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Automatic Generation of Predictive Dynamic
Models Reveals Nuclear Phosphorylation
as the Key Msn2 Control Mechanism
Mikael Sunnåker,1,2,3*† Elias Zamora-Sillero,1,2,4,5†‡ Reinhard Dechant,6 Christina Ludwig,7
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Predictive dynamical models are critical for the analysis of complex biological systems. However, methods
to systematically develop and discriminate among systems biology models are still lacking. We describe a
computational method that incorporates all hypothetical mechanisms about the architecture of a biological
system into a single model and automatically generates a set of simpler models compatible with observa-
tional data. As a proof of principle, we analyzed the dynamic control of the transcription factor Msn2 in
Saccharomyces cerevisiae, specifically the short-term mechanisms mediating the cells’ recovery after re-
lease from starvation stress. Our method determined that 12 of 192 possible models were compatible with
available Msn2 localization data. Iterations between model predictions and rationally designed phospho-
proteomics and imaging experiments identified a single-circuit topology with a relative probability of 99%
among the 192models.Model analysis revealed that the couplingof dynamicphenomena inMsn2phospho-
rylation and transport could lead to efficient stress response signaling by establishing a rate-of-change sen-
sor. Similar principles could apply to mammalian stress response pathways. Systematic construction of
dynamic models may yield detailed insight into nonobvious molecular mechanisms.
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INTRODUCTION

The complexity of biological networks and processes makes mathematical
models useful as compact representations of the available data, and as
highly structured, mechanistic representations of biological hypotheses
that can be used to generate quantitative testable predictions of the net-
work behavior (1, 2). When the dynamics of a system is of interest, such
as in cell signaling, and when stochastic noise due to low molecular copy
numbers can be neglected, these models typically consist of systems of
ordinary differential equations (ODEs) to capture the kinetics of proteins,
mRNAs, and small molecules. In these models, there is a distinction be-
tween state variables, such as time-varying concentrations of components,
and parameters, which usually represent kinetics constants of biochemical
reactions; the evolution of state variables in time is dictated by both the
pathway topology and the parameter values. Modelers often face the harsh
reality of conflicting biochemical hypotheses, or even a complete lack of
hypotheses, about multiple mechanistic details. Such knowledge gaps re-
sult from current—and often fundamental—limitations in generating com-
prehensive quantitative experimental data. They lead to two classes of
ambiguities of mathematical models in systems biology, namely, ambigu-
ities in model topologies (for example, pathway structures and kinetic rate
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laws) and uncertainties in parameter values (for example, kinetic constants
for processes such as association and dissociation of molecules).

Uncertainties in model structure make it necessary to evaluate more
than one candidate model topology, where each topology represents a dif-
ferent biological hypothesis. Model discrimination then consists of evalu-
ating alternative topologies—or candidate models—for their ability to describe
experimental observations, with the ultimate aim of identifying the “real”
system structure (3–5). The set of candidate models may, for example,
take the form of a core model, which incorporates the consensus under-
standing of a pathway, and a set of additional hypotheses to extend this core
to an ensemble of hypothetical models (3). Such approaches have been suc-
cessful in identifying detailed mechanisms of epidermal growth factor
(EGF) (6) and mammalian target of rapamycin (mTOR) (7) signaling.
These studies, however, compared small numbers (four and three, respec-
tively) of hypotheses. In general, the ensemble size grows exponentially with
the number of hypotheses (for example, 20 hypotheses yield 220 ≈ 106 can-
didate models), such that one cannot simply enumerate and evaluate all al-
ternatives individually. Systematic methods for model generation that deal
with this complexity of biological hypothesis spaces are currently lacking.

The computational problems are particularly challenging because of
our currently limited quantitative knowledge about many model param-
eters. Even if a model is structurally identifiable, meaning that a unique
assignment of parameter values is possible in principle (8), it may be un-
identifiable with the available data. This can translate into ambiguous pre-
dictions of a system’s quantitative or even qualitative behavior. Therefore,
a single set of parameter values (referred to as a parameter point) may be
insufficient to predict the behavior of nonmeasured molecular species and
to select between model topologies. Consequently, the evaluation of a can-
didate model also requires an exploration of the model’s parameter space,
and the associated computational effort increases with the dimensionality
of this space. With efficient exploration methods, however, one can use
Bayesian approaches (6, 9, 10) to take into account that different model
parameters and topologies can be compatible with the data. With the
Bayesian approach, the probability that various hypotheses are correct is
ww.SCIENCESIGNALING.org 28 May 2013 Vol 6 Issue 277 ra41 1
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updated by sequentially incorporating experimental observations. This
helps in ranking alternative topologies (4, 11) and in setting bounds for
the predictions of individual models (12, 13).

Here, we propose a method for automatic model generation termed
“topological filtering” that only needs to evaluate a subset of all possible
topologies in the Bayesian framework but still provides insights about the
mechanisms of the underlying biochemical system. After introducing the
method with a small example network, we applied it to large previously
published models of EGF signaling (6), reproducing and extending the
published results. Finally, we combined iterations of experimental and the-
oretical approaches to study the short-term dynamics of the transcription
factor Msn2, which is a key regulator of the general stress response in
Saccharomyces cerevisiae (14–16). Nuclear localization, and hence Msn2
activity, is under the tight control of environmental conditions, and it is
triggered by several stresses, including osmotic stress, heat shock, and
carbon or nitrogen limitation. Msn2 localization is regulated by direct
phosphorylation through cyclic adenosine monophosphate (cAMP)–
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dependent protein kinase A (PKA), which
targets phosphorylation sites within both
the nuclear localization signal (NLS) and
the nuclear export signal (NES). Under favor-
able conditions in the presence of glucose,
the second messenger cAMP is produced
from adenosine triphosphate, and it ac-
tivates the catalytic subunits of PKA (en-
coded by Tpk1 to Tpk3) by binding to
PKA’s inhibitory subunit Bcy1. Addition
of glucose to starved cells triggers a rapid,
but transient, accumulation of cAMP be-
cause of strong PKA-dependent feedback
regulation of cAMP turnover, leading to
translocation of Msn2 from the nucleus to
the cytoplasm. Altered dynamics of Msn2
translocation induced by different stresses
substantially affect Msn2-dependent gene
expression (17), and it is still unclear how
Msn2 can serve as an integration point for
such a wide range of stresses (16). Our anal-
ysis suggests rapid, predominantly nucle-
ar phosphorylation as the most important
mechanism for glucose-induced deacti-
vation of Msn2, and that the network con-
trolling the translocation of Msn2 senses the
rate of change in the cAMP input, and not
other features, such as the total input. The
kinetic principles and sensor function may
apply to the control of other eukaryotic tran-
scription factors or to any signaling mole-
cule that exists in at least four different
states with respect to activity, modification,
or localization.
RESULTS

The method of topological filtering
Topological filtering starts from the most
complex model that includes all of the
known or hypothesized interactions. This
defines a single model topology, which we
w

term the original model (Fig. 1A). It then explores (samples) regions of
parameter space where the model is consistent with an experimentally
observed behavior, given the uncertainty in the experimental data. The
method uses the resulting set of parameters to evaluate the model topology
with a Bayesian approach and to identify parameters (that is, kinetic con-
stants) as candidates to be eliminated from the model. The elimination of a
parameter that is proportional to the reaction rate will inactivate the
corresponding reaction. This yields one or several reduced models that
are then subject to further cycles of exploration and reduction, thus gen-
erating a tree of topologies, in which every topology is evaluated until the
simplest possible topology in each branch is found. Topologies that can be
no further reduced capture key mechanisms of the underlying system,
provided that these mechanisms were included in the original model. This
topological filtering can substantially reduce the number of models that
need to be evaluated computationally.

To describe the method’s main steps more specifically, we used a small
example system that captures the enzyme-catalyzed conversion of a sub-
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Fig. 1. Method flow chart and application to a small example system. (A) Flow chart for the computational
method starting from a model that incorporates all hypothetical mechanisms. The parameter space of the
original model is explored by the method described in (20) to automatically generate a set of new, reduced
models and to compute Bayes factors. The previous steps are then repeated for each candidate model
until no new models are generated. (B) Example model based on (18) consisting of three chemical species
(A, B, and C) and three reactions (solid arrows). The original model is constructed by extension with spe-
cies D and with two hypothetical reactions (dashed lines) that represent complex formation of A and C to
yield D. (C) Ranking of the ensemble of eight candidate models according to their model probability given
the synthetic data for species A and C generated by simulation of model 4.
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strate A to a product C in a two-step mechanism [Fig. 1B, see also (18)
and text S1]. Similar small systems often occur in larger biochemical net-
works. We generated a set of synthetic data for A and C from this model,
and we extended the model by two reactions, such that the original model
takes the form shown in Fig. 1B (see Materials and Methods for details).
In the following example, we considered all reactions in the original model
as hypothetical.

Our method considers dynamic (ODE) models, with the ith model de-
noted byMi. By setting individual parameters of a modelMi to zero, a part
of the model’s structure is removed, altering the model’s topology. For ex-
ample, a reaction based on mass action kinetics vanishes if the cor-
responding rate parameter is set equal to zero; for other rate laws, more
than one parameter might have to be modified. Thus, by inclusion or elim-
ination of each of the d parameters in model Mi, we can form (at most) 2d

unique candidate models.
For the original model (and subsequently for each candidate model),

topological filtering identifies those regions of the parameter space for
which the model’s predictions are compatible with the observational data;
we termed these regions “viable regions.” To separate viable from inviable
parameter points, we derived a formal viability condition (see Materials
and Methods and text S2 for details). Assuming uncorrelated and normal-
ly distributed measurement noise, the viability condition depends only on
the number of measurements and on the measurement noise [without these
restrictive assumptions about the measurement of noise, one can use boot-
strapping to compute the viability condition (19)]. With the viability condi-
tion, we used the method described in (20) to explore the parameter space,
which results in a set of viable parameter points. Next, the method uses
these points for model reduction as described above until no new candidate
models are found (see Fig. 1A and Materials and Methods for details).

Topological filtering, when applied to the model of Fig. 1B, identified
the original model M1 and seven simpler candidate models as compatible
with the synthetic data (Fig. 1C). Model M4, which we used to generate
the synthetic data, is one of these models. Note that parameters k1, k3, and
k4 appear in all viable models, indicating that they (and the corresponding
reactions) are essential to explain the data. However, parameters k2, k5, k6,
and k7 are only included in half of the candidate models. That is, although
k2 is actually present in the model that generated the data, there are can-
didate models that do not involve this kinetic parameter. However, note
that the elimination of the half-maximal rate parameter k2 does not eliminate
reaction r1; instead, its rate becomes constant and equal to k1 (see text S1).

To compare and rank the candidate models, we followed a Bayesian
inference approach (21), where previous knowledge is encoded by prior
probability distributions. By incorporating the data Y, one can use Bayes
factors (22) to compute the posterior probability p(Mi|Y), which provides a
measure of the “plausibility” of the model Mi, given the data Y (see
Materials and Methods for details). We obtained the highest probability
(around 39%) for the model that actually generated the data,M ð567Þ

4
, where

the superscript denotes that parameters k5, k6, and k7 are deleted in this
model (Fig. 1C). However, this model probability does not dominate those
of all other models. Hence, to identify the correct topology even for this
small system, we have to iterate between computational analyses and care-
fully designed experimental data generation until the support for one
model is satisfactory.

Automatic topology identification for the extracellular
signal–regulated kinase pathway in PC12 cells
To investigate the applicability of our method to larger models, we used it for
model generation and discrimination for the extracellular signal–regulated
kinase (ERK) pathway in PC12 cells. A previous, combined computation-
al and experimental study (6) manually defined a set of four hypothetical
w

mathematical ODE models for the pathway, M1–4. These models incorpo-
rate 27 to 30 states (that is, time-varying component concentrations), 51 to
57 parameters, and 27 to 31 reactions. All the mechanisms of M1 are in-
cluded in M2–4 as well. However, the mechanisms for ERK activation
through C3G (Crk SH3 domain guanine nucleotide exchanger) and
Rap1 are only included in M2,4, and mechanisms for EGF receptor
(EGFR) degradation are only included in M3,4. The experimental data
set comprises 168 data points (including replicates) for phosphorylation-
mediated ERK activation for 11 distinct conditions and perturbations (6).
The predictive performance of the models was compared using Bayes
factors, given the available data, and the authors concluded that M2 best
represents the pathway (6). This result indicates that C3G is important in
ERK activation, whereas the effect of EGFR degradation is negligible.

Because the reactions in each of the modelsM1–3 constitute a subset of
the reactions in the original model M4, we investigated if our method,
starting fromM4, automatically identified viable submodels, given the ex-
perimental observations. Such a procedure does not require the manual
definition of M1–3 and may reveal if any of the other model reactions
are not supported by experiments. We focused on reactions that are not
part of the linear phosphorylation cascade between Ras and ERK
(Fig. 2A). The first five reactions represented feedback mechanisms:
ERK-mediated removal of SOS (r1), activation of Rap1 by EPAC (r2),
guanosine triphosphatase–activating protein (GAP)–mediated deactivation
of Rap1 (r3), B-Raf–mediated activation of mitogen-activated or extra-
cellular signal–regulated protein kinase kinase (MEK) (r4), and Ras-
mediated phosphorylation of B-Raf (r5). We also included the degradation
of EGFR (r6) and the mechanisms for C3G-mediated activation of Rap1
[EGFR-mediated activation of C3G (r7), deactivation of C3G (r8), and
C3G-mediated activation of Rap1 (r9)]. Note that a reaction can be asso-
ciated with more than one parameter, for example, when the reaction rate
is modeled with a Michaelis-Menten–type rate law that requires a maxi-
mal rate constant and an affinity constant.

We first explored the viable parameter space of the original model as a
basis for our automatic method. Even simple visual inspection of the
viable parameter points may reveal candidate parameters for model reduc-
tion. For instance, the viable parameter points projected to the maximal
rate parameter Vmax for reaction r1 (ERK-mediated degradation of SOS)
on the x axis and the affinity constant KM for the same reaction on the y
axis indicated that, for r1, Vmax is essential, whereas KM might be expend-
able if Vmax is sufficiently small (Fig. 2B). Similarly, when comparing the
maximal rate constant for r4 and the degradation rate for r6 (Fig. 2C), be-
cause all viable parameter points have small values for reaction r6, but not
for reaction r4, only r6 is a candidate for reduction.

From the 29 = 512 different models that can be constructed by elim-
ination of combinations of the above nine reactions, the results of topo-
logical filtering indicated that any combination of reactions r6–9 can be
removed, which coincides with all four models that were previously man-
ually constructed by Xu et al. (6) and that corresponded to elimination of
r6, r7–9, r6–9, or none of these reactions. Our systematic analysis extends
these previous results in two aspects. First, although not included in the
models of Xu et al., our analysis indicated that models in which only some
of the reactions, r7, r8, and r9, are eliminated may be interesting candidates
for experimental analysis. Although none of these reactions was apparent-
ly crucial to explain the ERK data, individual reactions with small impact
on the dynamics may still be present. However, the response for some of
the resulting models is indistinguishable from the model with r7–9 elimi-
nated; for a more detailed analysis, one would have to measure additional
variables or include other (chemical) perturbations of the network. Second,
topological filtering showed that all the reactions, r1–5, involved in feedback
regulation of ERK signaling were essential to explain the data, indicating
ww.SCIENCESIGNALING.org 28 May 2013 Vol 6 Issue 277 ra41 3
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the importance of these control loops. Overall, even for this relatively large
ERK signaling network, our automatic method reduced the space of
biological hypotheses to a set of 24 = 16 viable models, about 3% of the
512 possible models.

Inference of mechanisms for the dynamics of Msn2
For a novel application of the topological filtering method, we focused on
the short-term dynamics of the yeast transcription factor Msn2 and its con-
www.SCIENCESIGNALING.org
trol by the PKA pathway (Fig. 3A). Glu-
cose addition to starved cells leads to the
transient accumulation of cAMP, which
peaks after about 1 min with an increase
by one order of magnitude from the basal
cAMP concentration under nutrient stress
(23) (Fig. 3B). Increased PKA activity then
inhibits Msn2 activity by triggering Msn2
accumulation in the cytosol. Msn2 has at
least four phosphorylation sites in the NLS
region (Ser582, Ser620, Ser625, and Ser633)
and one in the NES region (Ser288) that are
known targets of PKA in this process (16).
The stress-generated signals affect both nu-
clear export and nuclear import, leading to
localization changes of Msn2 that are com-
pleted within minutes after the external glu-
cose concentration has been altered (14, 24)
(Fig. 3C).

Although the general topology of the
signaling systems is well known, this does
not apply to the detailed control mecha-
nisms and their relative importance or to
most of the quantitative and dynamic as-
pects of the response that are critical for
modulating downstream gene expression
(17). The localization of Msn2 is deter-
mined by nuclear export and import and,
consequently, by the net flux (the differ-
ence of the two transport rates). Because
PKA simultaneously controls the nuclear
import and export of Msn2, either of the
two processes could be critical for estab-
lishing changes in Msn2 localization. More-
over, it is unclear whether PKA exerts its
influence primarily in the nucleus or in
the cytoplasm. For instance, the hypothesis
that the control of nuclear export is the
most important process (24) is intuitively
hard to reconcile with the observation that
the cAMP-inhibited regulatory subunit of
PKA (Bcy1) predominantly localizes to the
nucleus in cells grown in the presence of
glucose, which would predict that PKA ac-
tivity in the nucleus would be low under
these conditions (25). The distribution of
Msn2 between compartments and, corre-
spondingly, the control of localization are
graded because, even under poor growth
conditions, the majority of Msn2 remains
in the cytosol [we estimated a cytosolic frac-
tion of 57% under the starvation conditions
in (26)]. Dynamic shuttling of Msn2 between the cytosol and the nucleus
could enable rapid adaptation to favorable growth conditions (24).

To investigate these quantitative and dynamic aspects of Msn2 control,
we focused on the short-term dynamics of the PKA-induced cytosolic and
nuclear phosphorylation of Msn2. To incorporate the possible mecha-
nisms of the PKA-mediated control of Msn2 discussed above, we devel-
oped a dynamical model with four state variables representing the fractions of
nonphosphorylated Msn2 (Msn2cyt and Msn2nuc) and phosphorylated
EGFR
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Fig. 2. Analysis of the ERK pathway. (A) Schematic representation of the ERK pathway activated by EGFR,
with emphasis on the reactions investigated by our method. The mitogen-activated protein kinase (MAPK)
phosphorylation cascade is represented by a single module. The factors stimulating the ERK pathway
(ovals) are EGF, PKA agonist (PKAA), cAMP phosphodiesterase antagonist (cilostamide), and EPAC
agonist (EPACA). The proteins catalyzing reactions r2, r3, and r5 are specified within brackets. The readout
of the pathway is the ratio between phosphorylated ERK (ERKPP) and the total concentration of ERK. Re-
actions r1 to r9 are targeted by our method (dashed lines). Reactions r6 to r9 can be removed (blue) without
compromising the descriptive power of the model. (B and C) Projections of the viable parameter points
identified for the original model. (B) For reaction r1 (ERK-mediated degradation of SOS), the maximal rate
constant Vmax is plotted against the Michaelis-Menten constant KM. (C) The Vmax for reaction r4 (B-RafPP–
mediated activation of MEK, within the MAPK module) on the x axis and the mass action constant k for
reaction r6 (degradation of EGFR) on the y axis.
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Msn2 (Msn2Pcyt and Msn2Pnuc) in the cytosol and nucleus (Fig. 3A and
text S3). Because PKA targets several Msn2 phosphorylation sites, we as-
sumed that the sites in the NLS are functionally equivalent such that one
can combine them into a single state variable. The kinetics of the model
are similar to (27). We used the experimentally measured cAMP dynamics
(Fig. 3B) as an input signal, which allowed us to consider the system in
isolation from other regulators of PKA activity: cAMP constitutes the only
known direct link between the Msn2 system and the rest of the PKA path-
way, such that feedback loops of the PKA pathway may affect Msn2 lo-
calization only through the concentration of cAMP. The model has nine
www.SCIENCESIGNALING.org
reactions; with Michaelis-Menten kinetics
for reactions r5, r6, r7, and r8 that each re-
quire two parameters and the reversible re-
action r9, the model has 14 parameters.
The two parameters for cAMP-induced
PKA activation are necessary to trigger a
response, and at least one of the two reac-
tions for Msn2 phosphorylation is also re-
quired. Excluding the four Michaelis-Menten
constants and the three necessary param-
eters, at most seven parameters can be elim-
inated simultaneously, resulting in 3 × 26 =
192 possible network topologies to be dis-
criminated. Hence, although the model is
relatively small [note that “small model”
is not well defined by the community; see,
for example, (28)] and the general topology
is well characterized, a detailed mechanistic
understanding requires the analysis of a
model ensemble that is too large to handle
manually.

Elimination of a majority
of topologies by Msn2
localization data
We focused on the short-term dynamics of
Msn2 during the first 3 min and used the
corresponding quantitative data from a pre-
viously published experiment in which
100 mM glucose was added to cells that
had been starved for 20 min (26). Time se-
ries data were available for the cAMP con-
centration (Fig. 3B) and for the localization
of Msn2 in the wild type and in gpa2D and
vma5D mutants (Fig. 3C). These deletions
compromise separate branches of the PKA
pathway (26, 29). In all strains, the addition
of glucose resulted in a net translocation
of Msn2 from the nucleus to the cytosol
(Fig. 3C).

We first applied our method to the Msn2
model using data for wild-type cells, which
generated 47 models that were consistent
with this data (out of 192 possible candi-
date models). To further restrict the number
of candidate models, we then included data
for the two mutants as well. This yielded
11 viable candidate models that, together
with the original model, defined an ensem-
ble of 12 candidate models, none of which
could be reduced to a model that was not already in the ensemble (Fig.
3D). To obtain independent evidence for the set of viable candidate
models, we also applied a global optimization algorithm to each of the
possible 192 models (see text S4 for details). The global optimization
found parameter points for which a model was consistent with the
Msn2 localization data in most of the candidate models obtained by topo-
logical filtering, but for none of the other models (fig. S1). This indicates
that topological filtering identified the correct topologies despite other-
wise difficult parameter estimation (and, consequently, model selection)
problems.
A - Model B - Input
Fig. 3. Msn2 model, experimental data, and reduced models that
are compatible with the Msn2 translocation data. (A) Sketch of the

model for the nuclear translocation dynamics of Msn2 with reactions (arrows) and components (rectangles,
proteins; ellipses, small molecules) and their localization in the cytoplasm and nucleus (inside and outside
the shell, respectively). The model is used to predict and identify mechanisms for the Msn2 dynamics upon
stress release after addition of glucose to cells that have been starved for 20 min. (B and C) Experimental
data for cAMP (B) are the input to the model, and fractional nuclear localization of Msn2 is the readout (C).
Different time courses pertain to the wild type (stars), gpa2D (squares), and vma5D (diamonds) as origi-
nally published in (26). (D) Relationship between viable models that are automatically generated from the
original Msn2 model (top) based on the removed parameters (arrows with annotation of the eliminated
reaction). Models are named, with the number of the model subscripted and the removed parameters
superscripted. (E) Model probabilities given the Msn2 translocation data (blue), after incorporation of
the phosphorylation data (yellow), and with the msn5D data (black). OM, original model.
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Comparison of the candidate topologies (Fig. 3D) shows that there is
no model that can be reduced by more than two parameters. We also note
that in 9 of the 11 viable models, only parameters in a single reversible
reaction were eliminated. In the remaining two models [M ð48Þ

8
and M ð37Þ

10 ,
where the superscript in M ðxyÞ

i denotes that the parameters corresponding
to reactions rx and ry were eliminated and the subscript represents the
model number], the eliminated parameters stem from successive reactions
in the same direction in the nuclear (de)phosphorylation of Msn2 and the
transport of phosphorylated Msn2. This indicates that a large and nonar-
bitrary part of the network topology is required to capture the Msn2 local-
ization data.

The model probabilities for the model ensemble based on the Msn2
localization data only (blue bars in Fig. 3E and fig. S2) identify model
M ð78Þ

6 , without reactions r7 and r8, as the most plausible topology given
the experimental data. However, evidence supporting M ð78Þ

6 is not much
stronger than that for modelsM ð−Þ

full ,M
ð1Þ
1 ,M ð8Þ

5
, andM8

ð48Þ. Thus, although
using the localization data greatly reduced the number of biological
hypotheses, it alone was not sufficient to decide in favor of one particular
model and, correspondingly, in favor of one dominant mechanism control-
ling Msn2 localization. Therefore, we continued with iterative model dis-
crimination based on new model predictions and on new experiments.

Further discrimination between topologies by Msn2
phosphorylation dynamics
To design informative follow-up experiments, we used the set of 12 viable
models to predict features controlling Msn2 that were not included in the
original data set. All models [except for M3

ð2Þ, which is not the most plau-
sible model] predicted that Msn2 phosphorylation increases 20 to 40 s
after glucose addition, and that phosphorylation reaches a stable plateau
after another 15 s [see Fig. 4, A and B, for models M1

ð1Þ and M4
ð7Þ]. These

predicted dynamics are unexpectedly fast because we observed much
slower changes in cAMP concentration and Msn2 localization (Fig. 3,
B and C).

When analyzed in more detail, we found that models M1
ð1Þand M3

ð2Þ

behave similarly in that they predict low Msn2 phosphorylation under star-
vation and intermediate phosphorylation (25 to 75%) of total Msn2, 3 min
after glucose addition (Fig. 4A and fig. S3). In contrast, models M4

ð7Þ to
M11

ð34Þ predict that about half of Msn2 is phosphorylated under starvation
and that the vast remainder becomes phosphorylated when glucose is
added (Fig. 4B and fig. S3). Despite the few experimental data used so
far for model identification, the variability in the predictions for the abso-
lute amount of the nuclear and cytosolic phosphorylated Msn2 is rather
low (colored areas in Fig. 4, A and B). The predictions of Msn2 phospho-
rylation dynamics by model M2

ð12Þ, are somewhere in between those of the
first group [M1

ð1Þ andM3
ð2Þ] and the second group [M4

ð7Þ toM 11
ð34Þ], with the

nonnegligible initial phosphorylation of Msn2 slightly increasing over
time [although with large uncertainty (fig. S3)].

We reasoned that this low variability might enable accurate model dis-
crimination by comparing the models to additional experimental data.
However, to design corresponding experiments, we needed to take into ac-
count that phosphoproteomics measurements typically result in relative
(with respect to a reference, in this case the phosphorylation at the start
of the experiment), and not absolute, quantifications. Especially models
M1

ð1Þ and M3
ð2Þ gave more variable predictions for the changes in relative

Msn2 phosphorylation because variability in low initial amounts translates
into larger uncertainties. For modelM 1

ð1Þ, this can be seen from the blue re-
gions in Fig. 4C [see fig. S4 forM 3

ð2Þ]. A lower variability in modelsM 4
ð7Þ

to M11
ð34Þ with lower fold changes of Msn2 phosphorylation, however, still

implied distinct predictions from the first group [see Fig. 4D for the ex-
ample of M4

ð7Þ, and fig. S4]. Together, these results indicated a possible
w

discrimination between the remaining models by quantitatively measuring
the fold change of Msn2 phosphorylation at high time resolution.

Confirmation of the predicted, fast Msn2 phosphorylation
dynamics with targeted phosphoproteomics
We conducted a targeted phosphoproteomics experiment to determine the
overall phosphorylation state of Msn2 using selected reaction monitoring
(SRM) assays (30) to monitor the relative abundance of Msn2 phospho-
rylation at two phosphorylation sites in the NLS (Ser620 and Ser633) and
on a single site in the NES (Ser288). The remaining phosphorylation sites
were not suitable for SRM assays because of technical limitations (either
the peptides were too long or they had other potential phosphorylation
sites). We quantified dynamic changes in the phosphorylation of the three
sites within the first 3 min after glucose addition to starved cells. Synthetic
isotopically labeled phosphorylated peptides corresponding to each indi-
vidual phosphorylation site were used as internal reference peptides for
accurate relative quantification (see Materials and Methods and table S1).
We also measured the phosphorylation states of a number of sites on other
proteins as negative controls to validate the relevance of Msn2 phospho-
rylation (fig. S5). The phosphoproteomics data qualitatively confirmed the
predictions of all models that the amount of phosphorylated Msn2 in-
creases between 20 and 40 s, and then reaches a plateau (Fig. 4, C and
D, fig. S4, and table S2). Moreover, the phosphorylation state of all the
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Fig. 4. Predictions and experiments of Msn2 phosphorylation. (A and B)
Predicted dynamics of absolute amount of phosphorylated Msn2 species
in model 1 (A) and model 4 (B) after addition of glucose. Purple (cytosol)
and orange (nucleus) regions show the 95% confidence interval of the dy-
namics of phosphorylated Msn2 concentrations in these two compartments
for all viable parameter points, and yellow and green lines indicate the cor-
responding average dynamics for the viable points. (C and D) Model pre-
dictions of total Msn2 (nuclear and cytoplasmic) phosphorylation relative to
time zero for model 1 (C) and model 4 (D). Average predictions are given
by red lines, blue regions show the 95% confidence interval over the pre-
dictions of the viable parameter points, and black symbols denote exper-
imental phosphorylation data (means ± SD). The experimentally measured
Msn2 phosphorylation sites are Ser633 (triangles) and Ser620 (squares) in
the NLS and Ser288 in the NES (circles).
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measured phosphorylation sites followed a similar pattern (Fig. 4, C
and D).

To discriminate between the models with these new data, we computed
95% confidence intervals for the experimental phosphorylation data,
which indicated that a fraction of Msn2 phosphorylation larger than
26% before glucose addition is inconsistent with the data (see Materials
and Methods for details). On the basis of this information, we evaluated all
12 candidate models and excluded those parameter points for each model
that predicted a higher initial phosphorylation. The updated model prob-
abilities are shown in Fig. 3E as yellow bars (see fig. S2 for values). As a
result of this analysis, M1

ð1Þ becomes the most plausible model. However,
M1

ð1Þ is only slightly more than twice as probable as the original model.
Hence, we needed to iterate our procedure further to fully discriminate
between the candidate topologies.

A single topology after incorporating translocation
data for the msn5D mutant
To achieve this discrimination by further model predictions and ex-
perimental data, we focused on the role of Msn5 in the control of Msn2
translocation. Briefly, PKA deactivates Msn2 by phosphorylation, and
PKA-mediated Msn2 phosphorylation in the NES induces nuclear export
by the exportin Msn5. Evidence for this role of Msn5 stems from the ob-
servation that Msn2 remains in the nucleus under high-glucose conditions
in msn5D mutants (14, 31). If we assume that, without Msn5, phosphoryl-
ated Msn2 leaves the nucleus at the same rate as unphosphorylated Msn2,
we can simulate the Msn2 localization dynamics in the wild type and in
the Msn5 deletion mutant (see Materials and Methods for details) and
compare the model predictions with experimental data on the nuclear ex-
port of Msn2.

Experimentally, we observed that nuclear export of Msn2 upon glu-
cose addition to starved cells is largely delayed in msn5D cells, and that
a substantial fraction of Msn2 remains in the nucleus even in the absence
of stress [Fig. 5A; see also (14, 32)]. Predictions of the relative change in
nuclear localization of Msn2 in the wild type and in msn5D suggested that
only M1

ð1Þ is consistent with the data, as can be seen by comparing the
overlay of model predictions (lines and shaded areas) and experimental
data (symbols) in Fig. 5B for M1

ð1Þ and in Fig. 5, C and D, for M 2
ð12Þ

and M 4
ð7Þ, respectively (see fig. S6 for the other models). To quantify this

consistency, we computed posterior model probabilities (black bars in Fig.
3E, and fig. S2) for all models after incorporation of the msn5D data. The
probability that M1

ð1Þ most accurately reflects the biology underlying reg-
ulation of Msn2 localization in response to release from glucose starva-
tion, given all the available data, is 99%. We therefore conclude that among
all models that our method generated, model M 1

ð1Þ best describes and pre-
dicts the available data.

Dominant control of the switch in the Msn2
phosphorylation state by nuclear processes
We used the models to quantitatively understand the contributions of phos-
phorylation and dephosphorylation in the nucleus and cytoplasm to the
changes in Msn2 localization. The most probable model, M1

ð1Þ, predicted
that the increased phosphorylation of Msn2 after glucose addition pri-
marily affected nuclear Msn2 (red and gray curves) (Fig. 6A). In this
model, turnover of Msn2 phosphorylation is predominantly nuclear
(Fig. 6B). In most of the other models [M 4

ð7Þ to M11
ð34Þ], the cytoplasmic

Msn2 species respond most prominently to the cAMP peak (fig. S7). Be-
cause model 1 fits the experimental data best, we concluded that the
change of Msn2 localization is primarily due to nuclear phosphorylation
of Msn2 mediated by an increase in the activity of the kinases Tpk1,
Tpk2, and Tpk3.
w

Notably, all models predict that phosphorylation and dephospho-
rylation rates in a given compartment are nearly identical at all times
[see Fig. 6B for M 1

ð1Þ and fig. S7 for the original model and M 4
ð7Þ]. Dy-

namic changes in the Msn2 phosphorylation states result from very small
differences between these rates after glucose addition, which can be ob-
served from the net phosphorylation rates (Fig. 6C and fig. S7). Hence,
regulation of Msn2 translocation appears to be driven by subtle changes in
the ratio of phosphorylation and dephosphorylation rates.

The model-based identification suggests a sequence of events control-
ling Msn2 localization (Fig. 6D). With highly dynamic, constitutive cy-
cling of Msn2 between its phosphorylated and unphosphorylated forms
in the cytosol and nucleus, increased cAMP abundance leads to a fast
net phosphorylation of Msn2 in the nucleus. This allows for a fast initial
response to the cAMP stimulus. If Msn5 is available, the transport of phos-
phorylated Msn2 out of the nucleus then proceeds at a much faster rate than
through diffusion only. Furthermore, the importance of phosphorylation-
driven nuclear export suggests that mainly the NES, and not the NLS, of
Msn2 controls the short-term dynamics of the transcription factor after re-
lease from glucose deprivation stress. Note that the transport of unphos-
phorylated Msn2 between the nucleus and cytosol is slow or absent in
model 1. These transport reactions may not be negligible for the changes
in Msn2 localization that occur on longer time scales after the reintroduc-
tion of glucose. However, model M1

ð1Þ remains the best model when com-
pared with experimental data for the nuclear abundance of Msn2 for up to
6 min after glucose addition, which is longer than the 3 min used in the
training data (fig. S8).

A sensor for the rate of change of cAMP
To mechanistically and quantitatively understand how the cell interprets
changes in cAMP (a proxy for glucose), we used the best model to
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Fig. 5. Localization of Msn2 in wild type and msn5D. (A) Experimental data
for the relative change in the localization of Msn2 for the wild type (blue)

and for msn5D (red). The black line indicates the concentration of glucose
in the system (100 mM glucose is added at time zero, denoted by the
dotted line). (B to D) Predictions (red, mean; blue, 95% confidence interval)
and experimental data (green circles, mean; bars, SE) for the difference
between the relative (to time zero) change in localization of Msn2 in wild
type and msn5D for model 1 (B), model 2 (C), and model 4 (D).
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simulate Msn2 responses to cAMP inputs that were either sharper or more
extended than the measured cAMP dynamics (Fig. 7, A to C). This means
that the change of cAMP concentration per time unit is simulated to be
faster or slower than measured in the real system. The responses in terms
of the Msn2 total nuclear phosphorylation and localization to the cyto-
plasm are unexpected, because it is not the integral of the cAMP signal,
which increases from Fig. 7, A to C, but the rate of change of cAMP con-
centration, which decreases from Fig. 7, A to C, that determines the quan-
titative response. Specifically, the rate of change is decoded by the peak of
the net nuclear phosphorylation of Msn2: The faster the rate of the change
in cAMP concentration, the faster the net dephosphorylation rate (Fig. 7,
D to F). This behavior is very robust to changes in model parameters as
indicated by the high-confidence predictions despite values of viable param-
eters that spread over several orders of magnitude (fig. S9).

Mechanistically, a classical theoretical proposal for how a rate-of-
change sensor could be established in biology bore resemblance to the
Msn2 system in that it postulated a diversity of thresholds for the release
of “packets” of signaling molecules from different intracellular vesicles
(33). Here, these signaling molecules could correspond to nuclear Msn2.
To investigate the hypothesis that multiple thresholds are involved in
controlling Msn2 localization, we used model M1

ð1Þ to simulate the steady-
state response of Msn2 to constant amounts of cAMP, which predicted a
w

nonmonotonic response of Msn2 localization to cAMP, with a threshold
behavior at intermediary concentrations (Fig. 7G, black curve). In contrast,
total Msn2 phosphorylation was predicted to increase monotonically (Fig.
7G, yellow curve). These different responses implied that Msn2 phospho-
rylation may either increase or decrease the amount of nuclear Msn2 and
that steady-state measurements of either quantity alone do not necessarily
characterize the system’s state.

To enable a more intuitive understanding of these phenomena, we de-
veloped a simplified mathematical model that captures several key
features of the realistic model (text S5). The simplified model has seven
parameters: Parameters k2, k3, and k4 have the same interpretation as in
model M1, and the four other parameters connect cAMP to the phospho-
rylation of Msn2 in the nucleus and cytosol. Structurally, it allows for
cycling between four protein states with constitutive nucleocytoplasmic
shuttling and protein phosphorylation and dephosphorylation in each com-
partment (Fig. 7H). The model incorporates relations between parameters
inferred from the in vivo data (fig. S9 and text S5), namely, (i) fast phos-
phorylation and dephosphorylation reactions compared to transport reac-
tions; (ii) high-affinity protein modifications in the nucleus, which lead to
a switch-like relation between input and relative phosphorylation state
(34); (iii) a sigmoidal relation for the cytoplasmic phosphorylation state;
and (iv) faster transport of phosphorylated than unphosphorylated protein
species. The simplified model provides a good representation of the real-
istic model’s qualitative steady-state response to input (compare Fig. 7, G
and I), but it cannot represent the response to very low or very high inputs
or the rate-of-change sensor behavior (see text S5). Simplicity, however,
allows for a mathematical analysis that reveals the following: The input-
output relation is a composition of two regimens (indicated by dashed
lines in Fig. 7I), each of which is sigmoidal with apparent “affinity” con-
stants determined by transport parameters, and a switch between them.
The regimens correspond to two possible cycles with flow between the
protein species (Fig. 7H). One cycle predominantly exports the unphosphoryl-
ated protein form from the nucleus (blue), whereas the other cycle relies on
nuclear export of the phosphorylated form (red). Their interplay gener-
ates the nonintuitive relation between input and localization of the protein.

DISCUSSION

Here, we introduced a novel computational method, topological filtering,
to discriminate between many mechanistic models of a biochemical sys-
tem and to automatically identify those parts of a model that contribute to
the observed dynamics. With the topological filtering approach, only
models that pass the filter have to be further analyzed, thus drastically re-
ducing the computational effort needed to infer and predict previously un-
known biochemical mechanisms, and enabling systematic hypothesis
testing when the sheer number of possible models is prohibitive for man-
ual construction. Indeed, when applied to growth factor–stimulated ERK
signaling and yeast glucose signaling, we found that only small subsets of
hypotheses were consistent with the data, even if the mechanisms of in-
terest were embedded in large networks as for ERK signaling.

To infer dynamic models in systems biology, typically only sparse sets
of experimental data are available, which may result in large uncertainties
for model parameters and for model predictions. Our method tackles this
problem by systematically studying sets of parameter points that are com-
patible with the data. This allows us to assess the relative plausibility of a
set of models by a Bayesian approach, which can be computationally ef-
ficient if the analysis of parameter spaces is based on methods like the one
in (20). For general optimization, bounds on parameter spaces in “sloppy”
models can cause inference methods to fail (35), but this caveat does not
apply here because of our gradient-free Monte-Carlo exploration of the
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Fig. 6. Model classes predict different mechanisms controlling Msn2 trans-
location. (A) Dynamic predictions of Msn2 concentrations for model 1. Un-
phosphorylated Msn2 in the cytosol (yellow), phosphorylated Msn2 in the
cytosol (blue), unphosphorylated Msn2 in the nucleus (red), and phos-
phorylated Msn2 in the nucleus (gray). (B) Absolute rates of phospho-
rylation in the cytosol (red), dephosphorylation in the cytosol (yellow),
phosphorylation in the nucleus (blue), and dephosphorylation in the nucle-
us (black). (C) Net phosphorylation rates (the result of the difference in the
phosphorylation and dephosphorylation rates) in the cytosol (blue) and in
the nucleus (gray). In all cases, shaded areas correspond to a 95% confi-
dence interval. (D) cAMP (dashed line; WW, wet weight) induces a fast net
phosphorylation in the nucleus (R8) for the first minute upon glucose addi-
tion, and subsequent nuclear export (R4) and dephosphorylation (R6) of
Msn2 between 1 and 3 min.
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parameter space. Topological filtering explores the viable parameter space
to generate model representations through elimination of parameters (hy-
potheses). Thus, our method simultaneously characterizes parameter spaces
and reduces mathematical models. Local methods have been proposed to
use the lack of parameter identifiability as a criterion for model reduction
(36, 37). One could use topological filtering as a basis for a general model
reduction method that could incorporate established reduction approaches
(38), such as sensitivity analysis (39), time scale analysis (40), and lump-
ing (41).

Note that topological filtering depends on the initial set of hypotheses
incorporated by the modeler; it cannot add new hypotheses. However,
established methods for the inference of coarse-grained models from data
(42) could be used to establish an unbiased initial set of hypotheses. Al-
www.SCIENCESIGNALING.org
ternatively, the identification of stochastic
differential equations provides opportu-
nities for elucidating parts of the model that
need to be augmented (43). As another
potential caveat, we note that our approach
to model reduction is “greedy.” Although
based on nested models and systematic
evaluation of stepwise reductions for each
candidate model, finding all viable can-
didates cannot be guaranteed. Also, large
parameter spaces affect both parameter ex-
ploration and model reduction, such that
the scalability of the method beyond the
model sizes considered here needs to be fur-
ther investigated. Future developments could
therefore focus on computational efficien-
cy and scalability, for instance, by exploit-
ing advanced numerical methods (44).

Topological filtering, coupled with ra-
tionally designed experiments, enabled nov-
el insights into the control of Msn2, including
the unexpected discovery of a rapid switch
in Msn2 phosphorylation after glucose ad-
dition that occurs well before the end of the
cAMP peak. We identified a single model
topology that was quantitatively consistent
with the data. In contrast, analysis of the
volume of the viable space of different mod-
els as a proxy for their robustness to param-
eter perturbations did not yield such a
unique identification (fig. S10 and text
S6). The model identified by topological
filtering enabled in-depth analysis of the
mechanisms controlling Msn2 localization
and predicted that nuclear phosphorylation
and subsequent nuclear export of Msn2 are
the driving forces of the translocation, and
that the control of Msn2 localization relies
on subtle changes in phosphorylation rates
against a background of high constitutive
nucleocytoplasmic cycling of the transcrip-
tion factor.

In systems terminology, the rate-of-change
sensing function of Msn2 corresponds to a
“differentiator,” which is a fundamental class
of dynamic systems, for which no real bio-
chemical network example is known so far
(45). In the physiological context of Msn2, two properties of a differen-
tiator are important. Signal differentiation enables fast reactions to fast
changes in the cell state, which is required for stress responses to fluctu-
ating environmental conditions. However, as a trade-off, differentiation
will amplify stochastic fluctuations of the signal. Another study (46) iden-
tified genes controlled by Msn2 or its homolog Msn4 in yeast as a major
“noise regulon”—a set of genes that show correlated activity fluctuations—
and showed that the associated dynamic responsiveness provides survival
advantages under stress conditions. In addition, on time scales of tens of
minutes or longer, the same mechanisms controlling Msn2 translocation
that we investigated can establish a versatile signal processing module
(47). These experimental findings align well with the predicted system-
level differentiator function of Msn2.
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Fig. 7. Mechanisms controlling Msn2 localization. (A to C) Prediction of the nuclear localization of Msn2
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caused by different relations between the input and relative phosphorylation of Msn2 in the nucleus (red)
and the cytoplasm (blue). Relations between input and nuclear localization of Msn2 for regimens with 0%
(dashed blue) and 100% (dashed red) phosphorylation in the nucleus are shown.
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Relatively few characteristics of the mechanisms controlling localiza-
tion can lead to nontrivial manifestations of dynamic phenomena at the
systems level. Constitutive nucleocytoplasmic cycling, control of localiza-
tion by (fast) phosphorylation, and the response to highly dynamic signals
are hallmarks of other transcription factors, such as Crz1 in yeast (48) or
forkhead box protein O (FoxO) (49), nuclear factor kB (NF-kB) (50, 51),
and nuclear factor of activated T cells (NFAT) (52), which are transcription
factors in higher organisms. In most of these cases, both the quantitative
mechanisms controlling their activity and the more abstract signal process-
ing functions are poorly characterized. Our model-based analysis suggests
general design principles that could establish a temporal signal dif-
ferentiator and thereby extend the repertoire of known “motifs” for decod-
ing temporal cellular signals (53). The combination of mechanisms
controlling localization is also versatile. For instance, with different set-
tings for the reactions, it can operate as a static bandpass filter (fig. S11,
text S5, and table S3).

Of course, as for Msn2, the control processes involved are more com-
plicated than our abstracted models; they involve multiple phosphorylation
events, the formation of various complexes, and regulated degradation.
More detailed mechanistic insights could be obtained by including them
in the model-based analysis, but direct experimental evidence for many of
these details of intracellular signal processing systems is not available or
technically obtainable. This is one of the reasons why our model-based
method for the inference of the mechanistic underpinnings of dynamic
biological systems appears promising for application to other examples
where mechanisms and quantitative features of a system are substantially
uncertain.
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MATERIALS AND METHODS

Targeted phosphoproteomics of isotopically labeled
synthetic peptide standards
Crude isotopically labeled ([13C,15N]lysine-labeled or [13C,15N]arginine-
labeled) synthetic phosphorylated peptides were purchased from JPT
Peptide Technologies. These peptides represent unpurified products of
a high-throughput Spot synthesis and lack a precise peptide concentration
determination. Hence, they can be used for determination of relative phos-
phorylation site abundance changes but not for absolute quantification.
For the target protein Msn2, the following three phosphorylated peptides
were purchased: RPS[phospho]YR (NLS site, Ser620), SS[phospho]
VVIESTK (NLS site, Ser633), and RFS[phospho]DVITNQFPSMTNSR
(NES site, Ser288). As negative controls, synthetic, isotopically labeled
phosphorylated peptides from Pfk1 (DAFLEATS[phospho]EDEIISR),
Pfk2 (NAVSTKPTPPPAPEASAES[phospho]GLSSK), and Hxk1 or Hxk2
(KGS[phospho]MADVPK) were used. Optimized SRM assay parameters
for each phosphorylated peptide were obtained by initial investigative SRM
measurements of the synthetic peptides and include (i) selection of the most
intense and selective transitions per peptide (four to nine transitions; see table
S1), (ii) relative transition intensities, and (iii) retention time information. Sub-
sequently, all synthetic peptides were spiked into the phosphorylation-
enriched samples of interest in constant amounts, roughly adjusted to
the endogenous peptide abundance, and served as internal references.

Cell culture and sample preparation
Cells were grown in synthetic media as described (26). Yeast cells express-
ing Msn2-GFP (green fluorescent protein) were grown to mid-exponential
phase (optical density, 0.7 to 1), harvested, washed twice, and resuspended
in synthetic complete (SC) medium without glucose. Twenty minutes after
the first wash with SC medium, glucose was added to a final concentra-
w

tion of 2%, and samples were withdrawn at the indicated time points. Cells
were harvested after quenching with trichloroacetic acid (6.25%, final) and
washing with ice-cold acetone. Yeast cells were lysed in lysis buffer [8 M urea,
100 mM NH4HCO3, 5 mM EDTA, 1 mM tris(2-carboxyethyl)phosphine
(TCEP), pH 8.0] with glass beads. Cell debris was removed by centrifu-
gation, and protein content was determined with a bicinchoninic acid pro-
tein assay (Pierce). For each sample, 2.0 mg of total protein was reduced
(5 mM TCEP), alkylated (70 mM iodoacetamide), digested with trypsin
(Promega), and prepared for a phosphorylated peptide enrichment pro-
cedure as described previously (54). Briefly, phosphorylated peptides were
enriched with titanium dioxide (GL Science), eluted with 0.3 M NH4OH
(pH 10.5), and purified using C18 cartridges (C18 Micro Spin columns,
The Nest Group Inc.). Finally, the phosphorylated peptide mixtures were
dried, resolubilized in 0.1% formic acid, and immediately analyzed. All
samples were processed in parallel.

Targeted mass spectrometry
All SRM measurements were performed on a TSQ Vantage QQQ mass
spectrometer (Thermo Fischer Scientific) equipped with a nano-electrospray
ion source. Typically, 1 mg of phosphorylation-enriched peptides was
loaded onto a 75 mm × 10.5 cm fused silica microcapillary reversed-phase
column packed with Magic C18 AQmaterial (200-Å pore, 5-mm diameter,
Michrom Bioresources). A linear 40-min gradient from 2 to 46% solvent
B (solvent A: 98% water, 2% acetonitrile, 0.1% formic acid; solvent B:
98% acetonitrile, 2% water, 0.1% formic acid) at a flow rate of 300 nl/min
was applied for phospho-peptide separation. The mass spectrometer was
operated in the positive ion mode using electrospray ionization with a cap-
illary temperature of 280°C, a spray voltage of +1350 V, and a collision
gas pressure of 1.5 mtorr. SRM transitions were monitored with a mass
window of 0.7 half-maximum peak width (unit resolution) in Q1 and Q3.
All SRMmeasurements were performed in scheduled mode with a retention
time window of 3.5 min and a cycle time of 1.5 s. The collision energy for
each transition was calculated using the formula CE = 0.034 × m/z − 0.848
for doubly charged precursor ions and CE = 0.022 × m/z + 5.953 for triply
charged precursor ions (in-house optimized formula, m/z is mass-to-charge
ratio of the precursor ion).

Targeted mass spectrometric data analysis
All obtained SRM traces were analyzed with the software Skyline (55).
Interfered or noisy transitions were removed manually. For quantifica-
tion, the ratio between a given endogenous (light) and its isotopically
labeled reference peptide (heavy) was calculated from the sum of all
light and heavy transition peak areas. Because the reference phos-
phorylated peptide amount was kept constant through all samples, en-
dogenous abundance changes between samples could be determined.
All data were normalized relative to the mean of the starved condition
from three biological replicates (table S2).

The SRM data set associated with this manuscript has been deposited
to the PeptideAtlas SRM Experiment Library [PASSEL; http://www.
peptideatlas.org/passel/ (56)] and is accessible from ProteomeXchange
with identifier PXD000236 (http://proteomecentral.proteomexchange.
org/dataset/PXD000236).

Imaging
Analysis of Msn2-GFP localization was performed as described (26). In
brief, cells expressing Msn2-GFP were grown to mid-log phase and loaded
into commercially available microfluidic chips. Cells were subjected to glu-
cose starvation for 20 min before readdition of glucose (2%, final), and
Msn2-GFP localization was followed by time-lapse imaging. Cell segmen-
tation and analysis of Msn2-GFP localization was performed through in-
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house MATLAB (MathWorks)–based software (57). Cells were segmented
based on the bright-field image, and Msn2-GFP localization was quantified
by calculating the coefficient of variation (CV) of pixel intensities of the 500
brightest pixels per cell in the GFP channel, which allows for a relative
quantification of the changes in Msn2-GFP localization over time in differ-
ent genotypes but effectively excludes signals from the vacuole. Strong nu-
clear localization causes high CV because of bright pixels in the nucleus
and reduced intensity in the cytoplasm; uniform distribution of Msn2 be-
tween the nucleus and cytoplasm leads to a reduced CV. To calibrate the
model, we estimated the relative concentrations of Msn2 in both compart-
ments by comparing the total intensity of the nuclear pixels to the total in-
tensity of all pixels of the cell (with the background intensity subtracted)
using the CellX image analysis software (58) and a nuclear volume of
7% of the cell volume (59). For each strain, the cells from three independent
experiments were averaged and plotted as means ± SEM.

Model definition
We consider ODE models for systems with n state variables (for exam-
ple, component concentrations for biochemical networks), z reactions,
and d model parameters of the form
stke.
loaded from

 

MðqÞ ¼ fdxdtðtÞ ¼ Nv½xðtÞ;q;uðtÞ�;q ¼ ½q1;q2;…;qd�T

yk ¼ h½xðtkÞ� þ eðtkÞ;eðtkÞ ∼Nð0;SkÞ;k ¼ 1;2;…;K ð1Þ
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with the state variables x(t)∈ℝn, the stoichiometric matrix N∈ ℤn×z , the
reaction rates or fluxes v(·) ∈ ℝz, the potentially time-varying inputs u(t),
and the vector of model parameters q ∈ ℝd. We assume that the system
output yk ∈ ℝl at time point tk is generated by a nonlinear function h(·)
of the system state variables x(t) and an additive contribution of measure-
ment noise e(tk) ∈ ℝl. Furthermore, we assume that this noise is normally
distributed N(0,Sk) with covariance matrix Sk ∈ ℝl×l.

Exploration of parameter space
Given a set of time-discrete observational data Y ¼ ½ŷ1; ŷ2; :::; ŷK �T , we
assume that the residuals ek ¼ ðyk − ŷkÞ ∈ ℝl . That is, the deviations
between model and data at any time point are Gaussian distributed. Then,
the likelihood of observing these data, given the model M and the param-
eter point q, is given by

pðY jq;MÞ ¼ e−
1
2e

T S−1e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞljSj

q ð2Þ

where e ¼ ½eT1 ;…; eTK �T ¼ ½ðy1− ŷ1ÞT ;…; ðyK− ŷKÞT �T ∈ ℝKl and the
measurement covariance matrix S ∈ ℝ(Kl)×(Kl).

For evaluating the compatibility between model and data, we use the
negative log-likelihood function

Eðq; Y ;MiÞ ¼ −ln½pðY jq;MÞ� ð3Þ
as a cost function. We derived a formal criterion to classify parameter
points as viable (see text S2 for details).

Generation of candidate models
For every parameter point q ¼ ½q1; q2; :::; qm−1; qm�T ∈ V i

expl , the set of all
viable parameter points found in the exploration, the algorithm constructs a
new set of m parameter points, which is defined by projection of q onto
w

each Cartesian axis. That is, the ith parameter point of this set has the ith
component equal to zero and the other components are the same as in q:

q ¼ fq1; q2; :::; qm−1; qmg∈V i
expl → ff0; q2; :::; qm−1; qmgfq1; 0; :::; qm−1; qmg

⋮
fq1; q2; :::; 0; qmg
fq1; q2;…; qm−1; 0g

ð4Þ

The next step of the method is to check the viability of each projected
parameter point. If the ith projected parameter point is viable, it implies
that the kinetic parameter qi is not essential to explain the data. Subse-
quently, the algorithm checks the viability of a parameter point in which
all previously identified nonessential kinetic parameters are set to zero
simultaneously. If this parameter point is viable, the corresponding model
is included in the set of reduced models. The complete set of reduced
models generated from the original model is obtained by repeating the
same procedure for every parameter point in V i

expl .

Ranking of candidate models
The method uses the prior probability distributions p(Mi) and p(q|Mi) for
the probabilities of the model Mi among the set SM and for the parameter
point q given the modelMi. Both priors are assumed to be uniform (that is,
an equal probability for all possible models and parameterizations is as-
sumed before incorporating experimental data). For model ranking, we
assess the ratio of plausibility between two models, Mi and Mj, with the
so-called Bayes factor, Bij, by integrating overall viable parameter points.
With equal priors for the parameter points and models, Bij takes the form
Bij ≡
pðY jMiÞ
pðY jMjÞ ¼

∫
Qi

pðY jq;MiÞpðqjMiÞdq
∫
Qj

pðY jq;MjÞpðqjMjÞdq
¼

VolQj ∫
Qi

pðY jq;MiÞdq
VolQi ∫

qj
pðY jq;MjÞdq

ð5Þ

where Qi is the parameter space of model Mi and VolQ is the volume of
this space. If we compute the Bayes factors for all models with respect to
model Mi, the posterior probability of this model is given by

pðMijY Þ ¼ ð1þ ∑
C

j¼1;i≠j
BjiÞ−1 ð6Þ
Small example model
The model has four states and seven parameters (see text S1). Parameters
were explored in the region [10−4, 104] for each parameter over the
parameter space Q7 = k1 × k2 × … × k7. The likelihood function over
the 20 time points, given by Eq. 2, is formulated as

pðY jq;M ð−Þ
1 Þ ¼ e−

1
2e

T S−1e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞ2jSj

q ð7Þ
where the residuals e ¼ ½eT1 ;…; eTK �T ∈ ℝ40 with ek ¼ ðyk − y^kÞ ∈ ℝ2,
y^k ¼ ½A^ðtkÞ;C^ðtkÞ�T , and ykðq;M ð−Þ

1 Þ ¼ ½Aðtk ; q;M ð−Þ
1 Þ;Cðtk ; q;M ð−Þ

1 Þ�T .
The covariance matrix Sk ∈ ℝ40�40 is diagonal, which allowed us to write
the viability condition in the explicit form given by expression (eq. S8).
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Model of the ERK pathway in PC12 cells
Our analysis started from model 4 in (6), which incorporates all the mech-
anisms of models 1, 2, and 3. The model was downloaded from the sup-
plementary materials of (6): http://stke.sciencemag.org/cgi/content/full/
sigtrans;3/113/ra20/DC1, in systems biology markup language (SBML)
extensible markup language (XML).

The initial parameter point used in the parameter exploration with our
method was taken from the best model in (6) (model 2). Because the 17
kinetic parameters of the investigated reactions have not been experimen-
tally measured, we decided to explore a wide region (½10−5; 105�).

The initial conditions of the state variables were set as in (6) with
EGFð0Þ ¼ 1000. Altogether, 11 experiments were conducted in (6). Three
of these are control experiments in which EGF was not added at time
point zero, which did not generate a response in the phosphorylation of
ERK. In the other experiments, EGF was initially added with or without a
combination of the three drugs cilostamide (a cAMP phosphodiesterase
inhibitor), a PKA antagonist (PKAA), and a EPAC antagonist (EPACA),
which gives a total of 23 ¼ 8 experiments (in one experiment, only EGF
was added). The initial conditions of the drugs, in experiments in which
they are included, were set to cilostamide(0) = 100, PKAA(0) = 100, and
EPACA(0) = 100 (0 if not included). All eight experiments were simulated
for each parameter point evaluated. The viability of a parameter point was
determined from the negative log-likelihood of all experiments and based
on our viability criterion (see text S2).

Msn2 model
For details on the construction of the model, see text S3. The experimental
readout with respect to Msn2 localization is the fraction of the total
amount of Msn2 that resides in the nucleus over time:

yðtÞ ¼ Msn2nucðtÞ þMsn2PnucðtÞ
½Msn2cytðtÞ þMsn2PcytðtÞ þMsn2nucðtÞ þMsn2PnucðtÞ�

ð8Þ

For phosphoproteomics analysis, we designed a scheme with the six
most informative time points (40, 60, 80, 120, 140, and 180 s) based on
in-house software for experimental design and two time points shortly
before glucose is added (−60 and −120 s). Our approach to experimental
design was to select time points for which the difference in the predictions
of the candidate models is the largest, because these measurements are the
most informative for model inference. We only consider the magnitude of
the predicted concentrations, and not the corresponding derivatives. Be-
cause the models predicted the most change in the phosphorylation state
in the beginning of the experiment, we also considered the 20-s time point.

For each evaluated parameter point, we first simulated the model until
a steady state was reached. We performed extensive numerical testing of
the model to exclude multistationarity (that is, to confirm that the steady-
state solution is independent of the initial conditions). There are 14 param-
eters in the model: a,r,k1,k2,k3,k4,V5,V6,V7,V8,K5,K6,K7,K8. The reduced
models were automatically identified by exploration of the parameter
space of the original model. For each parameter, the region [10−4,104]
was explored.

Incorporation of additional data: Phosphorylation
and msn5D
To incorporate Msn2 phosphorylation data, we computed a 95% confi-
dence interval for the increase in phosphorylation f. This was computed
as the inverse of the normal cumulative distribution function, so that the
increase in phosphorylation (f) is larger than ul with 95% probability:

Prðul < fÞ ¼ 0:95 ð9Þ
w

for each of the three measured phosphorylation sites (Ser633, Ser620, and
Ser288) at time point 40 s when phosphorylation reached a new plateau.
The values of ul at 40 s for the sites are Ser

633: ul = 4.16, Ser620: ul = 8.50,
and Ser288: ul = 3.81. All parameter points predicting that the initial phos-
phorylation of Msn2 is larger than 1

3:81 ≈ 0:26 were, as supported by all
measured phosphorylation sites, considered to be inviable for computing
the Bayes factors and the corresponding model probabilities.

To predict the translocation dynamics of Msn2 in msn5D, we assumed
that a phosphorylated and an unphosphorylated Msn2 molecule are equal-
ly likely to diffuse out of the nucleus during a fixed time interval. Corre-
spondingly, we set the parameter in reaction r4 equal to the parameter in
reaction r2 for each viable parameter point. The difference between the
model predictions of the relative change in the msn5D and wild-type
(WT) dynamics,

ydðtÞ ¼ ymsn5DðtÞ
ymsn5Dðt0Þ −

yWTðtÞ
yWTðt0Þ ð10Þ

where glucose is added at t0 and y is defined in Eq. 8, was then compared
to the corresponding difference in the experimental data at time points 0,
1, 2, and 3 min.
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