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Genotype networks in metabolic reaction spaces
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Abstract

Background: A metabolic genotype comprises all chemical reactions an organism can catalyze via enzymes
encoded in its genome. A genotype is viable in a given environment if it is capable of producing all biomass
components the organism needs to survive and reproduce. Previous work has focused on the properties of
individual genotypes while little is known about how genome-scale metabolic networks with a given function can
vary in their reaction content.

Results: We here characterize spaces of such genotypes. Specifically, we study metabolic genotypes whose
phenotype is viability in minimal chemical environments that differ in their sole carbon sources. We show that
regardless of the number of reactions in a metabolic genotype, the genotypes of a given phenotype typically form
vast, connected, and unstructured sets – genotype networks – that nearly span the whole of genotype space. The
robustness of metabolic phenotypes to random reaction removal in such spaces has a narrow distribution with a
high mean. Different carbon sources differ in the number of metabolic genotypes in their genotype network; this
number decreases as a genotype is required to be viable on increasing numbers of carbon sources, but much less
than if metabolic reactions were used independently across different chemical environments.

Conclusions: Our work shows that phenotype-preserving genotype networks have generic organizational
properties and that these properties are insensitive to the number of reactions in metabolic genotypes.

Background
The genotypes of biological systems form high dimen-
sional spaces. A prominent example is that of proteins,
where genotypes are strings of amino acids [1,2]. For a
protein string of length N and 20 proteinaceous amino
acids, the genotype space consists of 20N possible geno-
types, an astronomically large number even for proteins
of moderate length. The genotype spaces of RNA mole-
cules and regulatory networks are similarly large [3-5].
If one imposes functional constraints on genotypes, the
set of genotypes fulfilling these constraints is typically
tiny compared to the entire space. In this work, we
focus on a space of metabolic genotypes and on the
question of how functional constraints structure this
space.
Genotypes form phenotypes, observable traits of biolo-

gical systems. Examples include the three-dimensional
structure of proteins [6,7], secondary structure of RNA

[5,8-10] and the gene activity patterns of regulatory cir-
cuits [4,11-14]. For some classes of biological systems, a
mix of computational approaches and comparative data
analysis has allowed systematic characterization of how
individual genotypes map onto phenotypes [5,15]. The
genotype-to-phenotype maps arising in such works have
several typical properties. First, any one phenotype is
adopted by a vast number of genotypes. Second, these
genotypes form large connected sets in genotype space.
Specifically, it is possible to reach any genotype in such
a connected set from any other genotype by a series of
small genotypic changes, such as changes in individual
amino acid sequences. Importantly, these changes leave
the phenotype unchanged. Such a set of connected gen-
otypes with the same phenotype is also referred to as a
neutral network [5] or genotype network [16]. (We will
be using the term “network” in two different senses
here: on the one hand, we speak of a genotype network
as a specific subset of genotype space. On the other
hand, we refer to a metabolic network as a genotype
belonging to a metabolic genotype space, as discussed
below. We hope that this distinction will not confuse
the reader.) Importantly, the term neutrality is not used
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here in the sense of fitness-neutrality as in the field of
molecular evolution, but it just refers to invariance of a
specific (and restricted) phenotype. Third, any one geno-
type network typically extends far through genotype
space. Fourth, individual genotypes on any one genotype
network typically have multiple neighbors with the same
phenotype. Put differently, phenotypes are to some
extent robust to small changes in genotypes (such as
mutations). Finally, different neighborhoods of the same
genotype network contain very different novel
phenotypes.
Genome-scale metabolic networks are a class of biolo-

gical systems that have received increasing attention in
recent years [17,18]. They can be thought of as large
assemblages of enzyme-catalyzed chemical reactions
whose function is to produce all the small-molecule che-
mical compounds an organism needs to survive and
reproduce in its environment. The major compounds
include multiple amino acids, nucleotides, lipids, carbo-
hydrates, and enzyme cofactors. Their relative propor-
tions in an organism’s biomass constitute the organism’s
biomass composition. The greater the rate at which an
organism produces these compounds (in the right pro-
portions), the faster the organism can grow and multi-
ply. The metabolic network of any one organism can be
thought of as existing in a vast genotype space of possi-
ble metabolic networks. Any one organism’s genome
encodes enzymes that catalyze some of these reactions.
A simple representation of a metabolic network genotype
G uses a binary string of length N, e.g., G = (b1, ..., bN),
where N is the number of all enzyme-catalyzed chemical
reactions that occur in the biosphere; this is illustrated in
Figure 1a. Each position in the string representation of G
corresponds to one enzymatic reaction, and the necessary
enzyme can be either present (bi = 1) or absent (bi = 0).
In this framework, a metabolic genotype G is a point in
an N dimensional hypercube (the genotype space) com-
prising 2N metabolic genotypes.
For any one metabolic genotype, the computational

approach of flux balance analysis (FBA) [17-19] can help
determine whether the corresponding metabolic net-
work can synthesize all major biomass components in a
given chemical environment or medium. Flux balance
analysis primarily uses information about the stoichio-
metry of enzymatic reactions in cellular metabolism to
obtain a prediction for the steady-state fluxes of all
reactions and the maximum possible biomass synthesis
rate of a metabolic network. The key underlying
assumptions used in FBA are: (i) cellular metabolism
operates at a steady state for a given environmental
condition, wherein the concentrations of all internal
metabolites and rates of all reactions are constant; (ii)
the organism can adjust its metabolic fluxes – rates at

which individual reactions convert substrates into pro-
ducts – to maximize its biomass growth flux. Flux bal-
ance analysis neglects regulatory properties of
metabolic systems, and is thus concerned with the
more fundamental constraints of biomass synthesis
caused by the presence and absence of enzymes. In
practice, regulatory constraints can often be overcome
quickly in laboratory evolution experiments [20,21] and
are thus temporary rather than fundamental obstacles
to cell growth. The predictions of FBA and related
approaches are often in good agreement with experi-
mental results [22,23].
We here refer to the ability of a metabolic network

genotype to synthesize a given biomass in a given envir-
onment as its metabolic phenotype. Except where noted
otherwise, we will use the published biomass composi-
tion (i.e., its components and their proportions) of the
bacterium E. coli [24], but our approach is not restricted
to this organism. We call a genotype viable in a given
chemical environment if, according to FBA, it can
synthesize biomass at some strictly positive rate in this
environment.
Compared to other systems discussed above, little is

known about the organization of metabolic phenotypes
in metabolic genotype space [25,26]. In an earlier contri-
bution [26] we demonstrated the existence of extended
genotype networks for metabolic phenotypes that
involved a large number of environments with many
variable carbon sources. We also demonstrated that
such genotype networks may facilitate evolutionary
innovation in metabolism, that is, viability on novel car-
bon sources. A limitation of that earlier work is that we
considered only metabolic networks within a narrow
size range. Thus, we did not analyze the dependency of
genotype space organization on network size systemati-
cally; nor did we estimate fractions of viable genotypes,
and their dependency on network size. Here, we intro-
duce an improved computational strategy to systemati-
cally address these issues. Our strategy, schematically
illustrated in Figure 1b and explained below, is based on
Markov Chain Monte Carlo sampling of the subspace of
viable genotypes [27]. It allows us to study in detail the
dependency of genotype network properties on the
number n of reactions catalyzed by a genotype. In parti-
cular, it reveals how the constraint of viability becomes
more and more severe as n decreases. The properties
we examine include the typical and maximal distance of
metabolic networks in a genotype network, their robust-
ness to the removal of chemical reactions, and the
dependency of these and other features on different che-
mical environments. With our approach and a suitable
database of reactions, one can explore the space of gen-
otypes having any desired phenotype.
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Figure 1 Genotypes and the sampling of genotype networks. a) Genotypes are subsets of reactions in a global reaction set. Since the
global set has N reactions, a genotype having n reactions can be represented by a bit string of length N with n entries equal to 1 and all others
equal to 0. b) At given n, the set of viable genotypes forms a “genotype network” that is a tiny fraction of the whole space. MCMC allows one
to sample that tiny fraction by generating a random walk among viable genotypes, going from one viable to another by performing a reaction
swap. If a swap leads to a non-viable genotype, the walk stays at the previous genotype for that step and then the process is repeated. The
advantage of using reaction swaps in our approach is that it leaves the number of reactions constant over time.
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Results
Viable genotypes get rarefied as the number of reactions
n decreases
We here explore the vast space Ω(n) of metabolic geno-
types with a given number n of reactions. These reac-
tions are taken from a “reaction universe” or “global
reaction set” that comprises N = 2902 reactions. Briefly,
we obtained this reaction set by considering those reac-
tions from the currently largest metabolic database
KEGG [28], that fulfilled a number of criteria, such as
being elementally balanced, and allowing nonzero bio-
mass flux under steady-state conditions for at least one
of our chemical environments ([26], see Methods for
details). We are keenly aware that this set of reactions
may comprise only a small fraction of the set of all che-
mical reactions in the biosphere. However, the meta-
bolic genotype space Ω(N) it defines is vast and
comprises many more reactions than a typical microbial
metabolic network [17,18]. Our reaction set helps us to
develop methods to explore this vast space, and to pro-
vide some intuition about its global properties.
We refer to a metabolic network genotype as any sub-

set of reactions taken from this global set of N reactions.
Such a genotype G can be represented as a binary string
of length N, i.e., G = (b1, ..., bN), with each reaction i
being either present (bi = 1) or absent (bi = 0). Note
that even for modest n, Ω(n) is a huge space containing
N!/[n! (N - n)!] genotypes. A random genotype in Ω(n)
corresponds to a random bitstring subject to the con-
straint that there are exactly n bits set to 1.
For any one genotype, we use flux balance analysis

(FBA) [17-19] to determine the maximum biomass flux
obtainable for this genotype in a given chemical envir-
onment. Note that if a genotype produces a maximum
biomass flux F under FBA, then adding further reactions
can only increase F; as a consequence, in our frame-
work, many properties will be monotonic in the number
of reactions n. We here consider several minimal envir-
onments that differ in the sole carbon source they con-
tain (see Methods). We call a genotype viable if its
maximal biomass growth flux is strictly positive. We
refer to the set or space of viable genotypes within Ω(n)
as V(n).
Perhaps the most basic question about V(n) is how its

size depends on n. A priori, it seems likely that meta-
bolic networks with fewer reactions are less likely to be
viable than networks of more reactions. Thus, one
would surmise that V(n) would decrease in size relative
to the entire space Ω(n) as n decreases. To estimate this
dependency, we need to estimate the probability Pn = |V
(n)|/|Ω(n)| that a random genotype in Ω(n) is also in V
(n). This turns out to be difficult because Pn can be very
small. The problem can be circumvented through a

decomposition approach. This approach takes advantage
of the fact that Pn can be written as a product of two
factors, as we briefly explain now and detail further in
Methods.
We call a reaction “essential” for a given viable geno-

type in a given chemical environment if its elimination
("knock-out”) renders the genotype non-viable in that
environment. We call a reaction “super-essential” in this
environment if it is essential for the genotype that con-
tains all reactions in the reaction universe. We note that
a super-essential reaction will necessarily be essential for
every viable genotype in this environment. The two fac-
tors in the calculation of Pn are the probability that a
genotype of a given number of reactions n contains all
super-essential reactions, and the probability that a gen-
otype is viable given that it contains all super-essential
reactions. The first factor can be determined analytically,
as shown in Methods; we refer to it as an analytical pre-
factor. The second factor needs to be determined
numerically. We estimated it through a sampling
approach.
When applying this decomposition method to esti-

mate the size of V(n), we made the following observa-
tions (Figure 2). When n is close to its maximum value,
the viability constraint is very mild. Most genotypes are
viable and Pn is close to 1. As n decreases, the probabil-
ity of being viable decreases rapidly, and when n gets
too small, Pn becomes too small to measure. In Figure 2
we show this behavior on a logarithmic scale, for three
different minimal environments (glucose, acetate, and
succinate). Figure S1 shows the same data on a linear
scale (see Additional File 1). From these figures, it
appears as if Pn were independent of the sole carbon
source (glucose, acetate, or succinate). However, there
are differences among carbon sources, as we will discuss
below; it is just that these differences are too small to
be seen on the scale of Figure 2, for the range of n that
we were able to analyze.
Note that for genotypes that contain n = 2000 reactions,
that is, more than two thirds of the global reactions set,
viable genotypes represent only a fraction of order 10-22

of all genotypes. In other words, the viability constraint
is very severe even at this large number of reactions and
it gets much more severe for smaller n. For complete-
ness, Figure 2 also shows the analytical prefactor that is
involved in our estimates of Pn; note that it captures
most of the trend of the data. This means that the con-
straint of including super-essential reactions is far more
stringent than the constraint of being viable given that
one includes such reactions. In other words, most of the
likelihood of being viable comes from the likelihood of
containing all super-essential reactions. Furthermore,
this likelihood scales approximately exponentially
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in n: each removal of a reaction decreases the probabil-
ity of containing all super-essential reactions by approxi-
mately a constant factor. Finally, the fact that the
fraction Pn of viable genotypes is a convex curve (Figure
2) indicates that the effect of successive reaction
removals on viability becomes more and more severe.

MCMC sampling of viable genotypes
We next wanted to study the properties of random gen-
otypes in V(n), i.e., metabolic networks sampled uni-
formly from the genotype space Ω(n), and subject only
to the constraint that they are viable. For instance, one
can ask what is the typical mutational robustness of
such genotypes, or how frequently do they contain spe-
cific reactions of the global reaction set. The answers to
such questions can provide valuable null-hypotheses and
points of contrast with organismal metabolic networks
like that of E. coli.
Uniform sampling of viable genotypes is difficult,

given that V(n) can be so much smaller than Ω(n).
Nevertheless, this task can be tackled as follows. For n
greater than 2500, one can easily generate random geno-
types and include them in a statistical analysis if and
only if they are viable. For smaller values of n, that kind

of sampling becomes very inefficient and it is better to
use the Markov Chain Monte Carlo (MCMC) method, a
widely used approach for sampling large and high
dimensional spaces [27]. The MCMC method produces
a sequence of genotypes forming a chain, the term
“chain” coming from the property that the (k+1)th ele-
ment of the sequence is generated from the kth one
using a probabilistic transition rule. At each transition,
one proposes a small modification to the current geno-
type; if this modified genotype is viable, one accepts it
as the next genotype of the sequence, otherwise the
next genotype is identical to the current genotype. In
our work, the modification introduced at each transition
step is a reaction swap. That is, each modification adds
one reaction and removes another reaction, so as to
keep n constant. The MCMC thereby produces a walk
in the subspace of viable genotypes of n reactions as
illustrated in Figure 1b; an overview of the different
steps of the algorithm is displayed in the flow chart of
Figure S2 (cf. Additional File 1) and technical details are
given in the Methods. Of particular relevance is that, in
the limit of long walks, this approach can be shown to
sample uniformly the space of viable genotypes that are
accessible when starting with the first genotype of the

Figure 2 The space of viable genotypes gets rarefied with decreasing n. The horizontal axis shows the number n of reactions in a
genotype and the vertical axis shows, on a logarithmic scale, the estimated fraction of random genotypes contained in the viable space V(n) for
three different chemical environments, glucose, acetate and succinate, respectively. The estimated fraction of viable genotypes shown in this
figure has been obtained as a product of two terms. The first term is an analytic prefactor which gives the fraction of genotypes in Ω(n)
containing all super-essential reactions. The black dashed curve shows this analytic prefactor as function of n. The second term, that we
estimated numerically, is the probability for a genotype to be viable given that it has all super-essential reactions. The numerical estimation of
the fraction of viable genotypes in Ω(n) becomes extremely difficult for n < 2100 reactions even with the decomposition method.
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MCMC. Whether or not this accessible space is the
whole space V(n) is difficult to determine. We thus take
a practical approach, and simply focus on properties of
genotypes in the accessible space.
To start the Markov chain, a first viable genotype is

necessary. We generated such a genotype as follows. For
the E. coli metabolic network genotype, we determined
those reactions that have nonzero flux in a steady-state
flux distribution that yields a nonzero biomass growth
flux in a given chemical environment. For the environ-
ments we studied here, this number of reactions with
nonzero fluxes is smaller than 300. We then start with
this set of reactions and add randomly other reactions
until we have reached a metabolic network with exactly
n reactions. The corresponding genotype is viable in the
given environment, it has the right number of reactions,
and we can thus use it as the first element of the
MCMC sequence.
With this algorithm, we can sample the accessible

space uniformly; any observable such as the mean muta-
tional robustness can be estimated from a sample; and
the estimate’s uncertainty (error bar) can be computed
as explained in Methods. We find that the procedure is
relatively efficient, as judged by either the chain’s auto-
correlation time τ or by the acceptance rate of each gen-
otype modification (cf. Figures S3 and S4 in Additional

File 1, see also Methods). From Figure S3, one can see
that τ ≈ 2000, so the MCMC generates uncorrelated
genotypes every few thousand swaps (see Additional
File 1).

Mutational robustness increases as n increases and has a
narrow distribution
Given a chemical environment and a viable metabolic
network genotype G, we define the mutational robust-
ness Rμ of G as the fraction of its reactions that are not
essential in that chemical environment. Thus, Rμ is sim-
ply the probability that a metabolic network remains in
the viable space under one random reaction deletion.
Qualitatively, one expects that for large n, most geno-
types in V(n) will have a high mutational robustness.
Nevertheless, there are close to 100 super-essential reac-
tions for each of the chemical environments we study.
Removal of any of these reactions will yield a non-viable
genotype. This means that even when n is at its maxi-
mum value, Rμ must be below 1. Furthermore, one
expects Rμ to decrease with n, perhaps quite steeply. To
study this dependency on the number of reactions in a
quantitative way, we used the MCMC approach for mul-
tiple values of n to generate samples of 1000 random
viable genotypes and determined their values of Rμ.
Figure 3 shows the mean mutational robustness of

Figure 3 Mutational robustness Rμ increases with n. The horizontal axis shows the number n of reactions in a genotype and the vertical axis
shows the average mutational robustness of sampled genotypes in V(n) for three environments (glucose, acetate and succinate) as a function of
n. Mutational robustness Rμ is defined as the fraction of non-essential reactions in a viable genotype. It can be seen that Rμ is comparable to the
acceptance rate A (cf. Figure S4 in Additional File 1). Even for n = 300, Rμ >0.15, indicating that robustness is not too low for an efficient MCMC
sampling.
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genotypes in V(n) as a function of n for three different
minimal environments using the E. coli biomass compo-
sition. We see that Rμ begins to decrease steeply near
n = 1000. By the time n = 300 is reached, the mean
mutational robustness has reached a value close to 0.15.
This is a low but not tiny value of robustness. (We note
parenthetically that Rμ is of the same order of magni-
tude as the swap acceptance rate of the MCMC. Values
of Rμ that are not vanishingly small amount to MCMC
sampling that is not very inefficient.)
We also studied the distribution of Rμ for random

viable genotypes at multiple values of n. For a first series
of estimates, we used the E. coli biomass composition
[24]. An illustrative case is shown in Figure 4a for the
glucose environment when n = 831, the value of the
number of reactions from our database that are con-
tained in the E. coli metabolic network. The cases for

acetate and succinate environments are shown in Fig-
ures 4b and 4c. The horizontal axes of these figures
show that the width of the distribution spans only 2
percent of the possible range between zero and one. In
other words, Rμ varies very little among random viable
genotypes. It is instructive to compare this low variance
in robustness to that predicted by a simple probabilistic
argument, where each reaction contributes indepen-
dently to mutational robustness. Suppose that each reac-
tion in each genotype in V(n) has the same probability r
of being non-essential. This probability r would then be
given by the mean of Rμ, which is around 0.715 for the
genotypes of Figure 4a. If all reactions contribute inde-
pendently to mutational robustness, then the robustness
of any one genotype is the average of n binary numbers
that adopt a value of 1 with probability r. For the large
values of n we consider, this quantity effectively follows

Figure 4 Narrow distribution of mutational robustness Rμ for genotypes in V(n). The horizontal axis shows the mutational robustness Rμ
and the vertical axis shows the frequency of genotypes with the corresponding value of Rμ in a random sample of 1000 genotypes viable in a)
glucose, b) acetate and c) succinate environment with the viability constraint taken as having strictly positive biomass flux. d) The distribution of
mutational robustness Rμ in 1000 random viable genotypes for the glucose environment with viability constraint taken as biomass flux at least as
large as the in silico E. coli biomass flux [24]. In all subfigures, we have shown the normal distribution with sampled mean and theoretically
predicted variance as a dashed black curve (see text for details). The figures show that there is very little variation in Rμ across random viable
genotypes and the normal distribution agrees well with the sampled distribution. In all cases, the number n of reactions is equal to that in E. coli
(n = 831).
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a normal distribution with mean r and variance r(1-r)/n.
However, to make this argument more powerful, it is
best to note that super-essential reactions do not contri-
bute to the variance of Rμ. Thus, we only need to con-
sider the non-essential reactions. If s is the number of
super-essential reactions, the expected variance of muta-
tional robustness then becomes p(1-p)(n-s)/n2 where p =
nr/(n-s). Figures 4a-c show the distribution of muta-
tional robustness predicted by this argument as dashed
lines. For example, in the case of the genotypes of
Figure 4a, this framework yields a value of the variance
of 1.6 × 10-4, which is close to the variance of 1.1 × 10-4

we estimate through sampling. In sum, these observa-
tions suggest that the distribution of Rμ is narrow simply
because the number of terms that contribute to Rμ is
large. Figure S5 corroborates this argument, displaying
the distribution of Rμ at n = 700 along with the normal
distribution predicted by the probabilistic argument (see
Additional File 1). Again, this argument predicts the
actual distribution well.
We next turn to the mutational robustness of E. coli

itself and ask whether it is unusually high or low. Speci-
fically, we introduce the null hypothesis H0 that E. coli’s
robustness is indistinguishable from that of a random
genotype in V(n). The mutational robustness Rμ of E.
coli has values of 0.745, 0.729 and 0.735 in glucose, acet-
ate, and succinate. For all three environments, these
values are in the upper tail of the distribution of Rμ for
randomly sampled viable genotypes in V(n). Based on
the location of E. coli’s robustness in these distributions,
we can reject H0 at p-values of 0.001, 0.04, and 0.02 for
the glucose, acetate, and succinate environments,
respectively. E. coli thus appears to be atypically robust.
We contrast this observation with that of Figure 2a in
Ref [26] where an analogous MCMC study led to a dif-
ferent distribution for Rμ under H0, and to the conclu-
sion that E. coli was not an outlier. The source of the
different conclusions between these two studies is this:
In our MCMC approach, the number n of reactions is
exactly fixed, whereas it was allowed to vary modestly
over a range of values in Ref [26]. That range contained
mainly values larger than 831, and thus generated a
sample of random viable genotypes with higher robust-
ness. Clearly, it is better to use the present MCMC
method where n can be set to its value in E. coli.
One might argue that it is inappropriate to call a reac-

tion non-essential if only a tiny biomass growth flux is
realizable when the reaction is absent. Put differently,
our results might change if we required that removal of
a reaction did not reduce biomass growth flux below
some threshold. To assess whether this is the case, we
used the MCMC method described above to sample
only those genotypes in V(n) that have a large biomass
flux. Specifically, we sampled the space of viable

genotypes for which the biomass flux is at least as large
as the in silico E. coli biomass flux. The resulting distri-
bution of Rμ, along with the E. coli mutational robust-
ness is displayed in Figure 4d. The figure shows that the
distribution of mutational robustness is essentially the
same whether one imposes this more stringent require-
ment on flux, or the much looser constraint of any
strictly positive biomass flux. E. coli thus remains an
outlier with significantly high robustness also in the
more stringent comparison.
These results were all obtained using the published

proportions at which E. coli biomass constituents [24]
occur in the E. coli cell. We next asked whether the fea-
tures we found (narrowness of the distribution of Rμ,
E. coli being an outlier) are sensitive to this choice. To
find out, we repeated the above analysis, but changed
the proportion of each biomass constituent randomly by
up to 20%. All the above conclusions hold for this new
formula as well; this is illustrated in Figures S6 a-d (see
Additional File 1).

Mean and maximum distances between genotypes in V(n)
We showed above that viable genotypes form a tiny
fraction of the space of all possible genotypes, even for
numbers of reactions that are modestly large. For
instance, at n = 2000, the viable genotypes form a frac-
tion of about 10-22 of all genotypes. This fraction would
decrease further as we approach reaction numbers close
to that of E. coli. Is this viable space V(n) concentrated
in a small region of the total space Ω(n)? In other
words, are most viable genotypes very similar to one
another? To address this question, we used the Ham-
ming distance DH of the bit strings associated with two
metabolic genotypes as a measure of genotype distance.
In Ω(n), this Hamming distance can range from a value
of zero to 2 min(n, N-n).
We first estimated the distribution of DH between

genotypes in V(n) from our samples of 1000 random
viable genotypes. The average of this distribution is
shown in Figure 5a for different values of n, and for the
glucose, acetate and succinate environments. To have a
comparison benchmark, we also show the mean of DH

for bit strings (genotypes) chosen at random from Ω(n).
This quantity is easily calculated analytically, and
obviously does not depend on the environment. Its
value is 2 n (N-n)/N. Figure 5a shows that when n is
close to N, this mean value of DH is close to the maxi-
mum distance in Ω(n).
Figure 5a shows that the mean Hamming distance in

V(n) is nearly independent of the chemical environment.
Furthermore, for n greater than N/2, random viable gen-
otypes are not much more similar than random geno-
types in Ω(n). Thus in this regime the viability
constraint is nearly invisible. In contrast, when n is
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Figure 5 a) Mean Hamming distance between viable genotypes. The horizontal axis shows the number n of reactions and the vertical axis
shows the mean Hamming distance between random genotypes in the set V(n), and for a comparison, in Ω(n). Data are shown for three
different environments (glucose, acetate and succinate). For each V(n), we computed the data using all pairwise distances between our 1000
sampled genotypes. The dashed black curve shows mean Hamming distance for the case of Ω(n), which can be computed analytically and is
given by 2 n(N-n)/N. The viability constraint affects the mean Hamming distance significantly only at low values of n. We also show the
maximum Hamming distance in Ω(n) (dotted black line). b) Maximum Hamming distance between viable genotypes. The horizontal axis
shows the number n of reactions and the vertical axis shows the maximum Hamming distance between genotypes in the set V(n) and, for
comparison, in Ω(n). Data are shown for three different environments. For each V(n), we computed the data through a modified two-headed
MCMC approach (see text for details). The dotted black curve shows the maximum distance in Ω(n) which can be computed analytically and is
given by 2n for n<N/2 and 2(N-n) for n>N/2. Again, the viability constraint affects the maximum Hamming distance significantly only at low
values of n.
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smaller than N/2, the constraint of viability leads to gen-
otypes that are significantly more similar than random
genotypes. For instance at n = 500, the mean Hamming
distance is about 42% higher in Ω(n) than in V(n).
After having estimated the typical distance of random

viable genotypes, we turned to the maximum possible
distances of such genotypes. This distance can be
thought of as the “span” or diameter of V(n). To esti-
mate this quantity, we generated two parallel random
walks in V(n) and at each step tried to maximize the
Hamming distance between them. Specifically, we fol-
lowed simultaneously two genotypes in a modified
MCMC approach, where the criterion for accepting a
genotype modification involved not only viability, but
also the requirement that the Hamming distance to the
other genotype be non-decreasing. During a typical
execution of such a random walk, the distance between
the two genotypes rises and then saturates. We carried
out random walks of up to 106 steps, and terminated
any such walk if the distance between the two genotypes
had not increased in the last third of the walk. We
repeated this procedure 5 times for each value of n and
each environment, and kept the largest distance identi-
fied in these 5 replicates as a final estimate. We note
that this procedure provides a lower bound of the actual
maximum distance between genotypes in V(n). The
results are shown in Figure 5b for the three environ-
ments, along with the maximum distance in Ω(n)

namely 2 min(n, N-n). Qualitatively, we obtained a pat-
tern similar to that of the average distance (cf. Figure
5a). For example, the viability constraint is invisible for
large n, but it strongly affects the maximum genotype
distance for n < N/2; not surprisingly, this viability con-
straint becomes more marked as n decreases to lower
values. However, the magnitude of this effect is smaller
than for the average distance discussed above. For
example, at n = 500, the maximum distance is 29%
higher in Ω(n) than in V(n), while for the mean distance
the corresponding percentage is 42%.

Clustering analysis of genotypes in V(n)
The space Ω(n) is a subset of a 2902-dimensional hyper-
cube whose members have exactly n bits set to one.
Thus, it is a hyperplane section of the hypercube. The
distribution of distances in this space is unstructured
and homogeneous. This may not be the case for the
viable subspace V(n). For example, some of the geno-
types in V(n) may present different “types” of solutions
to the problem of producing a viable genotype. These
different types of solutions could manifest themselves in
different clusters of genotypes within V(n). To deter-
mine whether this is the case, we have performed a
principal component analysis, using the bitstring repre-
sentations of 1000 random viable genotypes. The results
for the first two principal components are given in
Figure 6 for the glucose chemical environment, and for

Figure 6 Principal component analysis of sampled genotypes in V(n). The figure shows the first two principal components for the randomly
sampled genotypes that are viable in the glucose chemical environment with n equal to that of E. coli. The horizontal axis shows the first
principal component, and the vertical axis shows the second principal component. The figure additionally shows in red the E. coli genotype in
this space. The first two components account for less than 0.8% of the variance in the data. The analysis suggests that there are no multiple
clusters.
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a number n = 831 of reactions as in the E. coli reaction
set. The first two principal components explain less
than 1 percent of the variance in the genotype differ-
ences. Similar observations hold for succinate and acet-
ate environments (results not shown). For completeness,
the figure also shows the localization of the E. coli geno-
type. In this analysis, its location is not atypical, in con-
trast to our observations for mutational robustness. We
supplemented this analysis by a hierarchical clustering
analysis of the same 1000 genotypes, which also did not
reveal any grouping of genotypes (cf. Figure S7 in Addi-
tional File 1). In sum, these analyses suggest that viable
genotypes of this size form a “cloud” in genotype space
with little internal structure or heterogeneity.

Use of reactions by genotypes in V(n)
Previous work [26] showed that not all reactions are
equally likely to occur in random genotypes that are
viable in a given chemical environment. In our next ana-
lysis, we analyzed the nature of these differences among
reactions more systematically. Clearly, at one extreme,
super-essential reactions are present in every viable

genotype. At the other extreme, there may be many
reactions that occur with a low but non-negligible prob-
ability in random viable genotypes. For example, a ran-
dom viable genotype may contain superfluous reactions.
(Note that the addition of such reactions in and by itself
cannot cause loss of viability in our framework: if a gen-
otype produces a maximum biomass flux F under FBA,
then including extra reactions cannot decrease F.) In
addition, there may be intermediate cases where reac-
tions are present often but without being super-essen-
tial. Figure 7 shows a rank histogram indicating the
occurrence of all the reactions in the global reaction set
for random viable genotypes in a glucose minimal envir-
onment. To compute this histogram, we first deter-
mined how often each of the 2902 reactions occurred in
a sample of 1000 genotypes from V(831), that is, in ran-
dom viable genotypes with as many reactions as the
E. coli genotype in our framework. For any one reaction,
the “occurrence” plotted on the vertical axis of the fig-
ure is the fraction of genotypes in this sample that con-
tain the reaction. Then we ordered the reactions
according to their occurrence, assigning rank “1” for the

Figure 7 Rank histogram of reactions based on their occurrence. The horizontal axis shows the 2902 reactions in our global reaction set
ordered based on their rank. The vertical axis shows the occurrence of each reaction in 1000 randomly sampled genotypes that are viable in a
glucose environment, with n = 831 equal to that of E. coli. The occurrence of a reaction is given by the number of sampled genotypes
containing the reaction, divided by the sample size of 1000. Reactions have been ordered based on their decreasing occurrence, with rank “1”
corresponding to reaction with highest occurrence. All super-essential reactions have an occurrence of 1.0 and contribute to the horizontal
plateau on the left of the rank histogram. We also see a larger plateau on the right, with an associated occurrence value of approximately 0.2.
The two plateaus are connected by a degraded slope, corresponding to reactions that see their occurrence decrease continuously from 1.0 to
0.2. To study this region of the rank histogram, we have fitted it to two classes of functions: a constant plus an exponential (f(r) = a + b exp[-c r];
a = 0.2267, b = 1.293, c = 0.006827) and a constant plus a power function (f(r) = a + b/rc; a = 0.2052, b = 458.9, c = 1.375). Based on the
coefficient of determination R2, the power law provides a better fit (R2 = 0.9645 for the exponential and R2 = 0.9927 for the power).
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reaction with the highest occurrence and rank 2902 for
the reaction with the lowest occurrence. All super-essen-
tial reactions have an occurrence of 1.0 and contribute to
the horizontal plateau on the left of the rank histogram,
similar to previous observations [26]. We also see a much
broader plateau on the right with occurrence values of
approximately 0.2. The two plateaus are connected by a
graded slope, corresponding to reactions whose occur-
rence decreases continuously from 1.0 to 0.2. To study
this intermediate region of the rank histogram, we first
fitted this histogram to two classes of functions f(r): a
function that represents occurrence as a constant plus an
exponential function of the rank (f(r) = a + b exp[-c r]),
and a function representing occurrence as constant plus
a power function of the rank (f(r) = a + b/rc). The power
function provides a visibly better fit in Figure 7. This dif-
ference can be analyzed quantitatively by calculating the
coefficient of determination R2 which represents the var-
iance explained by each functional relationship. We find
that R2 = 0.96 for the exponential function and R2 = 0.99
for the power law. Note that power laws like this arise in
other situations with rank histograms [29].
We next asked whether reactions that are neither

super-essential nor on the right hand side plateau of
Figure 7 are often essential reactions. To do so, we
returned to our sample of 1000 viable genotypes, and
computed for each genotype of this sample the maxi-
mum flux through each reaction using the flux variabil-
ity approach [30]. If this flux was equal to zero for a
reaction, we considered the reaction to be “blocked”
[31,32]. We also determined for each genotype its essen-
tial reactions. We thus obtained for each reaction the
frequency at which it is essential and the frequency at
which it is blocked (in our sample of 1000 genotypes).
Figures 8(a) and 8(b) are scatter plots of these quantities
as a function of the occurrence of each reaction. Clearly,
reactions of low occurrence tend to be blocked, whereas
reactions with high occurrence are often essential. In
summary, the smooth transition region in the rank his-
togram is a transition from essential or near essential
reactions to reactions that cannot possibly have a func-
tion in a given genotype and environment.
The scalar value of reaction occurrence is essentially a

one-dimensional projection of a high dimensional pat-
tern of the distribution of reactions among random
viable networks. This high-dimensional pattern may be
structured in other, non-obvious ways. To find out
whether this is the case, we carried out a principal com-
ponent analysis. To this end, we organized the 1000
sampled genotypes into a matrix, such that each row
corresponds to the bit string associated with one geno-
type. Then, each column corresponds to some reaction
R, and comprises a bit string of length 1000 that con-
tains a ‘1’ in each row where R is part of the

corresponding genotype. Figure S8 shows the results of
the principal component analysis carried out on these
bit-strings reflecting reaction occurrence (see Additional
File 1). This analysis used the same 1000 random viable
genotypes in V(831) that we analyzed above. The figure
shows the first and the second principal component,
which explain ~14% and ~1% of the variance in the
data, respectively. The first principal component corre-
sponds well with the rank of the reaction as defined by
its occurrence. To visualize the association between the
first axis and reaction rank, we have colored the reac-
tions according to their rank (red for ranks close to 1,
indigo for ranks close to 2902). The data are clearly het-
erogeneous, resembling a “comet” with a dense head on
the left and a spread-out tail on the right. The comet’s
head is formed mostly by blocked reactions, while the
tail of the comet is enriched with essential reactions. In
contrast, the second principal component displays no
particular clustering. In sum, reactions that occur in dif-
ferent random viable genotypes show no obvious statis-
tical patterns beyond their rank. This rank strongly
correlates with reaction essentiality and blockage.

Random genotypes show highly correlated viability in
different environments
Although each chemical environment i has a specific
viable space Vi(n), some genotypes in Vi(n) must be
viable for multiple environments, in particular at large
n. To what extent do the viable spaces for different
environments overlap? What are the properties of geno-
types in their intersection? To ask these and other ques-
tions, we extended our computational approach to
multiple environments.
To begin with, we wanted to know whether being

viable in one environment improves the chances of
being viable in another environment. We therefore esti-
mated the conditional probability P(2|1) of being viable
in a given environment 2 under the condition of being
viable in another environment 1. As we saw earlier, the
probability of being viable in one environment is tiny
for genotypes with fewer than n = 2500 reactions. If the
probabilities of being viable in two different environ-
ments were independent from one another, P(2|1)
would be equal to P(2). We estimated P(2|1) by first
uniformly sampling the set of viable genotypes in envir-
onment 1 using the MCMC method. From the 1000
genotypes thus generated, we determined the fraction of
genotypes that are also viable in environment 2. In the
case of independence, this fraction should be close to
the value of P(2), because then P(2|1) = P(2). In con-
trast, we find that P(2|1) is orders of magnitude higher.
This is illustrated in Figure 9 for all six possible pairwise
combinations of three environments (glucose, succinate
and acetate). It is useful to compare the data shown
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there to that of Figure 1. For instance at n = 2100, if P
(2|1) were equal to P(2), Figure 9 should show a prob-
ability P(2|1) of about 10-18, but the actual value exceeds
0.9, regardless of the environment pair considered. Simi-
larly, for n = 1000, Figure 9 shows that P(2|1) = 10-2 or
greater, whereas P(2) is below our detection limits for
genotypes with this number of reactions.
The large association between viability in different

environments we observed should arise if genotypes

viable in different environments require nearly identical
super-essential reactions. The reason is that the prob-
ability that a genotype contains all super-essential reac-
tions is the dominant determinant of the probability
that the genotype is viable (Figure 2). In the extreme
case where the super-essential reactions for two envir-
onments are identical, only the remaining, minor deter-
minants of the probability to be viable come into play.
In consequence, the conditional probability P(2|1) can

Figure 8 Frequency of reaction use is correlated with essentiality. a) The horizontal axis shows the occurrence of a reaction and the vertical
axis shows the frequency with which the reaction is essential in random viable genotypes. A strongly positive correlation exists between the
occurrence of a reaction and the frequency with which it is essential. b) The horizontal axis shows the occurrence of a reaction, and the vertical
axis shows the frequency with which the reaction is blocked. Data are based on 1000 randomly sampled genotypes viable on glucose minimal
environment with n = 831 reactions, the number of reactions in E. coli.
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be large. For the environment pairs we study here, the
set of super-essential reactions are in fact nearly identi-
cal: all three environments share the same 99 super-
essential reactions, and only acetate has one additional
super-essential reaction. Thus the strong association
between the viability in different environments is no
surprise. We emphasize that this does not mean that
the sets V(n) of genotypes viable in different environ-
ments are nearly identical. If that were the case, the
conditional probabilities displayed in Figure 9 would be
close to one. Instead, these probabilities become very
small at our lowest values of n.
In sum, the sets of viable genotypes Vi(n) for different

environments are far more similar than expected by
chance. Nonetheless, their intersections contain only a
small fraction of any one set Vi(n) as n decreases.

Different environments constrain viability to different
degrees
The MCMC method allowed us to estimate the condi-
tional probability P(2|1) that a genotype is viable in
environment 2 given that it is viable in environment 1.
We now show that it also allows us to estimate the rela-
tive sizes of the viable spaces V(n) for different chemical
environments. We define the following probability

P i V n ni      / 

for chemical environment i, where Vi(n) is the set of
genotypes with n reactions that are viable in environ-
ment i. In addition, we define P(i, j) to be the fraction
of genotypes with n reactions that belong to both Vi(n)
and Vj(n). Then by MCMC sampling of Vi(n) we can
estimate the fraction P(i, j)/P(i) as outlined in the pre-
vious subsection. Analogously, by sampling Vj(n), we
can also estimate the fraction P(i, j)/P(j). The ratio of
these estimates then yields the ratio P(j)/P(i). In other
words, this approach can tell us whether fewer geno-
types are viable in one chemical environment than in
another. This ratio is shown in Figure S9 for environ-
ments defined by the three carbon sources we consid-
ered here (see Additional File 1). Glucose has the largest
set of viable genotypes, followed by succinate and acet-
ate. As n decreases, the differences in the sizes of the Vi

(n) for these environments become more pronounced,
because constraints on viability become more severe in
that limit.
The concept of a probability P(i, j) of being viable in

both environments i and j can be extended to any num-
ber of environments by defining appropriate ratios P(i, j,
...k). Although the MCMC approach does not allow us
to estimate these probabilities directly, it does provide
estimates for ratios of the quantities P(i), P(i, j), P(i, j, k),
etc., as just discussed. And just like we found that glu-
cose has the largest space V(n) of viable genotypes of

Figure 9 Conditional probability of a genotype viable in environment 1 to be also viable in environment 2. The horizontal axis shows
the number of reactions in a genotype, and the vertical axis shows the conditional probability P(2|1) that a genotype is viable in environment 2
given that it is viable in environment 1. The figure shows this conditional probability for all six ordered pairs for the three different
environments, glucose, acetate and succinate.
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the three carbon sources we consider, we can ask which
pair of carbon sources has the most viable genotypes
associated with it. Figure S10 shows that this pair is the
succinate-acetate pair, while the pairs that contain glu-
cose are about equivalent (see Additional File 1).
Because the MCMC approach only provides ratios, the
figure shows the three P(i, j) divided by a common nor-
malization factor, namely P(Glucose). This procedure
allows a direct comparison of the relative values of the
P(i, j).
For completeness, we show in this same figure the

quantity P(i, j, k)/P(i), that is, the probability P(i, j, k) of
being viable on all three carbon sources divided by the
probability P(i) of being viable on environment i (glu-
cose in this figure). Such data can tell us to what extent
increasingly complex nutritional requirements affect
viability.
To continue in this direction, we can ask whether

being viable in one environment leads to an appreciable
probability of being viable in many additional environ-
ments. To test this, we considered 88 aerobic minimal
environments that differ in their carbon sources, as
listed in Table one of [33], and asked in how many of
these environments a random viable genotype in Vi(n)
will be viable. In Figures S11a-c we show the histogram
of the number of these additional environments, with n
set to its E. coli value (see Additional File 1). Genotypes
viable in all three “reference” (glucose, succinate and
acetate) environments exhibit a bell shaped distribution
of the number of environments in which they are viable.
This indicates that typical genotypes in Vi(n) will be
viable in more than just their reference environment.

Robustness in different environments is highly correlated
We next extended our analysis of robustness to multiple
environments. We sampled 1000 random genotypes that
belonged to both Vi(n) and Vj(n), and measured for each
its mutational robustness, defined as the fraction of
reactions that were non-essential in both environments i
and j. In Figure S12a we show as a function of n the
mean robustness found for the three choices of environ-
ment pairs involving glucose, succcinate or acetate as
sole carbon sources (see Additional File 1). Just as for
the single environment case, we see that the mean
robustness increases as n increases and that the lowest
values are not extremely small. We extended this analy-
sis to the case of three environments as shown in Figure
S12b which shows the same trends (see Additional
File 1).
The use of 1000 genotypes viable on multiple environ-

ments allows us to estimate also the distribution of
mutational robustness in multiple environments. Not
surprisingly, just as for a single environment, the distri-
bution is narrow. We illustrate this in Figure S13a and b

for networks of n = 831 reactions, as in the E. coli meta-
bolic network (see Additional File 1). Figure S13a shows
data for the pair glucose-succinate, and Figure S13b for the
triplet glucose-succinate-acetate (see Additional File 1).
Both panels also indicate the mutational robustness of
E. coli; it is a clear outlier, in fact even more so than in a
single environment (cf. Figure 4).
Finally, we asked whether there are trade-offs in robust-

ness for these multiple environments. For example, a
genotype highly robust to reaction removal in one envir-
onment may have low robustness in a second environ-
ment. However, this is not the case. Figures 10a-c are
scatter plots based on 1000 random genotypes viable in
pairs of environments. Here, robustness in a given envir-
onment is again defined as the fraction of non-essential
reactions in that environment. For all three environment
pairs, Figures 10a-c show a strong positive association
between robustness in two different environments rather
than a trade-off. We note that this association cannot be
explained by the fact that the super-essential reactions
are shared between environments. The reason is that
these reactions cannot contribute any variability to
mutational robustness.

Clustering of viable genotypes in multiple environments
In a final analysis, we asked whether genotypes in Vi(n)
can be distinguished from genotypes in Vj(n), merely by
their different “locations” in the genotype space Ω(n).
To answer this question, we performed a principal com-
ponent analysis of three pooled sets of data: 1000 ran-
dom genotypes in Vi(n), another 1000 random
genotypes in Vj(n), and yet another 1000 random geno-
types in the intersection of Vi(n) and Vj(n). In Figure
S14, we show the first and second principal components
resulting from this global analysis, where i corresponded
to glucose and j corresponded to succinate (see Addi-
tional File 1). The figure also shows the center of mass
for each of the three samples. We observe three clouds
of genotypes, one for each set. These clouds overlap,
but they are also different in a statistically significant
way. To demonstrate this claim, we performed a permu-
tation test as follows. First, we defined D* as the sum of
the three distances between the three centers of mass of
the samples. Second, we generated 104 random permu-
tations of the points in the clouds, thereby shuffling
their assignment to the three clouds. For each shuffle k,
we determined the new centers of mass and computed
Dk as the sum of their three distances. The p-value of
the hypothesis that there is no clustering of genotypes
according to their viability set is then estimated as the
fraction of the shuffles having Dk greater than D*. In
our test, we found no shuffle satisfying that inequality,
so our estimate of the p-value is less than 10-4. The
same analysis was performed for the other two pairs of
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environments, but the pair shown has the clearest
separation of the clusters.

Discussion and Conclusion
In sum, our analysis has revealed several characteristic
features of the genotype space of metabolic networks.
First, the probability that a random metabolic network
in genotype space is viable (produces a strictly positive
biomass growth flux) decreases dramatically as its num-
ber of reactions n decreases from the number N of reac-
tions in a reaction “universe”. Most of this decrease is
caused by the fact that smaller metabolic networks are
less likely to contain all super-essential reactions, reac-
tions that any network must contain to be viable in a
given environment. Second, the robustness of random
viable metabolic networks to the removal of random
reactions shows a very narrow distribution. This obser-
vation is a simple consequence of a law of large num-
bers, because many individual reactions contribute to
the viability of a reaction network. In all environments

we studied, the E. coli metabolic network is significantly
more robust than random viable networks. Third, we
showed that random viable networks typically contain
very different sets of reactions. Specifically, their geno-
type distance is not much below that of metabolic net-
works chosen at random from genotype space,
regardless of their viability. Viable genotypes having few
reactions are exceptions to this rule, because they are
appreciably more similar to each other than random
genotypes.
Fourth, the maximum genotype distance between

viable metabolic networks is almost as large as the dia-
meter of genotype space itself, that is, to the maximum
distance among all genotypes, regardless of their viabi-
lity. Because of the method we used to identify the typi-
cal and maximum genotype distance, we know that
genotypes at these distances can be connected through
individual reaction changes that do not affect viability.
In other words, viable genotypes form genotype net-
works that extend far through genotype space.

Figure 10 High correlation of mutational robustnesses in one environment for genotypes that are viable in two environments. The
horizontal axis shows the mutational robustness with respect to a first environment and the vertical axis shows the mutational robustness with
respect to a second environment. Data are based on 1000 sampled genotypes with n = 831 reactions, equal to the number of reactions in E.
coli. Genotypes are viable in a) glucose and acetate, b) glucose and succinate, and c) acetate and succinate environments. In all three cases, we
can see a high positive association between robustnesses for each environment.
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Fifth, there is remarkably little structure within a given
genotype network. A principal component analysis and
hierarchical clustering of our samples of random viable
genotypes detects no clustering of genotypes that might
indicate different types of viable metabolic networks.
Importantly, none of these observations depends
strongly on the specific carbon source we used in our
minimal chemical environments. However, there are dif-
ferences between the number of genotypes viable on dif-
ferent carbon sources. For example, the space of viable
genotypes is smaller for acetate than for glucose. Also,
fewer genotypes are viable simultaneously on two or
three of our carbon sources than on just one carbon
source. Our Markov Chain Monte Carlo sampling
approach allows us to estimate the relative sizes of these
viable spaces.
We next discuss two potential caveats to our analysis.

First, in order to preserve reaction numbers, we used
the decidedly non-biological choice of swapping reac-
tions to carry out random walks in our MCMC explora-
tion of genotype space. In contrast, during the evolution
of genome-scale metabolic networks, individual reac-
tions are eliminated from metabolic networks through
loss-of-function mutations in their enzyme-coding
genes; reactions are added through horizontal gene
transfer [34,35] or, more rarely, via the evolution of a
protein with new catalytic function within an organism.
In this regard, we note that every reaction swap can be
viewed as an addition of a reaction (which always main-
tains viability) followed by a reaction deletion that pre-
serves viability. In other words, a reaction swap can be
decomposed into a succession of biologically meaningful
genotypic changes; the connectivity of genotype net-
works found in our swap approach thus holds also for
single additions and deletions of reactions.
Our knowledge of the biochemical reaction universe

will undoubtedly grow in the future, which raises the
question of how sensitive our observations are to the
addition of reactions to this universe. In this regard, it is
worth highlighting that the added reactions are unlikely
to affect viability in the common carbon sources we stu-
died. For such carbon sources, the super-essential reac-
tions are known, and our current knowledge of the
reaction universe already allows for an astronomical
number of viable genotypes. We suspect that key quan-
tities, such as the large diameter of genotype networks
or their typically high robustness to mutations will thus
increase rather than decrease as more and more “acces-
sory” reactions become known. These arguments do not
necessarily apply to more complex or exotic chemical
environments. We leave the exploration of such envir-
onments to future work.

The work we reported here suggests that viability in
the E. coli metabolic network is significantly more
robust to random reaction removal than in random
viable genotypes for the three environments we studied.
This high robustness persists if we require that a viable
genotype does not just have positive biomass growth
flux, but also a high biomass growth flux, and also if we
change the stoichiometry of the biomass composition
randomly by up to 20 percent. We note that because of
the very narrow distribution of robustness among ran-
dom viable genotypes, this significant difference trans-
lates into a modest decrease in the absolute number of
essential reactions in E. coli. For example, in a glucose
minimal environment, random viable genotypes in our
sample have a mean number of 237 essential reactions,
whereas E. coli has 212 essential reactions, i.e., 25 fewer
than the mean. We cannot exclude that future improve-
ments of the E. coli network annotation might reduce
this significant difference to random viable metabolic
networks, and thus our observation of significantly high
E. coli robustness should be interpreted with caution.
Earlier work by some of us [26] had suggested that the
robustness of the E. coli network was not significantly
different from random viable networks. However, in that
work we had allowed the number of network reactions
in an MCMC exploration of metabolic network space to
fluctuate by a modest amount. Because of the modest
number of differences in essential reactions between
E. coli and random viable metabolic networks, these
fluctuations were sufficient to obscure significant differ-
ences in robustness. Our improved MCMC approach
leaves reaction numbers strictly constant and allows us
to reveal these differences.
In conclusion, our work shows that phenotype-preser-

ving genotype networks that extend far through meta-
bolic genotype space are not just peculiarities of
metabolic networks with a given size. They are generic
organizational properties of metabolic genotype space,
and share important features of genotype networks in
other classes of systems, such as proteins, RNA, and
regulatory circuitry [5,9,36].

Methods
Flux Balance Analysis (FBA)
Flux balance analysis (FBA) is a constraint-based model-
ing approach that primarily uses the information about
the stoichiometry of all enzymatic reactions in cellular
metabolism to obtain a prediction for the steady state
fluxes of all reactions and maximum biomass yield of
the organism [18,19]. The information about the stoi-
chiometry of metabolic reactions is encapsulated in the
stoichiometric matrix S of dimensions m × n, where
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m denotes the number of metabolites and n denotes the
number of reactions. In any metabolic steady state, dif-
ferent metabolites achieve a mass balance where the
vector v of reaction fluxes satisfies the equation

Sv  0 (1)

representing the stoichiometric constraints and the
requirement of mass conservation in the steady state.
For genome-scale metabolic models, the above equation
typically leads to an under-determined system of linear
equations, and a large solution space of allowable fluxes.
The size of this space can be reduced by incorporating
thermodynamic constraints associated with irreversible
reactions, as well as flux capacity constraints, which
limit the maximum flux through some or all reactions.
Linear programming (LP) can then be used to find a set
of flux values – a point in the space of allowable solu-
tions – that maximize a certain biologically relevant lin-
ear objective function Z, which is usually chosen to be
the biomass growth flux. The LP formulation of the
FBA problem can be written as:

max max{ | , }Z T   c v Sv a v b0 (2)

where the vector c corresponds to the objective func-
tion, and vectors a and b contain the lower and upper
limits of different metabolic fluxes contained in v.

Global reaction set
In this work, we have used a set of 5870 reactions com-
piled earlier by two of us (J.R. and A.W.) through mer-
ging of the Kyoto Encyclopedia of Genes and Genomes
(KEGG) LIGAND reaction database [28] with the E. coli
metabolic model iJR904 [24], followed by appropriate
pruning to exclude generalized polymerization reactions
[26]. Of the 5870 reactions in this hybrid database, 3369
are irreversible and 2501 are reversible reactions. We
took the set of 143 external metabolites contained in
the E. coli iJR904 model to be the set of possible uptake
and secreted metabolites in the metabolic network. We
have used an objective function Z (Eq. 2) that requires
synthesis of those E. coli biomass compounds defined in
the iJR904 model [24]. In this function, we also used the
proportions of these compounds defined in [24].
Large-scale metabolic networks typically have certain

dead-end reactions; these can only have zero flux for
every investigated chemical environment, under any
steady-state condition with nonzero biomass growth
flux. Such reactions have been referred to as “blocked”
in the literature and cannot contribute towards the
steady-state flux distribution [31,32]. We found that
2968 of the 5870 reactions would be blocked under all
environmental conditions that we examine in this study.
We excluded this set of 2968 blocked reactions from

the hybrid database of 5870 reactions, which led to a
reduced reaction set of 1597 metabolites and 2902 reac-
tions. We took this reduced set of N = 2902 reactions
as the “global reaction set” or “reaction universe” for
our study.
The E. coli metabolic model iJR904 contains 931 reac-

tions which occur in the hybrid database of 5870 reac-
tions from which we derived our global reaction set
[26]. After having excluded the 2968 blocked reactions,
the global reaction set still contains 831 reactions speci-
fic to E. coli. We consider this space of reactions to be
the E. coli metabolic genotype.

Phenotypes and viability
In general, in silico metabolic studies take a metabolic
network’s “fitness” in a given chemical environment to
be proportional to the maximum biomass growth flux
the network can attain. The metabolic phenotypes we
consider here are conceptually simpler: they regard only
viability. Specifically, we consider a genotype to be
“viable” in a given chemical environment if and only if
its maximum biomass flux is nonzero. That is, the geno-
type is viable if it can synthesize all biomass compounds,
regardless of the synthesis rate. Otherwise, we consider
the genotype to be non-viable. We use FBA and the E.
coli biomass composition mentioned above to determine
viability. If a genotype with n reactions in the space
Ω(n) is viable, we say it belongs to the viable space V(n).
Thus, the viable space V(n) is a subspace of Ω(n).

Chemical environments
This work is concerned with viability of metabolic net-
work genotypes in a given, well-defined chemical envir-
onment or medium. Specifically, we consider only
minimal environments that contain a limited amount of
a carbon source, along with unlimited amounts of the
following inorganic metabolites: oxygen, water, protons,
sulfate, ammonia, pyrophosphate, iron, potassium and
sodium. The work presented here focuses on the three
carbon sources: glucose, acetate and succinate, but we
have also investigated properties using four other carbon
sources.

Essential and super-essential reactions
We call a reaction essential for a given viable genotype
in a given chemical environment if its elimination
("knock-out”) renders the genotype non-viable in that
environment. We call a reaction “super-essential” for
this environment if it is essential for the genotype con-
taining all reactions in the global reaction set. We note
that a reaction that is super-essential in any one envir-
onment must be essential for every viable genotype. We
have determined the set of super-essential reactions for
the different minimal environments we study here. In
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particular, the glucose and succinate environments have
the same 99 super-essential reactions, while acetate’s
super-essential reactions are those same 99 plus one
more. As we describe below, knowledge about these
super-essential reactions allows us to increase the effi-
ciency of our sampling of genotype space to estimate
the size of the viable space V(n) at much smaller n than
would be possible otherwise.

Estimating the fraction of viable genotypes
For most of our analysis, we are interested in the prop-
erties of genotypes belonging to the viable space V(n).
One of the most basic questions is whether the con-
straint of being viable is “severe”, i.e., whether a random
genotype in Ω(n) has a tiny probability of being viable.
In principle, one could sample genotypes (bit strings) in
Ω(n) at random and determine for each such genotype
whether it is a member of the viable space V(n). In a
large enough sample of such genotypes, the fraction of
viable genotypes provides an estimate of the fraction of
viable genotypes. Unfortunately, for our genotype space,
these fractions are extremely small and thus not mea-
surable unless the number n of reactions in a genotype
is above 2700. To avoid this problem, we have imple-
mented an algorithmic trick where the probability of
being viable is represented as a product of two factors
that can be computed separately. The first factor is the
probability that a genotype of a given size contains all
super-essential reactions. This factor is of a simple com-
binatorial nature (it is a ratio of two binomial coeffi-
cients) and thus can be computed analytically.
Specifically, for a given number of n reactions and s
super-essential reactions, this factor is given by B (N-s,
n-s)/B(N, n) where B(p, q) is the binomial coefficient p!/
[q! (p-q)!]. The second factor is the probability that a
genotype is viable given that it contains all super-essen-
tial reactions. To estimate this second factor, we use the
following procedure to generate 106 random genotypes
for a given value of n. We first include all reactions in
the super-essential set and then randomly include non-
super essential reactions until the genotype contains
exactly n reactions. The fraction of these 106 genotypes
that are viable gives us the estimate of the second factor.
This procedure reduces the computational complexity of
our sampling problem and allows us to provide accurate
estimates of the size of V(n) for a broad range of reac-
tion numbers n.

Aspects of the MCMC algorithm and associated analyses
In our direct sampling of V(n) at n>2000, we exploited
the presence of super-essential reactions. This trick can
also be used for the MCMC sampling. Specifically, since
all genotypes in V(n) contain all super-essential reac-
tions, we can force these reactions to always be present.

As a result we can impose that a reaction swap does not
involve any super-essential reaction. This procedure
enhances the efficiency of the MCMC sampling. Most
importantly, it increases the acceptance rate.
In general, the genotypes produced by the MCMC

method will have some memory of the starting geno-
type, although this memory fades with the number of
steps performed. (Such memory erasure must occur if
the asymptotic distribution is uniform in the accessible
space.) In the same vein, the successive genotypes in
our Markov chains are strongly correlated, since they
differ at best by an exchange of one reaction pair. These
correlations typically decrease exponentially with the
number of steps, and the associated time scale τ – the
auto-correlation time of the chain – can be estimated
empirically [37]. We have done so for three different
environments, as illustrated for one value of n in Figure
S3. The figure shows that the distance to the initial gen-
otype grows and then quickly saturates, with a charac-
teristic time scale τ of about two thousand swaps (for
the value of n illustrated in the figure), regardless of the
environment. Note that τ gives both the characteristic
time to “forget” the starting genotype and the time to
go from one genotype to a nearly independent one. This
estimation of τ motivates the following procedure,
which we followed for all reaction numbers and envir-
onments. Beginning with the initial genotype, we first
carried out 105 Markov Chain steps to erase the mem-
ory of the starting genotype. After this initial phase, we
continued the MCMC procedure to sample the geno-
type network. During this phase, it is not useful to keep
all of the genotypes produced because they are strongly
correlated. We thus saved only every 1000th genotype
generated, and ran the Markov chain for a total of 106

steps, leading to one thousand saved genotypes. These
1000 genotypes are a random sample of viable genotypes
in V(n) for a given chemical environment. We repeated
the procedure for multiple values of n (n = 300 to 2800)
and for all three minimal environments. We also imple-
mented this procedure for obtaining samples of geno-
types that were viable on multiple environments.
The sample produced by the MCMC is unbiased if the

memory of the initial genotype is absent (which is why
we use a large number of transitions before saving geno-
types). But the successive genotypes are to some extent
correlated. This does not affect the measurement of
averages. However, when estimating statistical errors
associated with sampling, it is necessary to take into
account that the different genotypes are not indepen-
dent. The standard procedure to address this problem
involves jackknife calculations of the error bars [38].
Briefly, in this approach the ordered data (consisting of
the sequence of saved genotypes) is analyzed, the mean
of the observable of interest is extracted, and then the
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jackknife estimate of the statistical error is obtained
using variable window sizes. The window size deter-
mines how successive data values are regrouped [38]; it
must be much smaller than the total sample size, and
one can check that the resulting error estimates are
insensitive to the choice of this window size. For exam-
ple, we have used this procedure to estimate errors in
the distribution of mutational robustness. For each
robustness bin, we determined the number of genotypes
of the sample that fall in that bin; and the jackknife esti-
mate gave the error bar on the height of the bin. In
practice, mutational robustness has negligible correla-
tions on the time scale of our successively saved geno-
types, and thus the jackknife estimates are very similar
to those obtained when ignoring correlations.
A rule of thumb for MCMC sampling is that the algo-

rithm is efficient if the autocorrelation time of any
observable is not too long. If our sampling disregarded
viability, that is if one were sampling Ω(n) rather than V
(n), then one would need of the order of n reaction
swaps to generate an independent genotype, leading to
τ = n. Clearly, when sampling V(n), a proposed swap is
refused whenever the modified genotype is not viable. If
A is the acceptance rate of swaps, then a simple expec-
tation based on this observation is τ = n/A. In the
regime we studied (n>300), A is greater than 0.2, as illu-
strated in Figure S4 in Additional File 1. In conse-
quence, τ should be of the order of a few thousand
steps. This is what we found (cf. Figure S3 in Additional
File 1). In sum, the MCMC method is less efficient in V
(n) than in Ω(n), but it is more than adequate for our
purposes. Only for genotypes with n<300 would the
MCMC approach become unacceptably slow, but in this
case a much more fundamental problem would be that
there may be no genotypes at all in V(n).

Genotype-specific “essential” and “blocked” reactions
For a randomly sampled genotype viable in a given
minimal environment, we can determine both the subset
of reactions present that are essential for that genotype
in this environment and the subset of reactions that are
blocked in this environment. A reaction is blocked for a
given genotype and environment if no strictly positive
flux through it can occur under steady-state conditions
[31,32]. In other words, this genotype can have non-zero
biomass growth flux only if the flux through this reac-
tion is zero. Such a reaction can be considered as
“afunctional” for this genotype and environment.

Clustering analysis
Our genotypes are bit strings; as such, they can be
thought of as vectors in an N dimensional space. Given
a list of such vectors, one can use Principal Component
Analysis (PCA) to analyze clustering of genotypes. We

have also implemented a hierarchical clustering of such
strings; to do so, we first construct the list of distances
between each genotype, using the Hamming distance.
Then we can hierarchically assemble the two nearest
clusters into a new (larger) cluster, and repeat this pro-
cedure recursively. At each step, it is necessary to have
a definition of the distance between two clusters: we
take this distance to be the mean distance of members
of different clusters. The PCA analysis has been per-
formed using the function princomp in MATLAB 7.7.
The hierarchical clustering analysis has been performed
using functions pdist, linkage and dendrogram in
MATLAB 7.7.

Additional file 1: Supplementary material containing Figures S1 to
S14.
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