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Abstract
Do large populations always outcompete smaller ones? Does increasing the mutation rate have a similar effect to increas-
ing the population size, with respect to the adaptation of a population? How important are substitutions in determining 
the adaptation rate? In this study, we ask how population size and mutation rate interact to affect adaptation on empirical 
adaptive landscapes. Using such landscapes, we do not need to make many ad hoc assumption about landscape topography, 
such as about epistatic interactions among mutations or about the distribution of fitness effects. Moreover, we have a bet-
ter understanding of all the mutations that occur in a population and their effects on the average fitness of the population 
than we can know in experimental studies. Our results show that the evolutionary dynamics of a population cannot be fully 
explained by the population mutation rate N�; even at constant N�, there can be dramatic differences in the adaptation of 
populations of different sizes. Moreover, the substitution rate of mutations is not always equivalent to the adaptation rate, 
because we observed populations adapting to high adaptive peaks without fixing any mutations. Finally, in contrast to some 
theoretical predictions, even on the most rugged landscapes we study, small population size is never an advantage over larger 
population size. These result show that complex interactions among multiple factors can affect the evolutionary dynamics 
of populations, and simple models should be taken with caution.
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Introduction

How do mutation rate and population size interact on dif-
ferent landscape topographies to affect a population’s 
adaptation? Answering this question can be important for 
predicting the evolutionary dynamics of different kinds 
of populations, such as those of pathogens or endangered 
species. There are many factors affecting the adaptation of 

organisms, including the presence or absence of genetic 
recombination; the structure of the fitness landscape (Wright 
1932), e.g. its shape and size; DNA mutation rates; the dis-
tribution of fitness effects of mutations; and effective popu-
lation size (Allen 2000; McDonald and Linde 2002; Wilke 
2004; Desai and Fisher 2007; Desai et al. 2007; Handel and 
Rozen 2009; Jain et al. 2011; Lourenço et al. 2013). We 
focus on two of these factors; namely, effective population 
size N

e
 (Charlesworth 2002; Luikart et al. 2010) and muta-

tion rate �, to better understand their role in adaptation on 
empirical adaptive landscapes. Specifically, we would like 
to know at which mutation rates and levels of landscape rug-
gedness smaller or larger populations have an evolutionary 
advantage. Do smaller populations outcompete larger ones 
when landscape ruggedness increases? What is the role of 
mutation rate in the adaptation of populations of different 
sizes?

Population size has a major impact on evolutionary 
dynamics. Under some circumstances, it is advantageous for 
a population to be larger. The reason is that natural selection 
is more effective in removing weakly deleterious mutations 
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and fixing weakly beneficial mutations (Ohta 1992). Con-
sequently, the beneficial mutations go to fixation more fre-
quently in larger populations, and deleterious mutations go 
to fixation less frequently (Lanfear et al. 2013; Akashi et al. 
2012). Additionally, when the product of population size and 
mutation rate (N�) is large enough, an evolving population 
can cross fitness valleys through a process called stochastic 
tunneling (Komarova et al. 2003; Iwasa 2004; Weinreich and 
Chao 2005; Weissman et al. 2010; Altland et al. 2011). Spe-
cifically, such a population is more likely to produce double 
mutants that do not experience the deleterious effect of a 
single mutant, which may allow it to cross a fitness valley 
(Szendro et al. 2013).

Producing more mutations is not always an advantage. 
When several beneficial mutations are simultaneously pre-
sent in an asexual population, they compete with each other 
for fixation. This slows the time to fixation of a beneficial 
mutation. This phenomenon is called clonal interference 
(Gerrish and Lenski 1998), and it can slow down the rate 
of adaptive substitutions in a population (Charlesworth and 
Eyre-Walker 2006). Producing fewer mutations per genera-
tion, smaller populations are less likely to be affected by 
clonal interference, and they may thus adapt faster (Gerrish 
and Lenski 1998; Szendro et al. 2013). Furthermore, genetic 
drift is stronger in smaller populations. In a rugged land-
scape, where achieving a higher fitness likely requires pass-
ing through fitness valleys, strong genetic drift facilitates 
valley crossing (Handel and Rozen 2009; Jain et al. 2011). 
Moreover, some fitness valleys for large populations become 
flat for smaller populations, because any fitness difference 
between two mutations smaller than 1/N becomes invisible 
to selection (Ohta 1992; Jain et al. 2011; Szendro et al. 2013; 
Lachapelle et al. 2015).

The many factors affecting evolutionary dynamics often 
interact in non-intuitive ways to define the evolutionary out-
come of a population. Therefore, most previous theoretical 
studies include simplifying assumptions to model the role 
of one or a few of these factors (Desai and Fisher 2007; 
Desai et al. 2007; Campos and Wahl 2010; Lourenço et al. 
2013; Lachapelle et al. 2015). Examples include epistatic 
interactions among mutations (Cordell 2002; de Visser et al. 
2011), and the distribution of fitness effects (Cowperthwaite 
et al. 2005; Eyre-Walker and Keightley 2007; Tamuri et al. 
2012), which define the ruggedness of a fitness landscape. 
For example, Handel and Rozen (2009) used randomly gen-
erated fitness landscapes to study the effect of population 
size on the evolution of microbes; and Jain et al. (2011) used 
a three-locus model with arbitrary fitness values for each 
genotype to study the advantage of small populations on rug-
ged landscapes. Another example is an assumed distribution 
of fitness effects with rare beneficial mutations to predict the 
association between the substitution rate of beneficial muta-
tions and the population size (Lanfear et al. 2013). Whether 

beneficial mutations are rare depends on the proximity of a 
population to a fitness peak. Violation of such assumptions 
can lead to dramatically different evolutionary outcomes 
(Lanfear et al. 2013). In experimental studies, where realis-
tically complex fitness landscapes are examined (Rozen et al. 
2008; Kryazhimskiy et al. 2012), researchers have inevita-
bly limited knowledge about, and control over, underlying 
evolutionary mechanisms, such as the distribution of fitness 
effects and the mutational trajectories of a population. This 
is because such fitness landscapes are usually large, and the 
possibilities to replicate experiments and to vary parameters 
are limited.

For these reasons, some studies make contradictory 
observations about the effect of population size on adap-
tation. For example, the rate of adaptation, defined as the 
number of beneficial substitutions, has been predicted to 
increases with effective population size N

e
 (Lanfear et al. 

2013). However, this prediction only holds when beneficial 
mutations are rare. The frequency of beneficial mutations, 
in turn, depends on the location of a population on a fitness 
landscape and on the topology of the landscape (Lanfear 
et al. 2013). Thus, some studies have found associations 
between the N

e
 and rate of adaptation (Dey et al. 2013), 

while others have not (Bachtrog 2008; Karasov et al. 2010; 
Gayral et al. 2013). Our study tries to fill the gap between 
theoretical and experimental studies, using a system where 
we have more knowledge about, and control over, impor-
tant factors such as population mutation rates, evolution-
ary trajectories, and the identity of substituted genotypes, 
than experimental systems. At the same time, we need to 
make fewer ad hoc assumptions than most previous theo-
retical studies. One of these assumptions is the distribution 
of fitness effects. In an empirical landscape, this distribu-
tion changes as a population approaches a fitness peak. For 
example, when a population gets closer to a peak, beneficial 
mutations become rarer, without the need to make ad hoc 
assumptions about their frequency.

We consider 957 empirical adaptive landscapes (Aguilar-
Rodríguez et al. 2017). Each landscape encompasses the 
binding affinity of a transcription factor to all of its cognate 
DNA sequences (i.e., binding sites). These binding affinities 
are derived from protein binding microarrays in the form of 
an enrichment score (E-score), which describes the relative 
binding preference of a transcription factor to all possible 
DNA sequences of length eight (Berger et al. 2006). The 
topographies of these landscapes have recently been charac-
terized in rich detail (Aguilar-Rodríguez et al. 2017), which 
provides an opportunity to study how the topographies of 
empirical adaptive landscapes interact with N and � to affect 
the adaptation rate of an evolving population. Transcription 
factor binding affinity is an important molecular phenotype, 
because it can affect gene expression. For example, increas-
ing the affinity of an activating transcription factor’s binding 
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site will decrease the factor’s disassociation rate, thereby 
increasing the rate of transcription of the downstream gene. 
If increased expression is selectively advantageous in a given 
environment (e.g., an antibiotic resistance gene in the pres-
ence of an antibiotic), then increased binding affinity may 
confer increased fitness. The importance of high binding 
affinity transcription factor binding sites is evidenced by 
their signature of positive selection in microbes and humans 
(Mustonen and Lässig 2005, 2009), as well by their proxim-
ity to actively transcribed genes in the embryo of Drosoph-
ila melanogaster (Li et al. 2008). We therefore use binding 
affinity as a proxy for fitness.

Using these empirical adaptive landscapes, we do not 
make any ad hoc assumptions about the distributions of 
fitness effects, the structure of the landscape, or epistatic 
interaction among mutations, because such information is 
implicitly present in the landscapes. We simulate popula-
tions with a range of mutation rates � and population muta-
tion rates N�, and analyze all mutational trajectories of 
populations during their evolution. We find that mutation 
rate � and population mutation rate N� are not always suffi-
cient parameters to predict the adaptation rate of populations 
on these landscapes. Population diversity and the extent of 
landscape exploration, rather than the substitution rate of 
mutations, can affect the adaptation rate.

Methods

Genotype Network Construction and Analysis

Genotype networks were constructed as described in Payne 
and Wagner (2014) and Aguilar-Rodríguez et al. (2017). 
The data for these networks come from in vitro studies that 
assess the binding affinity of a transcription factor (Latch-
man 1997) to all possible DNA sequences of length 8 using 
protein binding microarrays (Berger et al. 2006; Berger and 
Bulyk 2009). The total genotype space consists of 32,896 
sequences ((48 − 44)∕2 + 44), where the factor 1/2 accounts 
for the merging of sequences with their reverse complement. 
The number 44 accounts for palindromic sequences, which 
are identical to their reverse complement and therefore can-
not be merged (Aguilar-Rodríguez et al. 2017). Reference 
(Aguilar-Rodríguez et al. 2017) constructed and analyzed 
1137 binding affinity landscapes from 129 different eukary-
otic species and 62 DNA binding domain structural classes. 
For each transcription factor, a protein binding microarray 
measures the binding affinity of all 8-mers to the factor. 
The affinity is represented as a rank-based enrichment score 
(E-score), which is a variant of the Wilcoxon–Mann–Whit-
ney statistic (Berger et  al. 2006). This E-score ranges 
between − 0.5 (lowest affinity) to 0.5 (highest affinity). We 
use the E-score as a proxy for binding affinity, and consider 

only sequences whose E-score is above 0.35 bound by a 
transcription factor (Aguilar-Rodríguez et al. 2017). We use 
this threshold because it has yielded a false discovery rate 
below 0.001 in 104 mouse transcription factors (Badis et al. 
2009a). After identifying a set of sequences that bind each 
transcription factor, we constructed genotype networks for 
each transcription factor. The nodes of the network are DNA 
sequences. Two nodes are connected by an edge if they differ 
by a single mutation. The single mutations considered are 
either point mutations or single nucleotide insertions/dele-
tions. We characterized graph-theoretical properties of these 
networks using the iGraph library (version 0.7.1) (Csardi 
and Nepusz 2006) for Python. We used Gephi (version 0.9.1) 
(Bastian et al. 2009) for network visualization.

Population Evolution Model

Each landscape only includes sequences bound by a single 
transcription factor. However, the total number of sequences 
of length 8 used in the study (32,896 sequences, either 
bound to a transcription factor or not bound to any of fac-
tors), comprises a bigger network, which we call the network 
of all possible mutations. For simulations on each landscape, 
we initialized evolving populations with sequences of low 
binding affinity, because we wanted to explore the dynamics 
of populations evolving towards high binding affinity. Spe-
cifically, we started each simulation by choosing an arbitrary 
sequence from the bottom 5% of sequences, according to 
their E-scores, as the starting sequence of the simulation. 
Our simulations are limited to the dominant component 
within each landscape. We initialized a population of N 
individuals with the same initial sequence. For each set of 
parameters, we performed 100 simulation replicates, and for 
each replicate we simulated 1000 generations of mutation 
and selection. At each generation, we determined how many 
mutations each sequence would experience by drawing from 
a Poisson distribution with a mean equal to the mutation rate 
� of the population. If a sequence was to experience one 
mutation, we chose randomly one of its neighbors in the 
landscape. If it was to experience two mutations, we first 
randomly chose one of its neighbors, and then randomly 
chose one of the neighbors of the neighbor as the mutant, 
excluding the original sequence (thus prohibiting back muta-
tions), and likewise for any additional mutations. After the 
mutation step, we assigned a value l to each sequence by 
assigning a random number defined as its E-score ± Δ, 
where � is a parameter specific to each landscape, which 
defines a threshold to call two E-scores different in a protein 
binding microarray experiment, E-scores of each sequence 
are measured by two replicates, and � is the residual stand-
ard error of the linear regression between the E-scores of 
all bound sequences in the two replicate measurements 
(Aguilar-Rodríguez et al. 2017). Finally, as the selection 
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step, we randomly sampled exactly N sequences from all 
the sequences with replacement, where the probability of 
sampling each sequence was weighted by its value of l. We 
note that with this selection method, population sizes remain 
constant every generation.

Neutral Neighborhood Size Calculation

For each landscape, we considered the binding affinity of all 
neighbors of each of a landscape’s sequences. If the binding 
affinity difference between the sequence and its neighbor 
was smaller than 1/N, the neighbor is part of the neutral 
neighborhood of the sequence. We report the fraction of 
neutral neighbors of all sequences in each landscape.

Computing Population Diversity

We computed two measures of population diversity. The first 
measure corresponds to the number of unique sequences at 
the last generation in each simulation. We report its aver-
age across 100 simulation replicates. The second measure 
is the total number of unique sequences that were visited 
by a population across all generations, averaged over 100 
simulation replicates.

Counting the Incidence of Deleterious, Neutral, 
and Beneficial Mutations

To calculate the incidence of deleterious, neutral, and ben-
eficial mutations in each population, we tracked every muta-
tion. If the binding affinity difference of sequence and its 
mutant (whose affinity is given by l defined above, a random 
number in the range E-score ± Δ) was more than 1/N, we 
considered the mutation non-neutral; it would be beneficial 

or deleterious depending on whether the binding affinity had 
increased or decreased, respectively.

Number of Substitutions

We considered any sequence different from the ancestral 
sequence as a sequence that has become fixed if it ever 
reached a population frequency exceeding 90% (a common 
practice in simulating populations (Desai and Fisher 2007; 
Vatsiou et al. 2016) to limit computational costs). Strictly 
speaking, fixation means an allele is present in 100% of the 
population. If a sequence passed the 90% threshold and 
dropped below this threshold more than once, we considered 
it as fixed only once.

Results

Structure of Binding Affinity Landscapes

From the 1137 landscapes studied in Aguilar-Rodríguez 
et al. (2017), we simulated the evolution of populations 
on those 957 landscapes that had at least 100 sequences. 
We then chose nine of these landscapes for a more detailed 
analysis. The nine landscapes differ in their ruggedness, as 
measured by their number of peaks. A peak is defined as a 
set of sequences whose affinity is larger than that of all their 
neighboring sequences (Khalid et al. 2016). Table 1 lists the 
names of these nine transcription factors, their DNA bind-
ing domains, the species they belong to, and their number 
of peaks.

Some landscapes have multiple connected components, 
i.e. sets of nodes (sequences) that are reachable from one 
another through a sequence of single step mutations. We 

Table 1  Landscapes in our study

Each column describes the following information: TF name name of the transcription factor to which the sequences bind; species: the species in 
which the transcription factor occurs; number of components number of connected components within each network, i.e., components in which 
sequences are accessible from one another through a path of one or more edges; network size total number of sequences in landscape; Size of the 
dominant genotype network number of sequences in the largest connected component; number of peaks number of peaks in the landscape (see 
“Methods”); study the study from which data were retrieved for constructing the landscape

TF name Species Number of 
components

Network size Size of the dominant 
genotype network

Number of 
peaks

Study

NCU03110 Neurospora crassa 1 1064 1064 1 Weirauch et al. (2014)
TIFY2B Arabidopsis thaliana 1 1050 1050 1 Weirauch et al. (2014)
NCU06990 Neurospora crassa 1 1038 1038 2 Weirauch et al. (2014)
AZF2 Arabidopsis thaliana 1 1051 1051 3 Weirauch et al. (2014)
Six6 Mus musculus 3 658 656 6 Badis et al. (2009b)
NCU00445 Neurospora crassa 4 589 586 7 Weirauch et al. (2014)
KDM2B Homo sapiens 6 634 629 9 Weirauch et al. (2014)
FBXL19 Tetraodon nigroviridis 7 730 724 13 Weirauch et al. (2014)
kdm2aa Danio rerio 13 513 499 36 Weirauch et al. (2014)
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call the largest of these components the dominant compo-
nent and limit our simulations to these dominant compo-
nents. The single step mutations we consider are either point 
mutations, or single base pair insertions/deletions (Payne 
and Wagner 2014; Aguilar-Rodríguez et al. 2017). The land-
scapes comprise between 513 and 1064 sequences, and have 
between 1 and 13 connected components (Table 1). Figure 1 
shows one of the landscapes used in this study, that of the 
Arabidopsis thaliana’s transcriptional repressor AZF2. Each 
circle represents a sequence and edges connect sequences 
that differ by a single mutation.

The evolutionary dynamics of a population on an adap-
tive landscape depends in part on the average fraction of 
neutral neighbors of its genotypes. When genotypes in a 
population have larger neutral neighborhoods, the popula-
tion may be able to explore a larger fraction of the landscape 
without facing deleterious mutations. Hence, it may more 
easily discover beneficial mutations and new phenotypes 
(Ancel and Fontana 2000). Neutral neighborhood size is a 
function of effective population size N

e
 (Hartl and Clark 

1997), which equals consensus population size N in our 
simulations, because our simulated populations experience 
no population size fluctuations. We analyzed the size of each 
neutral neighborhood in different landscapes and with dif-
ferent population sizes. We consider the fitness difference 
of any two neighboring sequences neutral if it is smaller 
than 1/N (Kimura 1962; Ohta and Gillespie 1996). Figure 
S1 shows the fraction of neutral neighbors among all nodes 
in a landscape, for all nine different landscapes and different 
population sizes. As expected, neutral neighborhood size 
decreases with increasing population size, which makes it 
more difficult for larger populations to evolve neutrally and 
cross fitness valleys (Ancel and Fontana 2000).

We used a variation of the Wright–Fisher model (see 
“Methods”) to evolve populations on our landscapes for 
1000 generations of mutation and selection, which favors 
increases in binding affinity. We performed 100 replica-
tions for each simulation. Since we are interested in analyz-
ing the effect of population size N and mutation rate � on 
the adaptation of populations, we systematically explored 
a range of mutation rates (0.001 ≤ � ≤ 1) and population 
mutation rates (0.01 < N𝜇 < 10) with seven population sizes 
(10 < N < 640). We chose a maximum population size of 
640 based on the size of the landscapes, so that even in a 
high mutation regime, only a fraction of the landscape would 
be occupied by a population.

Landscape Ruggedness Strongly Affects Adaptation

We initially determined whether the measurement of rug-
gedness in these landscapes, namely the number of peaks, 
affects evolutionary dynamics. To that end, we simulated 
evolution on all of the 957 landscapes (Aguilar-Rodríguez 

et al. 2017). We analyzed correlations between the mean 
final affinity of simulated populations, normalized by the 
maximum binding affinity in each landscape, and the number 
of peaks in each landscape, and at different mutation rates. 
In line with our expectation, populations in more rugged 
landscapes have lower mean population affinity at the end of 
simulations (i.e. generation 1000) (Table S1). In more rug-
ged landscapes, populations are more likely to get trapped 
on local optima, and this may be a bigger problem for larger 
populations, because drift is weaker for them compared to 
smaller populations. These observations hold for all muta-
tion rates (� = 0.001–� = 1).

We also asked whether the size of (number of sequences 
in) the global peak of each landscape correlates with the 
mean final affinity of the populations. We found strong and 
positive correlations (Table S2): the larger the size of the 
global peak of a landscape, the higher the mean final affinity 
of a population. This indicates that larger peaks are easier 
to find.

Adaptive Evolution Under Varying Mutation Rate �

We first investigated how interactions between different 
mutation rates � and population sizes N affect popula-
tion adaptation, using a range of mutation rates between 
� = 0.001 and � = 1.

� = 0.001

At this low mutation rate, the population mutation rate is 
N𝜇 << 1 for all population sizes. Larger populations con-
sistently achieve higher mean binding affinity at the end of 
simulated evolution (Fig. 2a). Larger populations have sev-
eral advantages to help them find adaptive peaks better than 
smaller populations, even at mutation rates this small. First, 
since larger populations have a higher population mutation 
rate N�, they are slightly more diverse at any generation 
(Fig. 2b). Second, and consequently, larger populations visit 
more unique sequences (Fig. 2c). They are therefore better at 
exploring the landscape, which gives them more opportuni-
ties for identifying adaptive peaks. Third, and in line with 
the second observation, larger populations fix more muta-
tions, most of which are beneficial (Fig. S2). This is because 
they experience more mutations, and because selection is 
more effective in larger populations (Jain et al. 2011; Szen-
dro et al. 2013; Lachapelle et al. 2015).

� = 0.01

At a mutation rate of � = 0.1, we still find that larger popu-
lations have higher mean binding affinity at the end of the 
evolutionary simulations than smaller populations, although 
the difference between larger populations is smaller than at 
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Fig. 1  The adaptive landscape of the AZF2 transcription factor. Each 
node corresponds to a DNA sequence. Two nodes are connected if 
they differ by a single point mutation or a single indel. Node color 
corresponds to the affinity of the sequence (darker  =  higher), and 
node size corresponds to the number of neighbors of the node (big-

ger  =  more). The inset shows that two nodes are connected if they 
differ by a single mutation. Our display allows for overlapping nodes, 
so the actual number of nodes may be greater than the number of 
nodes that are visible. (Color figure online)



162 Evolutionary Biology (2018) 45:156–169

1 3

� = 0.001 (Figs. 2d and S3). At this mutation rate, popu-
lations fall into two evolutionary regimes. Specifically, for 
four population sizes (N = 10, N = 20, N = 40, and N = 80) 
N𝜇 < 1, and for the other three (N = 160, N = 320, and 
N = 640) N𝜇 > 1. When there is more than one lineage 

harboring a beneficial mutation, these lineages compete 
with each other for fixation, resulting in slower fixation 
rates of either lineage, a phenomenon called clonal inter-
ference (Gerrish and Lenski 1998). When N𝜇 > 1, popu-
lations are polymorphic most of the time, which increases 
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Fig. 2  Mean final binding affinity, sequence exploration and diversity 
of populations at µ = 0.001 and 0.01. The figure shows a, d the mean 
population binding affinity at the end of the simulations for µ = 0.001 
and 0.01, respectively, b, e the population diversity at the end of the 
simulations, i.e. the number of unique sequences at generation 1000, 
for µ  =  0.001 and 0.01, respectively, and c, f the total number of 
unique sequences visited by a population during 1000 generations, 
for µ = 0.001 and 0.01, respectively. Data in a and d are normalized 
by the maximum affinity value in each landscape, data in b, c, e and 
f are normalized by landscape size. Horizontal axes on all panels 

show different transcription factor affinity landscapes ordered from 
left to right in increasing order of ruggedness. We randomly selected 
a sequence of low binding affinity to initialize each simulation, and 
then simulated 1000 generations of mutation and selection. We per-
formed 100 replicate simulations for each population size at a fixed 
mutation rate of µ = 0.001 and 0.01 per sequence per generation (see 
“Methods”). Each box encloses the second and third quartiles of data 
from 100 replicates, the center line corresponds to the median, and 
the whiskers depict the minimum and maximum values obtained from 
any replicate, excluding outliers
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the likelihood of clonal interference (Park and Krug 2007). 
We first tested whether we find clonal interference in these 
populations, and if it increases with population size. Fig-
ure 3 shows the average number of unique mutations that are 
simultaneously present in the population, and the effect of 
these mutations, i.e. beneficial, deleterious or neutral, rela-
tive to the ancestral sequence of the population. The aver-
age number of unique mutations at each generation, and the 
average number of beneficial unique mutations, increases 
with population size. Consistent with the existence of clonal 
interference, we find that the number of beneficial substitu-
tions for most landscapes (all except FBXL19 and kdm2aa) 
is an increasing function of N when N𝜇 < 1 (N = 10, 
N = 20, N = 40, and N = 80), but a decreasing function of 
N when N𝜇 > 1 (N = 160, N = 320, and N = 640) (Fig. S4). 
Moreover, despite fixing no more or even fewer beneficial 
mutations than smaller populations due to increased clonal 
interference, larger populations reach higher mean final 
binding affinity. To explain this pattern, we pooled data from 
all simulations, and asked whether the mean final population 
binding affinity correlates with two measures of population 
diversity, i.e. the number of explored sequences during the 
evolutionary simulation and the amount of standing varia-
tion at the final generation. We found strong positive asso-
ciations between both metrics of diversity and mean final 

binding affinity (Tables S4 and S5). Note that larger popula-
tions are both more diverse in the last generation (Fig. 2e) 
and explore more sequences during evolution (Fig. 2f). 
These observations suggest that, unsurprisingly, larger pop-
ulations have more standing variation, which increases the 
prevalence of beneficial mutations (Fig. S5), which in turn is 
strongly associated with increased mean population binding 
affinity (Table S6). In sum, the mean final binding affinity 
of evolving populations is not completely determined by the 
number of beneficial substitutions, but also by the popula-
tion diversity.

� = 0.1

At a mutation rate of � = 0.1, the population mutation rate 
is N𝜇 > 1 for all populations, and clonal interference is 
prevalent in all populations, but becomes stronger in larger 
populations (Fig. S6). The largest populations (N = 160, 
N = 320, and N = 640), therefore, have nearly no substi-
tutions (Fig. S7). Still, they arrive at a higher mean bind-
ing affinity than smaller populations (Fig. 4a). The largest 
populations in some landscapes (FBXL19, NCU00445, and 
TIFY2B), however, do not differ in their mean final binding 
affinity.

Population diversity can help explain how larger popula-
tions reach higher mean binding affinity levels, despite fix-
ing nearly no mutations. Larger populations explore more 
sequences than smaller populations, and the difference in 
this exploration ability between larger and smaller popula-
tions is greater at � = 0.1 (Fig. 4c). Similarly, the differ-
ence between the fraction of beneficial mutations among 
all mutations that occur in larger populations and in smaller 
populations is greater at � = 0.1 (compare Figs. S5 and S8).

� = 1

At this large mutation rate, where on average every sequence 
mutates in every generation (N𝜇 >> 1), we do not find strik-
ing differences between the mean final binding affinity at 
different population sizes (Fig. 4d). Only the two smallest 
populations (N = 10 and N = 20) have a slightly lower mean 
binding affinity than larger populations. More pronounced, 
however, is a drop in mean final binding affinity of all popu-
lation sizes compared with � = 0.1 (compare Fig. 4a with 
d). This is because of the high fraction of mutant individu-
als that are created generation. When a population finds and 
moves to a sequence with a high binding affinity, it will not 
stay there, because at the next generation, most individuals 
mutate away from it. Therefore, the mean affinity of popula-
tions fluctuates around lower values and the highest possible 
mean affinities cannot be attained.

Fig. 3  More beneficial mutations coexist in larger populations evolv-
ing on the AZF2 landscape at constant � = 0.01. Boxplots summa-
rize mean numbers of unique total, beneficial, deleterious, and neutral 
mutations that coexist per generation (color legend) for populations 
of different sizes (horizontal axis) evolved on the AZF2 landscape. 
When more than one beneficial mutation is present at the same time 
in a population, those mutations compete for fixation (clonal interfer-
ence), resulting in longer fixation time for the mutation that finally 
fixes in the population. We determined the effect of each mutation 
compared to the ancestral sequence starting the population simula-
tion. Effects smaller than 1/N are neutral. Each box encloses the sec-
ond and third quartiles of data from 100 replicates, the center line 
corresponds to the median, and the whiskers depict the minimum 
and maximum values obtained from any replicate, excluding outliers. 
Population evolution was simulated in the same way as explained in 
the caption of Fig. 2, except that � = 0.01. (Color figure online)
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Adaptive Evolution Under Varying Population 
Mutation Rates N�

Another important quantity in population genetics is the 
population mutation rate N�. In the following sections, we 

will analyze the effect of N� on adaptive evolution to find 
out whether it alone can explain the difference in adapta-
tion between populations of different sizes.
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Fig. 4  Mean final binding affinity, sequence exploration and diversity 
of populations at µ = 0.1 and 1. The figure shows a and d the mean 
population binding affinity at the end of the simulations for µ = 0.1 
and 1, respectively, b and e the population diversity at the end of 
the simulations, i.e. the number of unique sequences at generation 
1000, for µ  =  0.1 and 1, respectively, and c and f the total number 
of unique sequences visited by a population during 1000 generations, 
for µ  =  0.1 and 1, respectively. Data in a, d are normalized by the 
maximum affinity value in each landscape, data in b, c, e, f are nor-

malized by landscape size. Horizontal axes on all panels show differ-
ent transcription factor affinity landscapes ordered from left to right 
in increasing order of ruggedness. Each box encloses the second and 
third quartiles of data from 100 replicates, the center line corresponds 
to the median, and the whiskers depict the minimum and maximum 
values obtained from any replicate, excluding outliers. Population 
evolution was simulated in the same way as explained in the caption 
of Fig. 2, except that µ = 0.1 and 1
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N� = 0.01 and N� = 0.1

At these low population mutation rates, populations of 
all sizes reach similar mean final binding affinity levels 
(Figs. 5a, b). Likewise, the extent of sequence exploration 
(Figs. S9 and S10) and population diversity in the last gen-
eration (Figs. S11 and S12) is similar among populations of 
all different sizes. This suggests that N� may be adequate 
to explain evolutionary dynamics when N� is not too large.

N� = 1 and N� = 10

At the moderate population mutation rate of N� = 1, we 
find that the smallest populations (i.e. N = 10, N = 20, and 
N = 40) are not reaching the same mean final binding affin-
ity as larger populations (Fig. 5c). At the high population 
mutation rate N� = 10, this dependency of final fitness 
on population size is even stronger (Fig. 5d). In addition, 

there is a negative association between sequence explora-
tion and population size (Figs. S13 and S14). This is likely 
due to larger neutral neighborhood that is characteristic 
of smaller populations (Fig. S1). Larger neutral neighbor-
hoods mean that more neutral mutations are available to 
smaller populations (Figs. S15 and S16), which thus face 
fewer limitations exploring novel sequences. Such larger 
neutral neighborhoods also result in more neutral substi-
tutions in smaller populations (Figs. S17 and S18). Larger 
populations experience (Fig. S19) and fix more beneficial 
mutations than smaller populations (Fig. S20) at N� = 1. 
At N� = 10, however, we observe a peak in the maximum 
fraction of beneficial mutations that the populations experi-
ence at intermediate population sizes (Fig. S21). All popu-
lations at N� = 10 fix fewer mutations than at N� = 1, but 
larger populations fix more beneficial mutations (Fig. S22). 
Two factors can explain the difference in mean final binding 
affinity between smaller and larger populations at constant 
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Fig. 5  Mean population binding affinity at the end of the simulations 
at constant N�. We randomly selected a sequence of low binding 
affinity to initialize each simulation, and then simulated 1000 genera-
tions of mutation and selection. We performed 100 replicate simula-
tions for each population size at a fixed population mutation rate of a 
N� = 0.01, b N� = 0.1, c N� = 1, and d N� = 10 per sequence per 

generation (see “Methods”). Each box encloses the second and third 
quartiles of data from 100 replicates, the center line corresponds to 
the median, and the whiskers depict the minimum and maximum val-
ues obtained from any replicate, excluding outliers. Data are normal-
ized by the maximum binding affinity in the landscape
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and large population mutation rates. First, selection is more 
effective at fixing beneficial mutation in larger population. 
Second, and more importantly, the constant high population 
mutation rate has a negative effect on the ability to reach 
high mean affinity for smaller populations, but not for larger 
populations. A value of N� = 10 means that an average of 
ten new mutations are introduced into a population each 
generation. For a population of size 10, this means that at 
every generation all individuals are mutated. In a popula-
tion of size 20, half of all individuals are mutated, but in a 
population of size 640, only a fraction of 0.016 of individu-
als are mutated. The high number of mutations overwhelms 
selection in small populations, making it difficult for small 
populations to follow a gradual affinity-increasing path.

Discussion

To understand the rate and limitations of organismal adapta-
tion is a central to evolutionary biology (Lynch and Lande 
1998; Allen 2000; Franklin and Frankham 1998; Stockwell 
et al. 2003; de Visser and Rozen 2005; Barrick et al. 2009; 
Wiser et al. 2013). Efforts to increase our understanding 
in this area can be divided into two major classes based 
on their methodology. The first uses theoretical approaches 
(Desai and Fisher 2007; Desai et al. 2007; Campos and Wahl 
2010; Lourenço et al. 2013). Due to the complex interactions 
between different factors, such as mutation rate, changes in 
effective population size, recombination rate, etc., these 
approaches usually make many simplifying assumptions, 
which may not always hold in biological populations. The 
second class uses experiments (Lenski et al. 1991; Lenski 
and Travisano 1994; Elena and Lenski 2003; Lachapelle 
et al. 2015), which can examine a biological system in its 
full complexity. However, they provide limited knowledge 
about the important evolutionary mechanisms, such as the 
effects of mutations on a population’s trajectories, and a fit-
ness landscape’s structure. In addition, the ability to repli-
cate experiments and to test different parameters in them is 
limited.

Here, we used a system that bridges these two approaches. 
We simulated evolving populations on 957 empirical adap-
tive landscapes of transcription factor binding sites, and ana-
lyzed the evolutionary dynamics on nine such landscapes 
(Aguilar-Rodríguez et al. 2017). We considered the binding 
affinity between transcription factor and DNA sequences as 
a proxy for fitness. With such landscapes, we did not have 
to make ad hoc assumptions about epistatic interactions 
between mutations, about the distribution of fitness effects, 
or about landscapes structures. Additionally, we could study 
the effects of all mutations, and could examine the and 
mutational trajectories of populations in detail. We found 

complex interactions between mutation rate and population 
size, as described below.

Firstly, we found that at any mutation rate, larger pop-
ulations are better at increasing their mean final affinity 
(Fig. 4a). This is intriguing, because at high N�, due to 
increased clonal interference, large populations hardly fix 
any mutations (Fig. S7); and because the substitution rate, 
especially that of beneficial mutations, is commonly treated 
as a measure of adaptation rate (Park and Krug 2007; Cam-
pos and Wahl 2009, 2010; Gossmann et al. 2012; Lanfear 
et al. 2013; Pokalyuk et al. 2013; Wong and Seguin 2015). 
The likely reason that substitution rate does not always 
determine adaptation is this: Larger populations are more 
diverse at any given time, and thus explore more sequences 
in a landscape than smaller populations, which means that 
they can find beneficial mutations more easily. The pres-
ence of multiple beneficial mutations in a population helps 
the population increase its mean binding affinity, even if 
no mutation is fixed. This is akin to a soft selective sweep 
(Losos et al. 2013, p. 472), where multiple beneficial muta-
tions occur and increase their frequency in a population 
without any of them being fixed (Hermisson and Pennings 
2005; Pennings and Hermisson 2006).

Second, we found that even at constant N� and for dif-
ferent population sizes, when N� is large enough, smaller 
populations fail to find adaptive peaks as effectively as larger 
populations (Fig. 5d). The reason is that at constant popu-
lation mutation rates, smaller populations have a higher 
mutation rate per genotype than the larger populations. This 
higher mutation rate overwhelms the small populations and 
prevents them from following an affinity-increasing path.

Third, we found that sequence exploration and popula-
tion diversity almost always depend on population size N, 
even when population mutation rates N� are constant (Fig. 
S14). The only exception is when the population mutation 
rate N� is so low that all populations explore equally few 
sequences (Fig. S9).

In sum, we found that smaller populations have no adap-
tive advantage over larger ones, even when N� is constant 
for populations at different sizes, because smaller popula-
tions do not have higher mean final affinity at the end of our 
simulations. This observation holds regardless of landscape 
ruggedness, because the landscapes we studied varied in 
their ruggedness (Table 1). In theory, smaller populations 
could have several advantages on rugged landscapes (Rozen 
et al. 2008), such as higher chances of escaping local optima, 
and larger neutral neighborhoods, which could help them 
explore more sequences, some of which could boost their 
adaptation. However, these advantages did not lead to better 
adaptation on the landscapes studied here.

Our study has limitations, which can be alleviated in 
future work. Firstly, we studied clonal populations with 
no recombination. It would be interesting to see how 
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populations adapt on our landscapes in the presence of 
recombination, because recombination can dramatically 
affect evolutionary dynamics (Muller 1932; Evans 1986; 
Ochman et al. 2000; Zhang et al. 2002; Otto and Gerstein 
2006; Cooper 2007). Moreover, we used the number of 
peaks as a measure of landscape ruggedness. It would be 
interesting to compare the topology of these landscapes with 
random landscapes used in previous studies, where smaller 
populations do have an adaptive advantage over larger ones. 
For example, Handel and Rozen (2009) constructed random 
landscapes with different numbers of peaks (ruggedness). 
They simulated populations evolving on the landscapes, 
and observed that on landscapes with a minimum amount 
of ruggedness, smaller populations can reach a higher final 
fitness, because they do not get trapped on local peaks. The 
conditions that provide an advantage to smaller populations 
in such theoretical studies may also exist in other empirical 
landscapes. A third limitation is that we have assumed a one-
to-one relationship between binding affinity to a transcrip-
tion factor and its fitness. However, the exact relationship 
between affinity and fitness is not known. Changes in this 
relationship could result in major changes in the structure of 
landscape (its ruggedness, number of peaks, and accessibil-
ity), and thus affect the results we have obtained.

In sum, our results show that in empirical adaptive land-
scapes, there are complex interdependencies between popu-
lation size and mutation rate that affect evolutionary dynam-
ics, especially at high N�, suggesting that conclusions from 
simplified models should be taken with caution.
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