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We re-examine the evolutionary dynamics of RNA secondary structures under direc-
tional selection towards an optimum RNA structure. We find that the punctuated equi-
libria lead to a very slow approach to the optimum, following on average an inverse
power of the evolutionary time. In addition, our study of the trajectories shows that
the out-of-equilibrium effects due to the evolutionary process are very weak. In partic-
ular, the distribution of genotypes is close to that arising during equilibrium stabilizing
selection. As a consequence, the evolutionary dynamics leave almost no measurable out-
of-equilibrium trace, only the transition genotypes (close to the border between different
periods of stasis) have atypical mutational properties.

Keywords: RNA neutral networks; genotype; phenotype; evolution; slow relaxation;
classification description; systems biology.

1. Introduction

In many realistic systems, dynamics undergo a pronounced slow-down, a feature
characteristic of “complex” landscapes.! Such phenomena arise for instance in phys-
ical systems (thermal relaxation?), in optimization problems (diminishing returns
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on search efforts?), and in evolutionary dynamics (punctuated equilibria, i.e. long
periods of stasis in the evolutionary record?). In this work, inspired by the theoreti-
cal framework of statistical physics for glassy systems, we reconsider a simple model
of evolutionary dynamics, namely RNA secondary structure evolution.® ® We find
(i) slow evolutionary dynamics, whereby the time to find an advantageous pheno-
typic change has a distribution with a fat (power-law) tail; (ii) non-self-averaging
behavior, i.e. even for long RNA molecules, directional selection for some targets
will lead to significantly slower dynamics than for other targets; (iii) only weak
out-of-equilibrium effects: the genotypes visited by an evolutionary trajectory are
quite similar to those arising in equilibrium under stabilizing selection, so except
near the ends of periods of stasis, the genotypes produced during an evolutionary
trajectory do not have anomalously high or low mutational robustness.

The paper is organized as follows. In Sec. 2, we introduce the evolutionary
model. In Sec. 3, we exhibit the non-exponential nature of the relaxation process;
empirically, relaxation seems to follow an inverse power law. We also show that
the relaxation curves remain sensitive to the target used for directional selection
even in the limit of very long molecules. Finally in Sec. 4, we give evidence that at
nearly all times the evolutionary trajectory is in quasi-equilibrium; more precisely,
the “innovative” genotypes produced by a transition to a new period of stasis are
only a bit different from random genotypes as measured by the phenotypic effects of
mutations; furthermore, during the periods of stasis, the initial genotype seems to
be quickly forgotten, so no significant trace of innovation seems to be maintained.
Concluding remarks are given in the final section.

2. The RNA Evolutionary Model
2.1. RNA structure and its fitness landscape

For the purpose of this study, RNA molecules will be thought of as chains or strings
of L nucleotides, taken from an alphabet of four possible nucleotides (A, C, G
and U). Chemically, the bases can pair via hydrogen bonds. In addition to Watson—
Crick pairings (A-U and G-C), the U-G pairing is also possible, though it is weaker.
The pairings between bases give rise to an RNA secondary structure, as illustrated
in Fig. 1. Apart from this graphical representation, the secondary structure of an
RNA molecule can be specified by the more convenient dot-bracket notation where
a non-paired base of the sequence is denoted by a dot “.” and a paired base is
denoted by a left or right parenthesis. This representation allows one to reconstruct
the pairings as long as the secondary structure is “planar”.” (Planarity means that
if the L bases are positioned on a line and the pairings are represented by arcs
between the bases, these arcs can be drawn in the plane without any crossings.) An
RNA molecule will spontaneously (i.e. via thermodynamic forces only) fold into the
structures with lowest free energies. To simulate this folding in silico, we use the
“Vienna RNA package”1? to find, for any given sequence, the pairings (secondary
structure) which lead to the minimum free energy. In effect, this procedure produces
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Fig. 1. Example of a secondary structure of an RNA molecule. Several typical features
characteristic of RNA secondary structures are shown. They include hairpin loops at
the periphery and a multiloop at the center. The structure shown 1is represented
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notation.

a map from sequences (genotypes) to secondary structures (phenotypes).> %11 The
CPU time needed to determine a minimum free energy structure is O(L?) for a
chain of L bases.

All genotypes that have the same phenotype form a neutral network.** More
precisely, given a genotype to phenotype map, the neutral network associated with
the phenotype P is a graph whose nodes are all the genotypes having that phe-
notype; the edges of that graph connect genotypes if and only if they are nearest
neighbors. It is thus necessary to introduce a notion of neighborhood in genotype
space. For the present work, two RNA genotypes (sequences) will be considered as
nearest neighbors if and only if they differ by a single base. Other choices would
have been possible!! such as allowing a difference of two bases, meaning that two
successive point mutations would transform one genotype to one of its neighbors.

One may also want to consider multiple phenotypes, leading one to also define
a distance d, between two phenotypes. In our case, we take the distance between
two RNA secondary structures P; and P» to be 1/L times the Hamming distance
between their dot-bracket string representations. Again, other choices of pheno-
typic distance functions have been used in the literature! '3 often interchangeably,
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but we use only the Hamming distance one for its simplicity. Given the neighbor-
hood definitions both for genotypes and phenotypes, one can introduce a fitness
landscape,'* where genotype and phenotype spaces both have a distance metric,
and where each phenotype can be assigned a “fitness”. We take the fitness of a
phenotype to be a monotonically decreasing function of its distance to some “tar-
get” phenotype P;. For specificity, the reader can think of a decreasing exponential
of distance, but as will be clear later on, the choice of function makes no dif-
ference. Finally, we will also extend the notion of a neutral network to that of
a neutral ensemble: we call neutral ensemble the union of all neutral networks
whose corresponding phenotype has a given fitness, regardless of the specific phe-
notype. This definition reflects the fact that secondary structures are relevant in
the evolutionary search mainly via their distance to P;. RNA sequences with their
associated fitness form a fitness landscape with hills, valleys and passes (saddles).
Analogous landscapes also arise in other systems; for example spin glasses'® are
physical materials in which energy is often identified with fitness; the landscape’s
ruggedness and many valley structure are important for the associated dynamical
properties.

2.2. Dynamics under directional selection

We take the unit of time to be the expected waiting time At between two mutations.
Thus if g is the mutation rate per RNA molecule and per generation, our unit
of time is At = 1/pu. For our evolutionary dynamics, we simulate the process of
RNA evolution towards a target structure by allowing a genotype to change by a
point mutation at each unit of time. The directional selection associated with this
evolutionary search then proceeds as follows. At each step, the genotype is mutated
at one base taken at random; the corresponding phenotype (secondary structure
for that genotype) is determined, and selection is applied: if the distance to the
target structure has increased, the mutation is refused and the previous genotype
is reinstated, otherwise the new genotype is accepted. This process is called “blind
ant” dynamics!'” but it also is referred to as an “adaptive walk”.'® It can also be
thought of as using Metropolis Monte Carlo'® where the temperature has been set
to 0. (Note that if one were to consider only moves that were acceptable rather
than trying and then testing, one would have instead a random “neutral” walk
performing “myopic” ant dynamics.?’) In practice, we continue the random walk
until the target structure is reached, or until a maximum number of trial mutations
is reached.

In our work, we allow only neutral or improving moves in the landscape, which
corresponds to zero temperature dynamics in physical systems, or hill climbing in
optimization theory. The trajectories are stochastic and are influenced both by the
initial genotype chosen (e.g. an arbitrary RNA sequence), and by the target (an
arbitrary secondary structure). We thus need to average over many trajectories,
and consider the dependence of our results on these choices.
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In a more general context, one can consider the evolution of a population in the
fitness landscape. If p is the mutation rate and N the population size, then the
effective number of genotypes in a population scales approximately linearly with
Np. When Np < 1, the population remains essentially monomorphic, and this
is the case we focus on in this work. If instead Np were large, the evolutionary
dynamics would occur in a polymorphic population with many different genotypes.

2.3. Equilibrium sampling under stabilizing selection

To test whether the out-of-equilibrium evolutionary dynamics generates atypical
genotypes, one must define the “null hypothesis”; clearly we want to compare to
random genotypes in the fitness landscape. This means that we need to sample
uniformly the fitness landscape for each given distance to the target phenotype;
thus we focus on the genotypes that have a given fitness. The algorithmic procedure
to do so is to start with any genotype in the fitness landscape with the specified
fitness and then produce a long random walk with importance sampling using the
Metropolis Monte Carlo algorithm.!? In our RNA neutral ensemble context, one
accepts only the mutations that do not change the distance to the target; this is then
identical to dynamics under a particular stabilizing selection. A long Monte Carlo
then provides genotypes satisfying that constraint and their probability distribution
is uniform.

From this sampling, we shall obtain equilibrium averages in this space. We will
be particularly interested in the mean mutational robustness, where the mutational
robustness of a genotype is defined as the fraction of the single-base mutations that
do not change the fitness; this is the same thing as the number of neighbors of
this genotypye that belong to the neutral ensemble divided by its total number of
neighbors.

3. Slow Evolutionary Dynamics
3.1. Typical trajectories have long stasis times

Consider a typical evolutionary trajectory starting from a random initial genotype.
At the beginning, there is a high frequency of advantageous mutations, so the
phenotypic distance d, to the target structure initially decreases fast. But at long
times, as first realized in Ref. 5, the frequency of favorable mutations becomes small
and long periods of “stasis” appear where the fitness remains constant.® ® This is
illustrated for two typical evolutionary trajectories in Fig. 2. Successive plateaus in
fitness are separated by small changes in the Hamming distance to the target: the
steps decrease this distance by 1 or 2 units typically, rarely more than that. Also,
the time of a stasis period typically increases as the distance to the target decreases:
one can speak of diminishing returns for the effects of mutations in approaching
the target.
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Fig. 2. Plot of the phenotypic distance to a target structure as a function of the number of mutation
steps for chains of length 100. Shown are two typical trajectories, displaying periods of stasis.

3.2. Anomalously slow dynamics

To claim that the convergence to the target is particularly slow, it is appropriate
to have a comparison benchmark. For this, consider the situation where directional
selection is for a target genotype instead of a target phenotype. Just as for pheno-
typic distances, we define the genotypic distance of two genotypes G; and G, as
de = dy(G1,G2)/L where dy(G1,G2) is the Hamming distance between the two
strings defining the sequences for G; and Gs. If dg is then the distance between
the current genotype and the target genotype, a mutation has a probability d¢ /3

to produce a strictly better genotype. It follows that the convergence to the target
is exponential in time:

(de(t)) ~ de(0)e /3L, (1)

Consider now the times 7 when a favorable mutation arises; a transition between
one stasis period and the next generates such an event which diminishes dg by 1/L.
If p(7) is the density of these times, we have

~20(7) = (da(r) — da(r — 1)) ~ - {da (7). 2

We then obtain p(7) = dg(0) exp (—7/3L)/3. This shows that selection for a target
genotype leads to fast (exponential) relaxation.
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Fig. 3. Probability density for the times 7 from the beginning of directional selection to transition
points (separating two periods of stasis). (L = 100, averaged over 1,000 trajectories for each of 30
randomly chosen targets.) Superposed is the analytical form following from Eq. (2).

The situation is completely different in our system where selection is instead for
a target phenotype. Guided by the above analysis, we have determined the corre-
sponding distribution p(7) in this case. Figure 3 shows the result when averaging
over target and initial genotypes at L = 100. This distribution has a very clear
fat tail which seems compatible with a power law and not at all with the analytic
form derived for selection according to genotypic distance. This same behavior is
observed for the other values of L tested (data not shown). One can thus say that
convergence to the target under phenotypic selection is “slow”, much slower than
when compared to genotypic selection.

This difference between the selection types can also be seen by looking at the
average distance to the target as a function of evolutionary time. In landscapes
associated with disordered systems such as glasses or spin glasses, the relaxation
processes encountered typically have non-exponential dynamics.? Empirically, two
families of functions have been used to perform fits: the stretched exponential family
which for our purposes corresponds to (dp) ~ Aexp|[—(t/T)P], and the shifted
power law family for which

A

(dp(t)) ~ Bro (3)
For small L, both types of fits lead to satisfactory results, but at larger L, the data
favor a shifted power law behavior. In Fig. 4, we show that (dp(t)) decreases rather
slowly, roughly as an inverse power of time. This leads to a nearly straight line on a
log-log plot; also shown in that figure are the fits to shifted power laws. This overall
behavior should be contrasted with the law [cf. Eq. (1)] found when using selection
for a target genotype: there the approach to the target was much faster.
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Fig. 4. Log-log plot of mean phenotypic distance to target structure as a function of the number
of mutational steps for chains of length 100 and 200, when averaged over many initial genotypes
and target structures. Also shown are the fits to a shifted power law (see text).

3.3. The slow dynamics is sensitive to the target

To further analyse the slow approach towards a target structure, we investigated
how the evolutionary dynamics changes with the target. First, we ran simulations
for genotypes of length 100 for different targets. In these simulations, for each
target, we averaged the relaxation curves for different randomly generated initial
genotypes. Figure 5 illustrates how the relaxation is different for different target
structures. We conclude that there is slow dynamics whose speed depends on the
target structure, a conclusion that holds for all the values of the chain length L we
have investigated.

Although we cannot deal with arbitrary L because of computational limita-
tions, it is nevertheless relevant to ask whether this dependence on targets survives
for arbitrarily large L. It seems possible that the relaxation behavior is not self-
averaging, i.e. that fluctuations associated with different targets do not become
negligible when L grows. To test this, we carried out simulations with multiple tar-
gets for different lengths of RNA chains, to determine whether the relaxation curves
have smaller dispersion for the different targets when the chain length L increases.
We carried out simulations for 30 different targets, and averaged the relaxation
curve for each target over 1,000 evolutionary trajectories with random initial geno-
types. We then measured the standard deviation o of the relative distance to the
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Fig. 5. Log-log plot of relative phenotypic distance from a target as a function of time for simu-
lations with different targets (all of them of length 60). For each target, the plotted curve is an
average over 1,000 different trajectories.

target phenotype at times where the mean distance (averaged over all curves) to
the target was 10 percent of the chain length. Data are summarized in the following
table.

Chain length Ty 1 o

40 499  0.0346

60 1439 0.02306
80 3349 0.02475
100 6933  0.02683
120 8953  0.02626

Here Tj.1 denotes the mean time at which the average distance to the target pheno-
type reaches the value 0.1 L, L being the chain length. The simulations were quite
time-consuming which prevented us from testing lengths larger than 120. However,
from the table we see that the dispersion o decreases initially, but then remains
practically unchanged. The relaxation process towards different targets therefore is
compatible with a non-self-averaging behavior.

4. Weak Traces of Evolutionary Innovations

The transition from one period of stasis to the next is due to an evolutionary
“innovation”. It is appropriate to ask whether the associated transition genotypes
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can be considered to be atypical according to some measurable quantity. Here we
shall study the short term evolvability of the entry genotype in a period of stasis and
compare it to that of random genotypes at the same distance to the target. For a
given genotype we define its short-term evolvability!? 23726 as the fraction of single
base mutations that lead to a phenotype with higher fitness. We found that the
mean fraction of such beneficial mutations is approximately 40% lower for the entry
genotype than for genotypes randomly sampled from the neutral ensemble. Thus
with our definition, the entry genotype has an atypically low evolvability. How can
this be qualitatively justified, at least naively? Suppose one thinks of the genotypes
of given fitness as concentric spaces surrounding the target as Russian dolls. Suppose
further that these spaces have some “thickness”. If our “entry” genotype is in the
space S(dp), at phenotypic distance dp from the target, it will have fewer neighbors
belonging to S(d, — 1) than the typical genotype in S(dp).

However, we also find that the entry genotype has a smaller fraction of dele-
terious mutations than the neutral ensemble average. (These mutations produce a
phenotype with increased distance to the target.) This result should be contrasted
with what is naively expected. Indeed, by construction the entry genotype has one
particular mutation which is known to be deleterious (taking it back to the previous
plateau). Neglecting all other effects, one would predict that on average the entry
genotype would have its fraction of deleterious mutations be 1/(3L) above that of
genotypes in the neutral ensemble. Instead, the effect is four times larger and in
the opposite direction. These effects are summarized in Fig. 6.

During evolution on a plateau, one goes from the entry genotype (which we just
saw is atypical according to some objective measure) to more random genotypes: to

0.6
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Fig. 6. Comparison at L = 40 between entry (“first”) genotypes and random (equilibrium) geno-
types of the same fitness for the fraction of mutations that are beneficial (a) or deleterious (b).
The x axis gives the phenotypic distance to the target.
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some extent, one loses the memory of the entry genotype through successive muta-
tions. Is it a slow change of genotypes that is responsible for the stasis periods? To
address this question, we monitored the distance between a mutating genotype and
the entry genotype of the corresponding period of stasis. Because L is moderately
large in our simulations, the initial growth in distance is linear in the number of
accepted mutations. At larger times, we see a saturation effect caused by multiple
substitutions, as displayed in Fig. 7. Overall, the evolutionary dynamics on the
neutral ensemble shows that even in the absence of phenotypic change, genotypes
diffuse on a neutral ensemble at a rate not much slower than if their diffusion was
not constrained by this set, until they discover a new phenotype closer to the target.

To understand the expected dynamics in the absence of selection, consider that
a given site mutates with probability 1/L at each step, so the relaxation time scales
as L. At long times one approaches the average distance 3/4L. This is the behavior,
translated mathematically in the Jukes-Cantor formula,?? that the uppermost curve
in Fig. 7 represents.

0.7 T T T - - -
Easy target —— -7
Difficult target —x— -7
0.6 Jukes Cantor correction - - - - PR

Genotypic Distance / L
o o o o
N w » (5]

o
=

-0.1 L 1 1
0 0.5 1 Time/L 1.5 2

Fig. 7. Mean normalized genotypic distance to the genotype arising at the beginning of the current
stasis period as a function of the number of accepted mutations divided by L, for chains of length

L =100 (shown for two different targets). Also shown is the Jukes—Cantor correction for multiple

substitutions, which is the function f(z) = %(1 —e” %I) used in evolutionary biology to estimate
the normalized distance from the initial genotype after £ mutations have taken place. The function
f(x) approximates the amount of change to be expected if evolutionary change is unconstrained.
Our curves lie somewhat below f(z) which is expected because genotype diffusion is constrained
to remain on the neutral ensemble; nevertheless, the data show that diffusion in genotype space

is rapid.
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In summary, because of the intricate relation between genotype and phenotype,
there can be slow dynamics in the approach to the target phenotype despite rapid
evolutionary change of genotypes. In fact, as displayed in Fig. 7, the rate of change
of genotypes does not seem to be significantly different when comparing easy and
difficult targets for the directional selection.

5. Discussion and Conclusions

Mappings from genotypes to phenotypes play a central role in biology, from the
molecular scale up to whole organisms. Working at the level of RNA allowed us
to use a framework for such mappings that are not biologically arbitrary, even
though it is clearly idealized. One of this mapping’s main advantages is that it is
computationally tractable. Within this mapping, we showed a rich phenomenology
of the evolutionary dynamics towards an optimum phenotype: (1) the “relaxation”
towards the target undergoes severe slowing down as the target is approached;
(2) this slowing down gives rise to stasis periods with fat tails, typical of what is
expected in complex fitness landscapes; (3) the relaxation curves remain sensitive
to the choice of the target, even in the limit of long RNA sequences; (4) the diffusion
in genotype space during the periods of stasis is not slow, in obvious contrast with
what happens at the level of phenotypes.

We observed that the probability of generating a favorable mutation decreases
severely as one approaches the optimum, a property of the fitness landscape itself,
i.e. the fraction of beneficial mutations goes down in this limit, much faster than in
systems undergoing exponential relaxation. Why this leads to inverse power laws
remains open, just as in many other landscape problems coming from other fields.
Furthermore, because the stasis periods are long, the few innovative genotypes
appearing in an evolutionary trajectory represent a tiny fraction of the whole, and
thus most genotypes visited have little trace of the out-of-equilibrium dynamics.
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