
be analyzed. The quantity D;; = X; — X; denotes the distance

between site X; and X;. D;; 4k 1= ) {25 Diyjivjur (k> Dis
the length of a stretch of DNA spanning exactly & sites. It will
be referred to as a homotypic k-cluster. Under the Poisson null
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Fig. 2. Three estimators for the probability of occurrence of the Mcml
binding site with consensus sequence 5-DCCYWWWNNRG-3 on
chromosome IV of S.cerevisiae. The solid fluctuating graph is the
estimated probability Ay(y) based on the dinucleotide composition of
consecutive 5 kb windows spanning the chromosome. To obtain this
estimator, all DNA words matching the consensus and containing only
letters ACTG were explicitly evaluated, and their probabilities of
occurrence, calculated as described in Wagner (1997), were added. The
solid horizontal line is the average of this estimator over all windows.
The dashed horizontal line is the estimator A, = K/N which is based on
the actual number, K = 959, of MCM1 binding sites on this
chromosome of length N = 1.53 x 10 nucleotides.

hypothesis, the distribution of the distance between successive
sites (2-clusters), D;; 4+ 1, is exponential with parameter A,
where A is the probability of finding a binding site at a specific
position on the DNA. It follows that the length z of k-clusters
follows a Pearson Type III distribution with density:

A k2, -z

—I‘(k—l)()‘z) e k> 1 hH
where I'(k) = (k - 1)! is the gamma function. This can be seen
from the characteristic function of the exponential distribution,
&(®= (1 — it/A)~! (Abramowitz and Stegun, 1972, 26.1.31).For
a given significance level P, an observed k-cluster of length x is
called significantly shorter than expected by chance alone (i.e.
the null hypothesis is rejected) if
Prob (D41 < x) = —F(I};_l I (A2 % iy < P )

0

The extension to two TFs, TF; and TF;, is straightforward.
In complete analogy to homotypic groups of binding sites, the
null hypothesis here will be that the binding sites for these
TFs, S and S@ are independently distributed in the genome,
and that each follows the Poisson model with parameters A1)
and A, respectively. More specifically, denote as
(X9,... ,Xﬁg) the K;(N) positions at which a binding site for
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TF; occurs along a stretch of DNA comprising N nucleotides.
K;(N) can be viewed as a Poisson process with parameter A(),
It follows from the characteristic function of Ki(V), ¢;(f) =
exp[AON(e — 1)] that the sum Kj(N) + Kx(N) is again a
Poisson process with characteristic function ¢1(f) X ¢2(r) =
explAD + A@)N(e¥ - 1)]; hence, a Poisson process with
parameter A = A1) + A( (see also Karlin and Taylor, 1975).
This is convenient, since it permits ‘pooling” of information
from occurrences of sites for each of the two TFs. The
resulting new Poisson process can be analyzed with the
techniques already introduced for homotypic groups of
binding sites. Specifically, given a significance level P, a
group of k consecutive binding sites for two transcription
factors (a heterotypic k-cluster), and the number of
nucleotides x from the first to the last site in the group,
significant clustering is observed if

i J [ + AP)] 200y < P (3)
0

As in the case of homotypic interactions, TF binding sites
can violate the null hypothesis for reasons inherent in the sites
themselves. The hypothetical TF binding sites S-CATGGC-3
[SM] and 5-ATAGCCA-3 [S@)] serve as examples. S@
overlaps the reverse complement of S by 4 bp, thus site
occurrences will not be statistically independent. While K (V)
and K>(N) may behave as Poisson processes when taken
individually, the sum K;(N) + K3(N) is no longer a Poisson
process. It is thus advisable to test, via a long stretch of
pseudorandom DNA and a goodness-of-fit test, whether
K1(N), K>(N) and K1(N) + K»(N) are Poisson processes with
parameters A(D, A@ and [A(D + A], respectively. If they are
not, the respective sites are not amenable to this type of
analysis.

A critical issue here is to choose an appropriate significance
level P. When analyzing entire genomes for clusters of TF
binding sites, a large number of significance tests are carried
out, not all of which are mutually independent. For example,
for K = 10° encountered sites and for the analysis of
heterotypic 5-clusters (k = 5),there are of the order of 103
groups of heterotypic 5-clusters. These can be grouped into
approximately K/(k — 1) = 250 non-overlapping 5-clusters.
Significance tests for non-overlapping 5-clusters are
independent. 1/P should be greater than the number of
independent significance tests to avoid high Type I error
probabilities (Sokal and Rohlf, 1981). For a given k, and a total
number of K binding sites in the genome, the significance
threshold P = (k — 1)/K is used here.

A minor complication occurs if the binding sites for one TF
are more abundant than those for the other TF, e.g. if A® >>
AD. It can be shown that the mean number of sites S
between two consecutive occurrences of site S is given by
A@/D, Thus, if A® >> AMD, many sites S may lie between

two consecutive occurrences of S(I. In this case, the test
introduced thus far will not be very sensitive to heterotypic
associations, but may largely measure homotypic site
interactions for the more frequent site. Various remedies for
this situation, which will be explored in a forthcoming
contribution, are conceivable. They revolve around the
analysis of clusters that include heterotypic site pairs, i.e.
adjacent sites of different types.

Estimation of site occurrence probability A

It has so far been assumed that site occurrence probability A(?
is constant along a chromosome. In view of compositional
heterogeneity of genomic DNA, this assumption has to be
relaxed, which changes the statistical model to that of an
inhomogeneous Poisson process (Parzen, 1962). To model
variation of A(? appropriately, two complementary estimates
of ADare used. For simplicity of notation, consider for the
moment only TF and set & = A(), The first estimate is a global
estimate A, which is the number of sites K found per N
nucleotides, i.e. A, = K/N. This is a maximum-likelihood
estimator, whose sampling standard deviation scales as INK
(Kendall, 1952, p. 22); hence, the need to base the estimate on
large stretches of DNA.

The second estimate of site occurrence probability is a local
estimate A(y) whose value is based on the dinucleotide
composition in a (short) region of interest around a location y
in the genome. It is currently limited to dinucleotide
composition and assumes that the underlying DNA sequence
has a Markov property (Karlin and Taylor, 1975; Karlin and
Macken, 1991a,b; Wagner, 1997). While certainly not the
only way to model compositional heterogeneity (for a review,
see Li, 1997), this approach is chosen here because of its
computational tractability for the large genomic DNA regions
to be analyzed.

A, and Ay(y), taken individually, are not adequate. Ay(y)
alone, applied to each location y in the genome, has the
undesirable property that its average, A(y), over entire
chromosomes does often not agree with the observed quantity
Ag (for an example, see Figure 2). The reason for this
discrepancy, which has also been observed for the distribution
of restriction sites in Escherichia coli (Karlin and Macken,
1991a), may have to do with higher order correlations among
nucleotides as well as with selective pressures that affect the
abundance of specific sequence motifs because they have
some unknown function in the cell. A, on the other hand,
completely ignores the enormous variability in site occurrence
probabilities along a chromosome (Figure 2). In light of these
observations, the following compound estimator for site
occurrence probability is proposed.

AY) = Ay + MO-AD) @
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M(y) is a site occurrence probability estimate based on the
average dinucleotide composition of a chromosome. A(y)
takes both local sequence composition and observed genomic
site counts into account, and it compensates for differences

between A(y) and 7\g Following the last section:
200) + A2G) = M +AD + ) + APTo " - W(Z)

is the appropriate measure for the compound process
comprising two different TFs.

A location y on a chromosome is represented here by a
window over which dinucleotide composition is evaluated.
Since statistical significance of groups of TF binding sites is
at issue here, nucleotide composition is calculated for any
analyzed group of k consecutive sites from the DNA sequence
between the first and last site in the group. The implicit
assumption here, made for reasons of computational
feasibility, is that nucleotide composition is constant within
this window. For very tightly linked groups of binding sites,
an important source of statistical bias are those mono- and
dinucleotides that are contained in individual binding sites.
They will be overly frequent. To avoid this potential problem,
base composition is calculated in a 500 bp window centered
around the group for groups of binding sites spanning
<500 bp.

To ensure wide applicability of the technique, conventional
consensus sequences are used instead of position weight
matrices (PWMs; Stormg, 1990; Fickett, 1996) in
determining the number K of matches to a site. When
available, a good PWM is vastly superior to a simple
consensus sequence, because it makes use of a much larger
amount of binding data. Indeed, it has been shown in
particular cases (Fickett, 1996) that PWM-based models
provide accurate estimates of the binding affinity of a TF atits
site. However, because this information is not easily obtained,
the number of TFs for which well-supported PWMs are
available is small.

In applying the above method to the genome of S.cerevisiae,
the following steps were taken. First, for two different
transcription factors of interest, the number and positions of
all their binding sites in the genome are recorded. If two
binding sites for the same factor overlap, one of the two sites
(randomly chosen) is eliminated from further analysis, the
rationale being that usually two overlapping sites can be
occupied by only one TE. To increase the accuracy of
estimates for A, site counts were pooled from all 16
chromosomes. Then, for £ =2 to k= 15, the significance of all
heterotypic k-clusters, i.e. groups of £ consecutive binding
sites, regardless of site type [S™) or §©], is evaluated. Only
k-clusters with greater statistical significance than the
threshold P located in the upstream region of an open reading
frame (ORF) are listed below. Considering that there may be
thousands of TF binding sites in a genome, and considering

that local dinucleotide composition is evaluated for each
k-cluster, it becomes evident that the computational
requirements are considerable.

Application to the yeast TFs Mcml and Stel?2

Mcml and Stel2 are two key regulators of cell cycle and
mating response. MCMI, originally identified as a gene
required for minichromosome maintenance (Maine et al.,
1984), encodes a transcription factor that is a close relative to
the mammalian serum response factor, SRF (Wynne and
Treisman, 1992). In cooperation with the TF al, Mcml
activates the transcription of o-cell type-specific genes; in
cooperation with 2, it represses transcription of
a-type-specific genes in a-cells (for a review, see Dolan and
Fields, 1991); in cooperation with Sff, it regulates G;-specific
transcription (Althoefer et al., 1995). Furthermore, Mcm1 has
been implicated in the regulation of arginine metabolism, as
well as in the synthesis of cell wall and cell membrane
structures (Messenguy and Dubois, 1993; Kuo and Grayhack,
1994). Mcml can bind to DNA by itself ir vitro, but its affinity
is increased in the presence of the appropriate cofactor
(Bender and Sprague, 1987). Two independent studies
provide information on the range of DNA sequences bound
by Mcml. One of the studies used an in vitro selection
scheme, starting from a library of yeast genomic DNA to
identify promoter fragments strongly bound by Mcm! (Kuo
and Grayhack, 1994); the other study selected Mcml binding
sites from a pool of random DNA sequences (Wynne and
Treisman, 1992). The consensus binding sites derived from
these studies are S5-TTTCCNAWWNNRGNAA-3 and
5-DCCYWWWNNRG-3, respectively, similar to the
recognition site deduced earlier from mating-type genes
regulated by Mcm1 (Dolan and Fields, 1991).

The transcription factor Stel2 regulates both the basal and
mating pheromone-induced transcription of many genes
involved in mating. Regulation is mediated by binding of
Stel2 to at least one pheromone-responsive element (PREs;
5-TGAAACA-3; Sprague and Thomer, 1992). Cooperative
binding at multiple PREs or with other TFs greatly enhances
transcriptional activation via Stel2 (Yuan and Fields, 1991;
Sprague and Thorner, 1992). The basal expression level of
FARI, a gene necessary for mating pheromone-induced cell
cycle arrest, is cell cycle regulated with expression peaking in
G and in the Go/M phase (Oehlen et al., 1996). This
regulation is functionally important. For example, elimination
of the G expression peak causes failure of cell cycle arrest in
response to mating pheromone. Stel2 and Mcml jointly
regulate the basal expression of FAR1. Given the importance
of all three genes in cell cycle regulation, it is natural to ask
what other important genes might be regulated jointly by
Mcm1 and Stel2. To address this question with the approach
pursued here, one first has to establish that the respective
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binding sites, when considered both separately and jointly, are
Poisson distributed in random DNA.. This is the case (Table 1).
Moreover, on the coarse level of resolution provided by a
conventional goodness-of-fit test, the sites appear Poisson
distributed in yeast genomic DNA as well. Table 2 shows the
number of significant clusters of binding sites ranked by their
significance, i.e. the statistically most unlikely (most tightly

linked) clusters appear on top of the table. Two ORFs in one
entry of the table indicate that the respective cluster occurs in
the upstream region of both adjacent ORFs, i.e. the ORFs are
in a head-to-head orientation. Because information from both
types of sites is pooled in the technique applied here, Table 2
includes clusters that contain only Mcml binding sites, only
Stel2 binding sites, as well as heterotypic clusters.

Table 1. Binding site counts and tests for Poisson distribution of Mcm1 and Ste12 binding sites in the S.cerevisiae genome and in random DNA

Site Yeast genome Random DNA
Mismatches No. of ¥2 (d.f., P) G (df., P) x2 (df, P) G (df., P)
allowed sites
MCM1 0 7036 12.7 (9, 0.18) 12.5(9,0.19) 11.4 (9, 0.25) 12.9(9,0.17)
STE12 0 3400 3.5(8,0.9) 3.47(8,0.9) 2.6 (8, 0.96) 2.6 (8, 0.96)
MCM1/STE12 10 436 9.6 (10, 0.47) 9.7 (10, 0.47) 5.2(9,0.81) 6.0(9,0.74)

%2 and G (likelihood ratio) tests (Sokal and Rohlf, 1981) test for consistency with a null hypothesis of exponential inter-site distributions. None of the P values
in the table suggest rejection of the null hypothesis. The Mcm1 consensus sequence 5-DCCYWWWNNRG-3 (no mismatches allowed; Wynne and Treisman,
1992) was used here. Analogous results (not shown) are obtained with an alternative Mcm1 consensus sequence, S-TTTCCNAWWNNRGNAA-3 (one mismatch
allowed; Kuo and Grayhack, 1994).

Table 2. Candidate genes for regulation by Mcm1, Stel2 or both factors

Chromosome ~ ORF Sites/ Mcml (consensus)/ ~ Position® Statistical Structure or function®
bp? Ste12b significance P 4
12 YLRO037C 8/741 7 (shy/l -350 93x 1076 Unknown
7 SCw4 6/432 5 (shy/1 -274/-257  46x 1075 Cell wall protein
14 ERGZ4/YNL27;W 3129 0 (loy3 -325/-159 49 %1075 Sterol C-14 reductase/Unknown
6 YFLO27C/STE2+ 5/306 3 (sh)2 -239/-134 67 x 1075 Unknown/Mating pheromone receptor
1 CLN3+ 3/84 3 (lo)/0 -890 76 x 1075 G1 cyclin
8 STE12 4/166 1 (sh)/3 -319 80x 1073 Transcription factor
14 YGP1 6/484 6 (sh)0 -368 12x 104 Glycoprotein synthesized in response to nutrient limitation
10 ELO1/CDC6+ 3774 3 (lo)y0 -321/-177  12x10% Fatty acid biosynthesis/Initiation of DNA replication
14 SUII/SLA2 4/178 3 (shy/1 -316/-68 13x 104 Translation factor/Membrane cytoskeleton assembly
14 CLA4 3/93 2 (lo)1 -330 18 x 10% Protein kinase, septin ring formation in cytokinesis
10 PRY3 4/510 2 (lo)2 -155 19x 104 Similar to plant pathogen related protein
6 YFRO44C/YFRO4SW  5/357 4 (shy/1 -366/-313  26x 104 Unknown/Unknown
16 " YPLOSOW 92507 5 (shy/4 422 29x 10# Unknown
2 UBC4/TEC1 4/422 0 (lo)/4 -1491/-94  35x 10 Ubiquitin-conjugating enzyme/TF regulating Tyl expression

aNumber of TF binding sites in the significant cluster/cluster length, from first to last site, in base pairs.

bNumber of Mcm1 and Ste12 binding sites in the cluster, respectively. ‘sh’ and ‘lo’ in parentheses indicate whether the short or the long MCM 1 consensus se-
quence was used (see below).

¢Binding site closest to first codon of ORF. i

dStatistical significance based on global site count in the genome, and on local dinucleotide distribution, as explained in Method and results.

¢From the S.cerevisiae genome database (http://genome-www.stanford.edu/Saccharomyces); see also references in the text.

+, Gene is known to be regulated by one or both TFs. Clusters shown are based on separate searches for two Mcm1 consensus sequences, 5-DCCYWWWNNRG-3
(‘sh’; no mismatch aliowed; Wynne and Treisman, 1992) and 5S-TTTCCNAWWNNRGNAA-3 (‘lo’; one mismatch allowed; Kuo and Grayhack, 1994).

Notably, two of the three most tightly linked clusters are
associated with ORFs of unknown function. One of them
contains only binding sites for Stel12, making it a candidate

for regulation by Stel2 alone or in cooperation with factors
other than Mcm1. The fourth cluster is associated with STE2,
which is the only gene other than FAR1 whose regulation by
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Ste12 and Mcml has been demonstrated experimentally
(Hwang-Shum et al., 1991). The genes CLN3 and CDC6 are
known experimentally to be regulated by Mcm1. Consistent
with this, they are associated with significant clusters of
Mcml sites. These three examples show that the method
identifies genes known to be regulated by the respective fac-
tors. The STE12 gene itself is associated with a significant
cluster of four sites, three of which are perfect matches to the
PRE, suggesting the possibility of Stel2 autoregulation in
response to pheromone. Consistent with this is the observa-
tion that STE12 transcription is induced moderately in re-
sponse to pheromone (Sprague and Thorner, 1992). The re-
maining ORFs in the table include ORFs of unknown func-
tion, as well as known genes, most of which are poorly
characterized. Among them, the most promising candidates
for further investigation may be SLA2 and CLA4, based on
their and MCM1’s implication in cell wall synthesis and
maintenance (Table 2 and Kuo and Grayhack, 1994). For
example, CLA4, a protein kinase, is involved in formation of
the septin ring required for cytokinesis (Cvrckova et al.,
1995). Tts activity is cell cycle regulated, peaking near mi-
tosis (Benton et al., 1997). Another such candidate is the
otherwise poorly characterized cell wall protein SCW4 (see
also below).

Among their other functions, Mcm1 and Ste12 regulate the
expression of cell cycle regulated genes, both separately and
jointly (Althoefer et al., 1995; Oehlen ez al., 1996). Thus, if
Table 2 contains genes other than those discussed above that
are cell cycle regulated in a pattern consistent with that found
for other Mcm1 and Stel2 regulated genes, such genes are
prime candidates for further study. Circumstantial evidence
of this sort is provided by Spellman et al. (1998) in a paper
using micro array technology to determine which of all yeast
genes are cell cycle regulated. According to these results,
five additional genes in Table 2 show cell cycle-dependent
expression. These are SCW4 (peak expression in M), YGP1
(M/Gy), ELO1 (M/Gy), PRY3 (Gy) and TEC1 (M/Gy; Spel-
Iman ef al., 1998). While a consistent expression pattern is
certainly not proof of a regulatory interaction, it certainly
serves to identify candidates for further study.

Discussion

Statistical significance of TF binding site clusters does not,
of course, imply biological significance. However, the ob-
servation that the method detects genes known to be regu-
lated by the studied TFs suggests that its results are biologi-
cally meaningful. This is further supported when genes are
found whose regulation by the studied TFs has not been dem-
onstrated, but for which circumstantial experimental evi-
dence points towards such regulation. By pursuing a statisti-
cally conservative approach of forming hypotheses only

based on clusters of TF binding sites, and not on individual
sites alone, it is hoped that the enormously high false-posi-
tive rate normally associated with in silico promoter charac-
terization can be lowered. Precise estimates of this false-
positive rate would require knowledge of the genes regulated
by a TF of interest. This knowledge is likely to become avail-
able soon, as large-scale expression studies in suitable mu-
tants become possible in S.cerevisiae (DeRisi et al., 1997).

Higher eukaryotes have regulatory regions that are incom-
parably more complex than most yeast promoters. They are
thus better candidates for fruitful applications of this method.
However, they also pose unique problems because of (i) the
vastly larger genomes involved, (ii) the abundance of tandem
repeats, (iii) the existence of regulatory regions interspersed
between genes and (iv) the often ill-defined location of cod-
ing regions. Given these complexities, one method alone will
not be sufficient to characterize regulatory regions, and in-
formation from several complementary techniques may have
to be combined. Many such techniques have been developed
in the recent past (for reviews, see Duret and Bucher, 1997;
Fickett and Hatzigeorgiou, 1997; Lavorgna et al., 1998).
They fall into two categories, the first of which attempts to
distinguish between promoter and non-promoter sequences,
based on (i) distinct oligonucleotide distribution profiles
(Chen et al., 1997; van Helden et al., 1998), (ii) detection of
complex regulatory modules, such as retroviral long terminal
repeats (Frech et al., 1997), (iii) differential distribution of
individual known TF binding sites and TATA boxes (Kel et
al., 1995; Kondrakhin et al., 1995; Prestridge, 1995, 1996;
Kolchanov et al., 1998), (iv) pattern recognition algorithms
based on neural networks (Lukashin et al., 1989; O’Neill,
1991; Matis et al., 1996), (v) Bayesian statistics (Crowley et
al., 1997) and (vi) phylogenetic footprinting (Shelton et al.,
1997). A second group of methods, such as the one presented
here, attempts to identify more specific regulatory interac-
tions (e.g. Fickett, 1996; Brazma et al., 1997, 1998, Kolcha-
nov et al., 1998; Wasserman and Fickett, 1998). Each of
these has its unique strengths and weaknesses. In combina-
tion, they will aid in sifting through an astronomical number
of possible gene interactions, and identify candidates worthy
of further experimental investigation, at a cost incomparably
lower than any experimental approach.
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