Downloaded from rsif.royalsocietypublishing.org on June 10, 2010

JOURNAL

THE RovAL Interface

The evolvability of programmable hardware
Karthik Raman and Andreas Wagner

J. R. Soc. Interface published online 9 June 2010
doi: 10.1098/rsif.2010.0212

Supplementary data "Data Supplement” o _
http://rsif.royalsocietypublishing.org/content/suppl/2010/06/09/rsif.2010.0212.DC1.htm
I

References This article cites 31 articles, 8 of which can be accessed free
http://rsif.royalsocietypublishing.org/content/early/2010/06/09/rsif.2010.0212.full. html#
ref-list-1

P<P Published online 9 June 2010 in advance of the print journal.

Rapid response Respond to this article

http://rsif.royalsocietypublishing.org/letters/submit/royinterface;rsif.2010.0212v1
Subject collections Articles on similar topics can be found in the following collections
biophysics (290 articles)

i i i Receive free email alerts when new articles cite this article - sign up in the box at the top
Email alerti ng service right-hand corner of the article or click here

Advance online articles have been peer reviewed and accepted for publication but have not yet appeared in
the paper journal (edited, typeset versions may be posted when available prior to final publication). Advance
online articles are citable and establish publication priority; they are indexed by PubMed from initial publication.
Citations to Advance online articles must include the digital object identifier (DOIs) and date of initial
publication.

To subscribe to J. R. Soc. Interface go to: http://rsif.royalsocietypublishing.org/subscriptions

This journal is © 2010 The Royal Society

http://rsif.royalsocietypublishing.org/content/suppl/2010/06/09/rsif.2010.0212.DC1.html
http://rsif.royalsocietypublishing.org/content/early/2010/06/09/rsif.2010.0212.full.html#ref-list-1
http://rsif.royalsocietypublishing.org/letters/submit/royinterface;rsif.2010.0212v1
http://rsif.royalsocietypublishing.org/cgi/collection/biophysics
http://rsif.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=royinterface;rsif.2010.0212v1&return_type=article&return_url=http://rsif.royalsocietypublishing.org/content/early/2010/06/09/rsif.2010.0212.full.pdf
http://rsif.royalsocietypublishing.org/subscriptions
http://rsif.royalsocietypublishing.org/

Downloaded from rsif.royalsocietypublishing.org on June 10, 2010

JOURNAL

OF

THE ROYAL

Interface

og"FirstCite’

e-publishing

J. R. Soc. Interface
doi:10.1098 /rsif.2010.0212
Published online

The evolvability of programmable
hardware

Karthik Raman!?* and Andreas Wagner!>2-3

' Department of Biochemistry, University of Zurich, Winterthurerstrasse 190,
8057 Zurich, Switzerland
2Swiss Institute of Bioinformatics, Quartier Sorge, Batiment Genopode,
1015 Lausanne, Switzerland
3The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA

In biological systems, individual phenotypes are typically adopted by multiple genotypes.
Examples include protein structure phenotypes, where each structure can be adopted by a
myriad individual amino acid sequence genotypes. These genotypes form vast connected
‘neutral networks’ in genotype space. The size of such neutral networks endows biological sys-
tems not only with robustness to genetic change, but also with the ability to evolve a vast
number of novel phenotypes that occur near any one neutral network. Whether technological
systems can be designed to have similar properties is poorly understood. Here we ask this
question for a class of programmable electronic circuits that compute digital logic functions.
The functional flexibility of such circuits is important in many applications, including appli-
cations of evolutionary principles to circuit design. The functions they compute are at the
heart of all digital computation. We explore a vast space of 10*® logic circuits (‘genotypes’)
and 10" logic functions (‘phenotypes’). We demonstrate that circuits that compute the
same logic function are connected in large neutral networks that span circuit space. Their
robustness or fault-tolerance varies very widely. The vicinity of each neutral network contains
circuits with a broad range of novel functions. Two circuits computing different functions can
usually be converted into one another via few changes in their architecture. These obser-
vations show that properties important for the evolvability of biological systems exist in
a commercially important class of electronic circuitry. They also point to generic ways to
generate fault-tolerant, adaptable and evolvable electronic circuitry.

Keywords: evolvable hardware; fault-tolerance; adaptive systems;
neutral networks

1. INTRODUCTION

Biological systems are shaped by mutation and natural
selection. At various levels of organization, they exhibit
robustness to perturbations. That is, they are able to
survive an onslaught of disruptive agents, such as hos-
tile environments and random mutations of their
genetic material. In addition, they show a remarkable
ability to adapt and evolve novel properties through
such random mutations (Wagner 2005b). In other
words, biological systems are evolvable. In contrast,
man-made systems are often a product of rational
design, rather than biological evolution. They are
often not as robust as biological systems (Kitano
2005), particularly to perturbations that have not
been anticipated during the design stage. In other
words, they are often fragile: the modification or
removal of components often results in catastrophic fail-
ure. As a result, their ability to acquire novel and useful

*Author for correspondence (aw@bioc.uzh.ch).

Electronic supplementary material is available at http://dx.doi.org/
10.1098/rsif.2010.0212 or via http://rsif.royalsocietypublishing.org.

Received 12 April 2010
Accepted 11 May 2010

features through random change is limited. Neverthe-
less, there have been many attempts to design systems
that exhibit high levels of robustness (Ray 1991;
Thompson 1996a; Tempesti et al. 1997; Millet &
Heudin 1998; Bradley & Tyrrell 2000; Hartmann &
Haddow 2004).

Biological systems on different levels of organization
share properties important for both their robustness
and their ability to evolve novel features. Biological
macromolecules, such as proteins and RNA, serve to
illustrate these properties. Their genotypes (amino
acid or nucleotide sequences) exist in vast genotype
spaces. In such a space, genotypes are neighbours if
they differ in one system component (amino acids or
nucleotides). A genotype’s neighbourhood consists of
all its neighbours. Genotypes form phenotypes, three-
dimensional conformations of molecules with specific
biological functions. Typically, any one phenotype can
be formed by many different genotypes (Schuster
et al. 1994; Wagner 2008a). These genotypes span one
or more vast genotype networks or neutral networks
(Schuster et al. 1994; Wagner 2008a), connected sets
of genotypes that span genotype space and that have

This journal is © 2010 The Royal Society

mailto:aw@bioc.uzh.ch
http://dx.doi.org/10.1098/rsif.2010.0212
http://dx.doi.org/10.1098/rsif.2010.0212
http://dx.doi.org/10.1098/rsif.2010.0212
http://rsif.royalsocietypublishing.org
http://rsif.royalsocietypublishing.org
http://rsif.royalsocietypublishing.org/

Downloaded from rsif.royalsocietypublishing.org on June 10, 2010

2 FEvolvability of programmable hardware

K. Raman and A. Wagner

Figure 1. (Opposite.) Digital logic circuits and circuit space. (a) The standard symbols for logic gates along with the functions
they represent. (b) An example of a digital logic circuit comprising four (2 x 2) gates, akin to a field-programmable gate array.
The circuit comprises four logic gates, represented by the symbols shown in (a). Each of the gates has two inputs and one output.
The entire array has n; = 4 input ports and ng = 4 output ports; the array maps a Boolean function having four input variables
to four output variables. The connections between the various columns or ‘levels’ in the array are ‘feed-forward’; i.e. the inputs to
each element in a column of the array can come only from the outputs of any of the elements from previous columns. There are
four outputs from the array, which can be mapped to any of the four gate outputs. (¢) The concept of neighbours in circuit space.
The panel shows six circuits with 2 x 2 logic gates and two inputs and two outputs per circuit. The figure shows a circuit C;
(thick ellipse) and some of its neighbours in circuit space, that is circuits that differ from it in one of the four possible kinds
of elementary circuit change. For example, C, differs from Cj in internal wiring, Cj differs in the logic function computed by
one of the four gates, Cs differs in an input mapping to one of the gates and Cy, which differs in the output mapping. The circuit
C, differs from C] in two elementary changes and is therefore not its neighbour in circuit space; however, it is a neighbour of Cs
and Cs. The differences between C] and the other circuits are shown by shaded grey boxes.

the same phenotype. Each genotype typically has mul-
tiple neighbours with the same phenotype. Genotypes
are thus typically to some extent robust to mutations
changing individual system components. The existence
of such genotype networks means that two molecules
(genotypes G; and Gy) can have identical phenotypes
but very different genotypes. At the same time, mol-
ecules in the neighbourhood of G; and G can adopt
very different novel phenotypes. This means that
(i) small mutational changes can gradually transform
G, into Gs, yet leave the phenotype unchanged, while
(ii) mutations that occur during this transformation
can uncover novel phenotypes. These properties exist
in molecules such as proteins (Lipman & Wilbur 1991;
Babajide et al. 1997; Ferrada & Wagner 2008) and
RNA (Schuster et al. 1994; Huynen 1996; Wagner
2008b), regulatory circuits (Ciliberti et al. 2007;
Munteanu & Solé 2008) and metabolic networks
(Rodrigues & Wagner 2009). We here ask whether
man-made systems such as electronic circuits can dis-
play similar organizational principles, or whether
there are fundamental differences between their organ-
ization and that of biological systems. The answers
may help design complex yet robust man-made systems
with specific functions, while facilitating their
functional versatility.

Like biological systems, man-made systems are sub-
ject to two different kinds of change: (i) change in
their external environment, such as changing tempera-
ture, pressure or chemical composition and (ii) change
in their internal system components—the analogue of
mutations. Robustness to the latter kind of change is
of particular importance in biological systems, because
it can facilitate innovation (Wagner 2005b). We will
thus focus on such internal change.

Since the classic work of von Neumann (1956) and
McCulloch (1960) on the construction of reliable
systems from unreliable components, the design of
man-made ‘fault-tolerant’ systems that are robust to
internal change has received much attention (Tempesti
et al. 1997; Millet & Heudin 1998; Bradley & Tyrrell
2000; Hartmann & Haddow 2004; Coren & Krishna
2007; Macia & Solé 2009). Such past efforts are not lim-
ited to questions about robust system design. They also
show that man-made systems such as digital circuits can
be designed to adapt and evolve their function (Koza
1992; Haddow & Tufte 2000; Miller et al. 2000; Yu &
Miller 2001; Hartmann & Haddow 2004; Banzhaf &

J. R. Soc. Interface

Leier 2006; Greenwood 2007). More generally, the simi-
larities and differences between the organization of
biological networks and man-made systems have been
a subject of great interest (Ferrer i Cancho et al.
2001; Solé et al. 2002; Kitano 2005; Wagner 2005b).

Evolutionary principles have been applied in com-
puter science to solve large and complex optimization
and design problems, using techniques broadly classified
as evolutionary computation (Holland 1992; Mitchell
1996). These techniques implement various aspects of
evolution, such as random variation, reproduction and
selection in silico, to identify novel solutions to complex
problems. In ewvolvable hardware, such techniques are
applied to electronic circuits and devices. These tech-
niques can automatically generate designs of digital
circuits, as well as electronic circuits that are robust to
noise and faults (Hartmann & Haddow 2004). Hardware
may be evolved intrinsically, on hardware itself, or
extrinsically, using computer simulations (Upegui &
Sanchez 2008). Intrinsic evolution of hardware is often
done using field-programmable gate arrays (FPGAs)
(Thompson 1995, 19965, 1997; Harvey & Thompson
1996; Hollingworth et al. 2000).

FPGAs are silicon-based programmable digital logic
circuits built from transistors. They generally consist
of a two-dimensional array of ‘logic gates’, hardware
units that compute elementary logic functions (e.g.
OR, AND, NAND, etc.) Importantly, both the func-
tions each gate computes, and how the gates are
interconnected can be altered, hence the name ‘field-
programmable’. This ability to dynamically reconfigure
a circuit means that a single FPGA can serve very
different computational purposes. The inputs to the
entire array are binary variables, usually represented
as zeroes and ones. The same holds for the array
output. In other words, FPGAs compute Boolean
logic functions (figure 1a,b). Which logic function a
particular array computes depends on its internal
gates and on its wiring. FPGAs often have a feed-
forward architecture, where a gate’s input can be
connected to the output of any preceding gate in the
array. FPGAs are widely used in various fields such as
image processing, digital signal processing and
high-performance computing applications, such as fast
Fourier transforms (Meyer-Baese 2007).

Several reasons make FPGAs attractive for our pur-
pose. First, while usually implemented in hardware,
they are conducive to computational modelling.

http://rsif.royalsocietypublishing.org/

Downloaded from rsif.royalsocietypublishing.org on June 10, 2010

Evolvability of programmable hardware

K. Raman and A. Wagner

3

OPkFHAPEF®

)

Y =A+B

J. R. Soc. Interface

Figure 1. (Caption opposite.)

http://rsif.royalsocietypublishing.org/

Downloaded from rsif.royalsocietypublishing.org on June 10, 2010

4 FEwvolvability of programmable hardware

K. Raman and A. Wagner

Second, they can be built to allow a vast number of con-
figurations that compute different functions. Third, the
functions they compute are universally important in
digital computation (Balch 2003; Greenwood 2007;
Meyer-Baese 2007). Fourth, the computational abilities
of any one FPGA can be evaluated rapidly. This prop-
erty facilitates our analysis below, which requires
examination of vast numbers of such circuits.

In this contribution, we will systematically explore a
vast set or ‘space’ of FPGA configurations or circuits,
and the logic functions these circuits compute. This cir-
cuit space is an analogue to the genotype space of
biological systems. Each circuit in this space corres-
ponds to a single genotype. A circuit is completely
specified through the identity of all its individual logic
gates, as well as through their interconnections. The
function that any one circuit computes is an analogue
to a biological phenotype. Since every circuit compu-
tes exactly one function, these definitions specify a
mapping from circuits (genotypes) to functions (pheno-
types). We will call two circuits to be neighbours if their
configuration differs minimally, either through a change
in the identity of a single gate, or through an elemen-
tary change in their wiring (figure 1¢). We can thus
think of the circuit space as a graph, where adjacent
nodes correspond to neighbouring circuits. With these
concepts in mind, we will ask questions such as the fol-
lowing. How ‘robust’ is a typical circuit to changes in
the wiring/configuration? Do neutral networks exist in
this configuration space? Can circuits with significantly
different configuration compute the same function?
Does the organization of circuit space facilitate or
hinder the adoption of novel phenotypes (logic function
computations) through small numbers of gate changes?

2. RESULTS
2.1. Circuit spaces and logic functions

The circuits we discuss in detail have n; = 4 input and
no =4 output bits, as well as m columns of logic
gates, each of which contain n gates. That is, a circuit
consists of m x n total gates. We allow the five most
commonly different kinds of two-input logic gates,
that is OR, AND, XOR, NAND, NOR (figure la).
Even for small numbers of input bits, output bits and
internal gates, these specifications allow a very large
number of circuits. Column 2 of the electronic sup-
plementary material table S1 shows the size of the
circuit space (number of possible circuits; see electronic
supplementary material) for different circuit sizes. Even
the smallest size circuit we consider (3 x 3 =9 gates)
has an astronomical number of more than 10°* circuit
configurations, a number that rises to more than
109, for circuits with 6 x 6 gates. To represent the cir-
cuits, we use a representation based on the Cartesian
genetic programming approach, developed by Miller
(1999; Miller & Thomson 2000; see §4.1).

As mentioned earlier, a circuit space can be viewed as
a graph. Two circuits (nodes) are neighbours or con-
nected by an edge, if they vary only by an elementary
change in configuration (figure 1¢). Such elementary
changes affect the identity of a single logic gate (circuit

J. R. Soc. Interface

Cs in figure 1¢), a change in one of the inputs to a gate
(), or a (single) change in the array input mappings
(C5) or output mappings (Cs). We define the shortest
distance between two different circuits as the number
of edges (elementary changes) in the shortest path sep-
arating them. Circuit configurations can be represented
as vectors of integers that describe the inputs to each of
the logic gates, the logic function computed by each
gate, as well as the circuit output (see the electronic
supplementary material). For a circuit of size m x n
with no outputs, the size of this representation is
3mn + no, which is also the maximal distance (dia-
meter) of the circuit space. For example, the maximal
circuit distance of 4 x 4 circuits with four outputs is
given by 52 elementary changes.

Below, we highlight our observations for circuits of
size 4 X 4, since this number strikes a balance between
circuit complexity and computational tractability.
However, we will also explore how our observations
depend on circuit size, by examining a broader class of
circuits whose sizes range from 3 x 3 to 6 x 6 gates.
We note that the complexity of the systems we study,
both in terms of circuit numbers and functions, is com-
parable to that of genotypes and phenotypes in complex
biological systems (Lipman & Wilbur 1991; Schuster
et al. 1994; Wagner 2008D).

2.2. Some logic functions are frequent, others
rare in circuit space

In analogy to biological systems, we define a logic func-
tion’s circuit set or neutral set as the set of circuits that
compute this function. Any one circuit set can consist of
one or more connected neutral networks, which we
define as connected subsets computing the same func-
tion. Since the circuit space for our focal circuits is
very large (approx. 10*), an exhaustive analysis is
impossible. We thus sample circuits from this space at
random and uniformly, that is, with equal probability.
To assess the size distribution of circuit sets for different
logic functions, we sampled a large number of 2 x 107
circuits from the genotype space at random (see the
electronic supplementary material) and recorded the
function each circuit computed. Figure 2a shows a
rank histogram for the logic functions a 4 x 4 circuit
computes. For this plot, we assigned each function a
rank based on the number of circuits in our sample
that compute it. The most frequent function is assigned
rank 1. The vertical axis of the figure indicates the fre-
quency of the function, defined as the number of times
the function arose divided by the sample size (2 x 107).
We see that a small number of functions are computed
by many circuits, whereas many functions are com-
puted by only few circuits in the sample. Electronic
supplementary material, figure S1 shows analogous
histograms for circuits of other sizes.

For the majority of the following analyses, we consider
a set of 1000 logic functions, and a representative circuit
computing each function. These 1000 functions include
750 of the functions with the highest frequency, and
250 functions selected at random. The latter comprise
mostly functions that occurred only once in our
sample, because such functions dominate our sample.

http://rsif.royalsocietypublishing.org/

Downloaded from rsif.royalsocietypublishing.org on June 10, 2010

Evolvability of programmable hardware

K. Raman and A. Wagner 5

(@) 10-4¢
=
2
2 10
B 10
Q
“Bh
i)
= 10-6}
>
Q
=
(5}
5 107}
£
10-8 -
100 105
rank of logic function
(decreasing size of circuit sets)

(b) 103 ¢ 4 x 4 circuits

3 x 3: mean D = 0.968 (o = 0.073) I

4 x 4: mean D = 0.978 (o= 0.054)

5 x 5:mean D =0.980 (o =0.047)
& 6 x 6: mean D = 0.980 (o =0.043)
S) 2 |
= 10
Q
=
2
G
]
3
s 10 ¢
g
=)
=]

N I |
0 0.2 0.4 0.6 0.8 1.0
maximal circuit distance (D)
(c) 4 x 4 circuits
_ Spearman’s r = 0.56; p < 10-300; n = 1000
Q
8 101 Q ° 5 © m ® ® @
E o
S o7t
=
e °
'S
= 057
£
=
<
g
0.3

1077 10-6 10-5 104
frequency of the logic function

Figure 2. (a) Frequency of various logic functions across all
sampled 4 x 4 circuits. Note that both axes have a logar-
ithmic scale; the ‘tail’ in the panel indicates that the
vast majority of functions have a very low frequency;
they appear only once in the circuits sampled. The distri-
bution resembles a Zipf distribution (Zipf 1972). Similar
distributions have been observed earlier for RNA (Schuster
et al. 1994). (b) Very different circuits can compute the same
function. Shown are the distributions of the maximum dis-
tance from a starting circuit (as a fraction of circuit space
diameter), at the end of a random walk of 2000 steps. (c)
Functions with larger circuit sets can be computed by
more distant circuits. The vertical axis indicates the maxi-
mum distance from the starting circuit at the end of a
random walk of 2000 steps (as a fraction of circuit space
diameter). The horizontal axis indicates the frequency of
the logic function. The sizes of the circles are proportional
to the number of data points with a given distance D and
frequency.

J. R. Soc. Interface

An analysis of circuits computing these functions helps
understand generic properties of circuit space. To com-
pare these generic properties with properties of
individual functions, we analyse circuits computing two
specific functions, the right-shift and the circular left-
shift function (see the electronic supplementary
material) below. We chose these two functions, because
they are broadly important in a wide range of
applications (Irvine 2007), such as image processing
(Fisher 1997) and cryptography (Stallings 2006). We
note that neither function appeared in our samples of
2 x 107 circuits of any size. We generated 100 distinct
random circuits computing the right-shift and circular
left-shift functions as described in the electronic sup-
plementary material, and analysed properties of these
sets of circuits below.

2.3. Circuits computing the same function form
large connected networks

The different circuits computing a particular function
might comprise a fragmented collection of circuits,
where it is impossible to reach one circuit from another
through small function-preserving changes. Conversely,
all the circuits might lie on a single neutral network.
In this case, it would be possible to navigate between
circuits through small function-preserving changes.
Since the entire circuit set for each function may be
very large, we cannot exhaustively identify all its cir-
cuits and their connectivity in circuit space. However,
we can analyse whether it is possible to reach one circuit
from other circuits in the same circuit set through a
number of elementary changes that leave the computed
function unchanged. To examine the connectedness of
circuit sets, we attempted to connect two circuits in a
neutral set by means of a function-preserving random
walk, as described in the electronic supplementary
material. We did so for the circuit sets of the 1000 func-
tions mentioned above. More precisely, in this analysis
we focused on those functions for which our sample of
2 % 107 circuits had contained more than one circuit
per function. We found for each such function that all
of the circuits computing the function lie on the same
neutral network. In a similar fashion, we also examined
the connectedness of the neutral sets of the right-shift
and circular left-shift functions. Again, we found that
the sets of 100 circuits that compute the right- and cir-
cular left-shift functions each belonged to the same
neutral network, for 3 x 3, 4 x 4 and 5 x 5 circuits.
For larger circuits (6 x 6), the amount of computation
to ascertain circuit connectedness became intractable.

Overall, these analyses indicate that a large number
of circuits computing the same function are accessible
from one another through a series of function-
preserving changes to a circuit. Even for the relatively
‘rare’ right-shift and circular left-shift functions, circuit
sets are highly connected.

2.4. Very different circuits can compute the
same function

The above analysis shows that neutral networks exist
and connect most circuits computing a given function.

http://rsif.royalsocietypublishing.org/

Downloaded from rsif.royalsocietypublishing.org on June 10, 2010

6 FEvolvability of programmable hardware

K. Raman and A. Wagner

We now ask how far neutral networks extend through
circuit space. As mentioned above, the distance between
two circuits in circuit space corresponds to the number
of elementary changes required to transform one circuit
to another. Within a neutral network, the maximal dis-
tance between two circuits measures how different two
circuits that compute the same function can be in their
organization. To estimate this maximum distance, we
performed a random walk that started from a particular
circuit, and subjected it to a series of small circuit
changes (figure 1¢) that were required to preserve the
computed function. Figure 20 shows the distribution
of the distance D from the starting 4 x 4 circuit, at
the end of 2000 steps of a function-preserving random
walk for 1000 circuits discussed above, which compute
1000 different functions. Almost 80 per cent of these
random walks reach a maximal distance of circuit
space diameter (D =1). The mean distance reached
by all random walks is given by D= 0.978. This
means that the neutral networks of 4 x 4 circuits typi-
cally span approximately 98 per cent of the circuit
space’s diameter. The inset in figure 2b shows the
mean and standard deviation for the other circuit
sizes we considered. In all examined cases, neutral net-
works span a very large fraction of circuit space.
Figure 2¢ shows the association of the maximal circuit
distance (D), computed as described above, with the
frequency of the logic function, for the 1000 circuits dis-
cussed above. The figure shows that the maximal
distance of circuits computing the same function is gen-
erally high, regardless of the function’s frequency. This
maximal distance increases modestly for functions with
higher frequency. In other words, functions with larger
circuit sets (horizontal axis) can be computed by cir-
cuits that show greater differences in their
architecture (vertical axis). Electronic supplementary
material, figure S2 reveals the same pattern for circuits
of other sizes. These patterns are consistent with our
observation that most circuits in a circuit set belong
to the same neutral network.

A vivid example of the large diameter of neutral net-
works is given in the electronic supplementary material,
figure S3a, which shows the distribution of circuit dis-
tance after a function-preserving random walk of 2000
steps for 3 x 3 circuits computing the circular left-shift
function. For 87 of the 100 circuits, this distance was
equal to the circuit space’s diameter. Larger circuits
show the same phenomenon, as indicated by the numbers
in the inset. As an example, electronic supplementary
material, figure S3b shows two 3 x 3 circuits that both
compute the circular left-shift function. Careful examin-
ation shows that these two circuits are maximally
different. They differ in every gate, input mapping,
internal wiring and output mapping, yet belong to the
same neutral network. Electronic supplementary
material, figure S4 shows analogous observations for cir-
cuits computing the right-shift function.

2.5. Larger circuits are more robust to
configuration changes and gate failure

Neighbouring circuits in circuit space that compute the
same function are neutral neighbours. We define the

J. R. Soc. Interface

—
S
<

- 107 Spearman’s r = 0.32; p < 10-300
S
S 08fg ,
=y 8
= o
g2 oor| 8
o & o °
PN
3 0.4}
= 8
S
£ o2
0 107 10-6 10-5 104
frequency of the logic function
(0)) _
100 ¢ circular shift (3 x 3)
501 I
0 | 1 ,_l l 1
E
540 circular shift (4 x 4)
5 20} |_|
5 0 . P] [
o
£
E
40 ¢ circular shift (6 x 6)
201
. . . .-.|_||_||_||_||_||_|n
0 0.2 0.4 0.6 0.8 1.0
fraction of neutral neighbours
(©

(l): 4 x 4 circuits %
ol 44 ¢ tte

0.4

robustness to gate failure

027

0 10-7 10-6 10-5 104
frequency of the logic function

Figure 3. (a) Robustness of circuits is typically high. Circuits
computing frequent functions have higher robustness, but this
association is not strong. (b) Larger circuits computing circu-
lar left-shift are more robust. Note that the distribution of
robustness is quite broad. (¢) Circuits computing functions
with higher frequency are more robust to gate failure. The dis-
tributions of robustness to gate failure, for 4 x 4 circuits
computing functions of different frequencies are shown. The
1000 4 x 4 circuits have been grouped into seven bins based
on the frequency of the logic functions they compute. The
errors bars indicate 1 s.d.

robustness of a circuit as the fraction of its neighbours
that are neutral neighbours. This quantity is an ana-
logue of mutational robustness in biological systems
(Wagner 20050, 2008b), as well as of fault-tolerance in
engineering (White & Miles 1996; Keymeulen et al.
2000). Figure 3a shows that the robustness of circuits
computing different functions is generally high.

http://rsif.royalsocietypublishing.org/

Downloaded from rsif.royalsocietypublishing.org on June 10, 2010

Evolvability of programmable hardware

K. Raman and A. Wagner 7

Typically, more than half of a circuit’s neighbours are
neutral neighbours. Figure 3a also illustrates that cir-
cuits computing frequent functions (with large circuit
sets) tend to have higher robustness, although this
association is not strong. For example, function fre-
quency and robustness of circuits computing a
function show a weak positive Spearman rank corre-
lation of 7= 0.32 (p < 10~3%; n=1000) for the 4 x 4
circuits shown in the figure. Similar observations hold
for circuits of other sizes (electronic supplementary
material, figure S5). We also observed that different cir-
cuits computing the same function have a broad
distribution of robustness, with some circuits being
much more robust than others. Figure 3b shows this dis-
tribution for circuits of different size that compute the
circular left-shift function. This broad distribution of
robustness exists for a wide variety of functions (also
see the electronic supplementary material). Some but
not all of this robustness is caused by changes in gates
that do not participate in a computation, because cir-
cuits are also robust when we consider only changes in
gates that do contribute to a computation (electronic
supplementary material, figure S6). We also analysed
the robustness of circuits towards a single gate failure
and observed similar trends (see figure 3¢ and electronic
supplementary material). To illustrate how different
the robustness of two circuits can be, electronic sup-
plementary material, figure S7 shows two examples of
a 3 x 3 circuit, one with low robustness of R = 0.272,
another with high robustness of R = 0.753. Electronic
supplementary material, figure S8 shows that the
mean robustness of circuits generally increases with cir-
cuit size, for a wide range of functions with varying
circuit set sizes.

2.6. Many new functions are accessible in the
neitghbourhood of ‘evolving’ circuits

In a biological system where a phenotype has a large
genotype network, genotypes can change substantially
without changing this phenotype. However, the pheno-
types in different neighbourhoods of a genotype
network can be quite different. In biological systems,
this feature facilitates the exploration of new pheno-
types (Ciliberti et al. 2007; Wagner 2008b). If it exists
in technological systems, this feature has implications
on the diversity of functions that can be executed
with a given amount of configuration (circuit) change,
but also for the ease with which evolvable hardware
can acquire new functions.

To determine whether the circuits we study have this
feature, let us first define a circuit’s neighbourhood as
comprising all its neighbours, circuits that differ from
it by a single elementary change. We explored different
neighbourhoods on a neutral network through function-
preserving random walks that start with a circuit Cj.
During each step (circuit) of such a random walk, we
first recorded the novel functions encountered in the cir-
cuit’s neighbourhood. For this analysis, we defined a
function as novel if it is computed by some neighbour
of a circuit Cj, in step k, but was not found in the neigh-
bourhood of any previous circuit (C;, i < k), during the
random walk. Figure 4a shows the cumulative number

J. R. Soc. Interface

of novel functions that becomes accessible during the
random walk. This number is large and ever-increasing.
The property we observe here is a typical characteristic
of neutral networks in circuit space, and not a
peculiarity of the neutral network of one function. For
instance, electronic supplementary material, figure S9
shows the cumulative number of novel functions
encountered in a function-preserving random walk for
eight different circuits computing functions with
widely varying frequencies.

In a next, complementary analysis, we determined
the fraction of functions that are computed in the neigh-
bourhood of a circuit during the random walk, but that
are not found in the neighbourhood of the starting
circuit. Specifically, we determined the fraction u, of
functions that are computed by neighbours of one cir-
cuit (Cj;), but not the starting circuit, Cp, as u(Cp,
C) =1~ (| No N N}|/INo UN}|). Here, N and N, rep-
resent the sets of different functions computed by
circuits in the neighbourhood of the circuits Cy and
C;, respectively, and |N] denotes the number of func-
tions in the set . Figure 4b shows a steep increase in
this fraction at the beginning of the random walk.
Even after as few as six changes of the starting circuit
Cy, over two-thirds of the functions found in the neigh-
bourhood are new, that is, they do not occur in the
neighbourhood of Cj. Beyond the distance of one circuit
space diameter of 52 changes, more than 80 per cent of
functions are new. This property also holds for the neu-
tral networks of functions with a wide range of
frequencies as illustrated in the electronic supplemen-
tary material, figure S10. It is clear from these
observations that a large number of different functions
can be computed by the neighbours of a circuit encoun-
tered during a function-preserving random walk, even
at small distances from the starting circuit.

2.7. Different neutral sets are often nearby in
circuit space

We next asked how far one must travel in circuit space
from one neutral set to find another neutral set whose
members compute a specific function. To this end, we
estimated the minimal distance between circuits
computing different functions (see the electronic sup-
plementary material). On the one hand, if this
distance is typically large, then it would be rather diffi-
cult to reach a circuit computing a new function from
another circuit through a small series of changes to
the circuit’s configuration. On the other hand, if this
distance is generally small, then it would typically be
possible to find a specific new function through a
relatively small number of elementary changes to a
given circuit.

We first estimated the minimum distance for 1000
pairs of random circuits, where one circuit computed
the right-shift function, and the other computed the
circular left-shift function. Figure 4c¢ shows the distri-
bution of the resulting distances. This distribution has
a mean of D= 0.13 and is skewed towards small dis-
tances. The smallest distance in this distribution was
D = 0.058, corresponding to three elementary changes.
In other words, it is possible to change a circuit

http://rsif.royalsocietypublishing.org/

Downloaded from rsif.royalsocietypublishing.org on June 10, 2010

8 Ewolvability of programmable hardware K. Raman and A. Wagner

@ »
= 3000 1.0
»n O
g 2 2
£ 5 2500 g 08
= 9 = T
&= 2 g
— .20 2000 B £
L5 5 0.6
- £3 °
£ 2 1500 22
23 S5 04
S = == '
= £ 1000 2 =
1 o
S 2 500 = :
(5]
0 500 1000 1500 2000 0 50 100 150 200
random walk steps random walk steps
© 200p @ 300
1 z
5 -
2 150t B 2 600 i
= 0
o 100 ¢ 5400
o Q
2 =
8= ”5
& 50¢F z 2001
‘g
a,
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
minimum distance between circuits minimum distance between neutral networks
computing right shift and circular shift (as fraction of circuit space diameter)

(as fraction of circuit space diameter)

Figure 4. (a) Many novel functions are encountered in a circuit’s neighbourhood during a function-preserving random walk. The
data are based on a 4 x 4 circuit computing a function with frequency f= 5.1 x 10~ °, the highest observed frequency in our
sample. The horizontal axis represents the number of steps of the random walk, while the vertical axis shows the cumulative
number of novel functions encountered in the neighbourhood. The evolutionary dynamics of such a random walker is identical
to that of a population of circuits Nu < 1, where N is the population size and w is the mutation rate, the rate at which a circuit’s
configuration changes per circuit and generation. Such a population is monomorphic most of the time, and would visit every cir-
cuit in a neutral network with equal probability. (b) The fraction of unique functions in a neighbourhood is very high, even at
small distances from the starting circuit. The horizontal axis represents the number of steps of the random walk, while the vertical
axis shows the fraction u of unique functions found in the neighbourhood of C;, at the ith step of the random walk, relative to the
starting circuit Cy. (¢,d) The distribution of minimal distances between neutral networks. (¢) Pairs of networks computing right-
shift and circular left-shift functions. (d) Pairs of networks computing other functions. See text for details.

computing the right-shift function to one computing 3. DISCUSSION
the circular left-shift function (and vice versa) via
merely three changes. We also determined the minimal
distances between circuits for 5000 function pairs with
low frequency in our sample (see the electronic sup-
plementary material). Figure 4d indicates the
distribution of these minimal distances. The median
of this distribution is D = 0.19, implying that most dis-
tances are smaller than one-fifth of the diameter of the
circuit space. This corresponds to a vanishingly small
fraction of the circuit space, much less than 107
For comparison, the median distance of randomly
chosen circuits is given by D = 0.85. The minimum dis-
tances we observed are thus typically quite small,
especially considering that the maximum distance
between any two circuits within a neutral set is often
as high as the circuit space’s diameter. These obser-
vations imply that a large number of new functions
are accessible by making few elementary changes to
any one circuit.

We studied here a computational model of digital elec-
tronic circuits with various sizes. These circuits form an
enormous circuit space that contains an astronomical
number of circuits with different internal architecture.
Circuits in this space can compute very large numbers
of logic functions. Circuits computing any one function
typically form large connected neutral networks that
span circuit space. In other words, one can navigate
from one circuit on the network to another through a
series of small function-preserving changes in circuit
configuration. Some functions have larger neutral net-
works than others. Typical member circuits of a
neutral network have many neighbours that compute
the same function. They are therefore robust or fault-
tolerant to small changes in their architecture. A circuit
that changes its architecture randomly while preserving
its function explores a neutral network through a
random walk. In its neighbourhood, such a random

J. R. Soc. Interface

http://rsif.royalsocietypublishing.org/

Downloaded from rsif.royalsocietypublishing.org on June 10, 2010

Evolvability of programmable hardware

K. Raman and A. Wagner 9

walker encounters ever-increasing numbers of novel
functions. Different neutral networks are typically
close-by in circuit space. That is, a few steps away
from a neutral network are typically sufficient to gener-
ate a circuit that can compute an arbitrary new function.

Analogous properties have earlier been identified in
biological systems on various levels of organization,
such as proteins (Lipman & Wilbur 1991; Babajide
et al. 1997; Ferrada & Wagner 2008) and RNA
(Schuster et al. 1994; Huynen 1996; Wagner 2008b),
regulatory networks (Ciliberti et al. 2007; Munteanu &
Solé 2008) and metabolic networks (Rodrigues &
Wagner 2009). These properties are important for the
robustness of biological systems to genetic change,
and for their ability to acquire new functions (pheno-
types) through random change of system parts. Our
work shows that technological systems can be designed
to take advantage of such properties, an observation
that has multiple implications for designing evolvable
hardware, as we will discuss below.

A number of limitations of our work are worth high-
lighting. In applications, physical factors such as
temperature and voltage also play a role: there are even
many fine differences between two silicon chips, such
that circuits evolved on one silicon chip are not guaran-
teed to work on another (Thompson 1995). Second, there
are differences between computer simulation of a circuit
and its implementation in hardware. For example, issues
such as power consumption, robustness to temperature
variations and trade-offs between functional flexibility
and performance play a role in choosing an electronic cir-
cuit for a given task. There are also subtle aspects of
semiconductor physics that circuits evolved on hardware
may exploit, but that are usually avoided by designers
and not considered in software simulations (Thompson
1995). Our work does not address these issues. Third,
some properties of our (or any other) study system
may depend on the choice of representation for a circuit’s
architecture. An exploration of this dependency is
beyond the scope of this work. Fourth, we do not know
how our observations scale to much larger circuits com-
prising thousands to millions of gates. Fifth, because of
the astronomical numbers of circuits and functions, one
needs to resort to sampling to understand circuit space.
The last concern is not limiting if one is interested in gen-
eric properties of this space, as we are.

Past work suggested that neutral, that is, function-
preserving change is important for the ability to
evolve new functions in digital logic circuitry, software
and Boolean function landscapes (Banzhaf 1994;
Harvey & Thompson 1996; Ebner 1999; Miller 1999;
Miller & Thomson 2000; Ebner et al. 2001a,b;
Vassilev & Miller 2000; Yu & Miller 2001, 2002, 2006;
Collins 2006; Banzhaf & Leier 2006; Miller & Smith
2006). Harvey & Thompson (1996) have evolved circuit
configurations for a tone-recognition task on hardware
(FPGAs). They have also illustrated the existence
of mneutral networks for the specific circuit they
consider. Neutrality has also been studied in cellular
signalling circuits represented as Boolean networks
(Fernandez & Solé 2007). This work illustrates various
similarities of a signalling circuit’s genotype—phenotype
map with corresponding maps of other systems. Our

J. R. Soc. Interface

work goes beyond these contributions by systematically
exploring circuit space and characterizing generic
features of this space, the circuits it contains and the
functions they compute. It thus allows us to demon-
strate the generic fault-tolerance and evolvability of
an important class of technological systems.

One such general statement regards circuit robustness.
The design of robust circuits using evolutionary principles
has received much attention recently (Thompson 19964;
Keymeulen et al. 2000; Hartmann & Haddow 2004;
Macia & Solé 2009). For instance, Keymeulen and collab-
orators evolved electronic circuits to compute the XNOR,
logic function. By forcing their circuits to operate in the
presence of failure of individual circuit elements, they
evolved circuits that were increasingly tolerant against
these faults. Similarly, Hartmann & Haddow (2004)
used evolutionary algorithms to identify circuits that
are tolerant to faults such as random gate failures and
noise. These studies focus on specific circuit functions.
Our work shows that the ability to design robust and
fault-tolerant circuitry is a generic property and holds
for many different functions. Circuits computing the
same function are typically quite robust to change, but
this robustness shows a broad distribution among differ-
ent circuits. This means that for any one function it is
possible to identify circuits that are vastly more fault-tol-
erant than others, as our example of circuits differing in
their robustness by nearly threefold illustrated (electronic
supplementary material, figure S7). Such robustness orig-
inates in the distributed architecture of a circuit and it
does not require additional components such as redun-
dant gates (Wagner 2005q; Macia & Solé 2009). A
circuit that is much more robust or fault-tolerant than
another circuit thus need not have higher complexity,
as measured by its number of logic gates. A related
insight emerges from the observation that circuits of
the same function form neutral networks in circuit
space. It means that evolutionary approaches will be gen-
erally useful to identify highly robust circuits. The reason
is that sufficiently large populations of circuits that evolve
on a neutral network are known to accumulate in regions
of the network characterized by high robustness (van
Nimwegen et al. 1999; Forster et al. 2006).

A second general insight regards a circuit’s ability to
compute new functions. In some evolvable hardware
applications, circuits that can easily change to compute
new functions are highly desirable. For example,
YaMoR is a modular robot composed of mechanically
homogeneous modules, each of which contains a
reconfigurable circuit that allows on-board self-
reconfiguration (Moeckel et al. 2005; Upegui & Sanchez
2008). In general, modular robots are capable of dyna-
mically reconfiguring their structure. They are helpful
in navigating unknown environments without human
intervention and perform versatile tasks, such as those
required during space exploration, deep sea mining, or
urban search and rescue operations, essentially to navi-
gate extreme environments inaccessible to humans
(Marbach & Ijspeert 2005), where the ability to recon-
figure navigation circuitry would be useful. Its
reconfigurable circuits endow the robots with the ability
to learn. The classes of circuits we study would be
especially amenable to this task, especially when it is

http://rsif.royalsocietypublishing.org/

Downloaded from rsif.royalsocietypublishing.org on June 10, 2010

10 Evolvability of programmable hardware

K. Raman and A. Wagner

tackled with evolutionary principles. This is because
they encounter a rich diversity of novel functions in
the neighbourhood of a changing circuit, even if this cir-
cuit preserves its function while undergoing random
configuration change. Circuit configurations that can
access more novel functions in their vicinity may be
especially useful in designing systems with adaptive
behaviour. Our observation that neutral networks of
different functions are located close together in circuit
space is also relevant in this regard. Another potential
application of such adaptive hardware could be in
self-repairing circuitry (Emmert et al. 2000; Habermann
et al. 2006), where the ability of reconfiguration can be
exploited to fix faults and failures. The existence of
large connected neutral networks is also likely to facili-
tate repairs to maintain function, despite the failure of
one or more parts.

The reconfiguration of FPGAs comes with an over-
head, which primarily involves the reconfiguration
time and reconfiguration data storage space (Chen
et al. 2008). These two reconfiguration costs are directly
related to the extent of reconfiguration required.
FPGAs are amenable to partial reconfiguration, where
only some of their internal architecture is changed.
Such partial reconfiguration can reduce the time
required for reprogramming and speed up reconfigura-
tion (Shirazi et al. 2001; Torresen & Glette 2007). An
FPGA design like ours, with its closeness of different
neutral networks, can serve to minimize the number
of changes necessary to compute a new function. It
thus minimizes reconfiguration costs, and also permits
an uninterrupted operation of the circuit, which is not
possible in the case of a complete reconfiguration.

A third general observation follows from the fact
that important circuit features depend on circuit com-
plexity, as measured by the number of gates. For
example, more complex circuits tend to be more
robust. Electronic supplementary material, figure S11
illustrates two circuits that compute the same function.
While the smaller four-gate circuit is sufficient to
compute the function, it lacks robustness. The larger
16-gate circuit is much more robust. In addition, the
neutral networks of larger circuits may extend farther
through genotype space. Large circuits that are evolving
also tend to encounter more novel functions in their
neighbourhoods. Furthermore, simpler circuits may
not be able to compute some logic functions. A case
in point is again the space of four-gate circuits. This
space comprises 4.67 x 10° circuits. These circuits can
compute only 4.05 x 10° different functions, a small
fraction of the possible 1.8 x 10" Boolean functions
with four inputs and four outputs. There are no four-
gate circuits that compute the right-shift or the circular
left-shift functions. These considerations show that
robustness and evolvability of programmable hardware
have a price: increasing system complexity.

A fourth observation regards the role of non-
functional gates, system parts that are not involved in
the computation a given circuit carries out. In biological
systems, analogies of such parts exist. For example,
many amino acids in a protein, many regulatory inter-
actions in a gene regulation circuit and many metabolic
reactions in a metabolic reaction network may appear

J. R. Soc. Interface

as ‘non-functional’ or ‘dispensable’ (Aharoni et al.
2005; Bloom et al. 2005; Ciliberti et al. 2007; Rodrigues &
Wagner 2009). One might be tempted to call such
system parts to be ‘junk’ parts. However, we now know
that such parts play a crucial role for evolvability, and
it is precisely their ability to vary freely in some environ-
ments that allows biological systems to evolve novel
phenotypes. For example, in laboratory evolution exper-
iments, proteins with new function evolve often through
changes that do not affect the protein’s principal func-
tion (Aharoni et al. 2005). Unused parts in our circuits
have precisely the same role, and they should thus not
be named junk. These observations also agree with our
analysis of circuit complexity. Circuits of a minimal
size may have the merit of computing a function in an
elegant and simple way. At the same time, they would
be utterly unevolvable. This is why evolvability comes
at the price of high complexity.

A choice of circuit size is only one of many choices
one has to make in designing reconfigurable hardware.
We have explored a particular class of circuits with a
limited number of logic gates and feed-forward connec-
tions. Many other choices are possible. Some of them
may facilitate fault-tolerance and adaptability, others
may impair it. The exploration of such system classes,
as well as completely different technological systems
with complex architectures and diverse functionality
provides a fertile ground for future research.

4. METHODS
4.1. Representation of FPGAs

We employ a simple vector representation of an FPGA
that involves the use of three integers per gate to identify
the two inputs and the gate’s logic function. To this list
we append a list of outputs from the array. The length of
this representation is therefore 3mn + ng, for an FPGA
of size m x n with np outputs, i.e. computing an ng-bit
Boolean function. This is also the diameter of the circuit
space. The array inputs are numbered from 1,..., ny,
while the output of each gate is numbered sequentially,
from ny+ 1,..., n;+ mn. We consider five gates, viz.
OR, AND, XOR, NAND, NOR, which are the most
commonly used two-input logic gates. These five gates
are represented by integers from 1 to 5. The list of out-
puts merely indicates which of the mn gate outputs
(numbered n;+1,...,n;+ mn) are mapped to each
of the FPGA array output bits. This representation
is similar to the one that is conventionally used in
Cartesian genetic programming (Miller et al. 2000).
The following is a vector representation of the circuit
shown in the top panel of the electronic supplementary
material, figure S3b:

4121311(115(312(212(2|5{1|7{2]5{2]3[10 (5|33 3|1 |6|6 (4|11 |12 (10 |13

vvvvvvvvv_\,_/
Ly Lo Liz Ly Ly L Ly Lypn Ly outputs

where L;; represents a logic gate in the array in column 2
and row j. This vector representation also enables us to
easily compute the distance between two circuits—it is
the number of ‘bits’ in the representation that differ
between the two circuits, or the Hamming distance

http://rsif.royalsocietypublishing.org/

Downloaded from rsif.royalsocietypublishing.org on June 10, 2010

Evolvability of programmable hardware

K. Raman and A. Wagner 11

between the two vectors. Neighbours of a circuit rep-
resent elementary changes to the wiring of the FPGA.
Specifically, the neighbours of a circuit differ exactly
in one of the bits of the vector representation (a Ham-
ming distance of one).

4.2. Random sampling of circuits

We consider circuits of size m x n that map n; inputs to
no outputs. Each of the mn logic gates can compute one
of the five logic functions (ng = 5), which are listed in
figure la. The circuits we study can be represented by
a vector of length 3mn + ng (see the electronic sup-
plementary material). We generate a random circuit
by selecting input mappings, gate configurations and
output mappings at random, with uniform probability
among the set of all possible choices. That is, to each
digit in the representation, we assign a value based on
an integer drawn from the discrete uniform distribution
of all permissible values. This ensures that each circuit
in the space is equally likely to appear during sampling.
Specifically, we first choose an input mapping from 2n
uniformly distributed random integers in [1,n]; map-
pings that do not use all the n; inputs are not
permissible. Second, we choose the logic function of
each gate via a random integer in [1,ng]. For a circuit
of size m x n, we choose the mn gates function indepen-
dently. Third, we choose the two inputs of each gate
such that for an element in column ¢, the permissible
inputs correspond to integers in [1,n(c — 1)], and are
chosen uniformly from this set.

4.3. Fraction of neutral neighbours

We consider two circuits to be neighbours of one
another if they differ by an elementary configuration
change, i.e. the change in logic function computed by
one of the gates of the array, or the change in an
input to one of the elements of the array, or a single
change in the mapping of inputs or outputs
(figure 1c). The vector representation that we have
described earlier facilitates the enumeration of neigh-
bours of a particular circuit—each neighbour of a
circuit differs in exactly one digit of the representation.
Every circuit has a large number of neighbours; for
example, there are mn(ng — 1) neighbours for an m x
n circuit, which vary only in the configuration of one
of the mn gates. This large number arises from the
fact that each of the mn gates can be varied, one at a
time, to any of the remaining ng — 1 possible gate con-
figurations. There are many additional neighbouring
circuits that differ in wiring or input—output mappings.
To identify the fraction of a circuit’s neutral neigh-
bours, that is, neighbours that compute the same
function, we simply enumerated all neighbours and
determined the function each neighbour computed.
We performed this analysis for 1000 circuits, each com-
puting one of the 1000 logic functions we considered.
To estimate a circuit’s robustness to gate failure, we
generated neighbours of the circuit that differ from it by
the failure of a single gate. We define a failed gate as a
gate that produces an output value of zero for any pos-
sible input. A circuit of size m x n has mn circuit

J. R. Soc. Interface

variants with a single gate failure. We computed the
fraction of these variants that computed the same
function as the circuit, despite their failed gate.

Details on methods for the estimation of the connect-
edness of two circuits in circuit space and the
computation of the minimal distance between two neu-
tral networks are described in the electronic
supplementary material.

We are grateful for support through Swiss National Science
Foundation grants 315200-116814 and 315200-119697, as
well as through the YeastX project of SystemsX.ch.

REFERENCES

Aharoni, A., Gaidukov, L., Khersonsky, O., Gould, S. M.,
Roodveldt, C. & Tawfik, D. S. 2005 The ‘evolvability’ of
promiscuous protein functions. Nat. Genet. 37, 73-T6.
(doi:10.1038 /ng1482)

Babajide, A., Hofacker, I. L., Sippl, M. J. & Stadler, P. F. 1997
Neutral networks in protein space: a computational study
based on knowledge-based potentials of mean force. Fold
Des. 2, 261-269.

Balch, M. 2003 Complete digital design. New York, NY:
McGraw-Hill.

Banzhaf, W. 1994 Genotype—phenotype-mapping and neutral
variation—a case study in genetic programming. In PPSN
III: Proc. Int. Conf. on FEvolutionary Computation. The
Third Conference on Parallel Problem Solving from
Nature (eds T. Yu, R. Riolo & B. Worzel), pp. 322—-332.
London, UK: Springer.

Banzhaf, W. & Leier, A. 2006 Evolution on neutral networks
in genetic programming. In Genetic programming theory
and practice III, vol. 9, pp. 207-221. USA: Springer.

Bloom, J. D., Silberg, J. J., Wilke, C. O., Drummond, D. A.,
Adami, C. & Arnold, F. H. 2005 Thermodynamic predic-
tion of protein neutrality. Proc. Natl Acad. Sci. USA
102, 606—611. (doi:10.1073/pnas.0406744102)

Bradley, D. W. & Tyrrell, A. M. 2000 Immunotronics: hard-
ware fault tolerance inspired by the immune system. In
ICES ‘00: Proc. of the 3rd Int. Conf. on Evolvable Systems,
pp. 11-20. London, UK: Springer.

Chen, W., Wang, Y., Wang, X. & Peng, C. 2008 A new
placement approach to minimizing FPGA reconfiguration
data. In Int. Conf. on Embedded Software and Sys-
tems, 2008. ICESS 08, Chengdu, China, 29-31 July
2008, pp. 169-174. Washington, DC: IEEE Computer
Society Press. (doi:10.1109/ICESS.2008.20)

Ciliberti, S., Martin, O. C. & Wagner, A. 2007 Innovation and
robustness in complex regulatory gene networks. Proc.
Natl Acad. Sci. USA 104, 1359113 596. (doi:10.1073/
pnas.0705396104)

Collins, M. 2006 Finding needles in haystacks is harder with
neutrality. Genetic Programm. Evol. Mach. 7, 131-144.
(doi:10.1007/s10710-006-9001-y)

Coren, 1. & Krishna, C. 2007 Fault-tolerant systems. CA,
USA: Morgan Kauffman.

Ebner, M. 1999 On the search space of genetic programming
and its relation to nature’s search space. In Proc. 1999
Congress on Evolutionary Computation, 1999. CEC ’99,
Washington, DC, 6-9 July 1999, vol. 2. Washington,
DC: IEEE. (doi:10.1109/CEC.1999.782609)

Ebner, M., Langguth, P., Albert, J., Shackleton, M. &
Shipman, R. 2001a On neutral networks and evolvability.
In Proc. of the 2001 Congress on FEvolutionary Compu-
tation, Seoul, South Korea, 27-30 May 2001, vol. 1, pp.
1-8. Washington, DC: IEEE. (doi:10.1109/CEC.2001.
934363)

http://dx.doi.org/doi:10.1038/ng1482
http://dx.doi.org/doi:10.1073/pnas.0406744102
http://dx.doi.org/doi:10.1109/ICESS.2008.20
http://dx.doi.org/doi:10.1073/pnas.0705396104
http://dx.doi.org/doi:10.1073/pnas.0705396104
http://dx.doi.org/doi:10.1007/s10710-006-9001-y
http://dx.doi.org/doi:10.1109/CEC.1999.782609
http://dx.doi.org/doi:10.1109/CEC.2001.934363
http://dx.doi.org/doi:10.1109/CEC.2001.934363
http://rsif.royalsocietypublishing.org/

Downloaded from rsif.royalsocietypublishing.org on June 10, 2010

12 Evolvability of programmable hardware

K. Raman and A. Wagner

Ebner, M., Shackleton, M. & Shipman, R. 20015 How neutral
networks influence evolvability. Complexity 7, 19-33.
(doi:10.1002/cplx.10021)

Emmert, J., Stroud, C., Skaggs, B. & Abramovici, M. 2000
Dynamic fault tolerance in FPGAs via partial reconfigura-
tion. In FCCM ’00: Proc. of the 2000 IEEE Symposium on
Field-Programmable Custom Computing Machines, pp.
165—174. Washington, DC, USA: IEEE Computer Society.

Fernandez, P. & Solé, R. V. 2007 Neutral fitness landscapes in
signalling networks. J. R. Soc. Interface 4, 41-47. (doi:10.
1098 /1sif.2006.0152)

Ferrada, E. & Wagner, A. 2008 Protein robustness promotes
evolutionary innovations on large evolutionary time-
scales. Proc. R. Soc. B 275, 1595-1602. (doi:10.1098/
rspb.2007.1617)

Ferrer i Cancho, R., Janssen, C. & Solé, R. V. 2001 Topology
of technology graphs: small world patterns in electronic
circuits. Phys. Rev. E. 64, 046119.

Fisher, R. 1997 Hypermedia image processing reference.
New York, NY: Wiley.

Forster, R., Adami, C. & Wilke, C. O. 2006 Selection for
mutational robustness in finite populations. J. Theoret.
Biol. 243, 181-190. (doi:10.1016/j.jtbi.2006.06.020)

Greenwood, G. 2007 Introduction to evolvable hardware.
New York, NY: IEEE Press.

Habermann, S., Kothe, R. & Vierhaus, H. T. 2006 Built-in self
repair by reconfiguration of FPGAs. In IOLTS 2006: Proc.
of the 12th IEEFE Int. On-Line Testing Symposium, Lake
Como, Italy, 10—-12 July 2006, pp. 187—188. Washington,
DC: IEEE Computer Society Press. (doi:10.1109/IOLTS.
2006.13)

Haddow, P. & Tufte, G. 2000 An evolvable hardware FPGA
for adaptive hardware. In Proc. of the 2000 Congress on
Evolutionary Computation, La Jolla, CA, 16-19 July
2000, vol. 1, pp. 553—560. Washington, DC: IEEE.
(doi:10.1109/CEC.2000.870345)

Hartmann, M. & Haddow, P. 2004 Evolution of fault-
tolerant and noise-robust digital designs. IEFE Proc.
Comput. Digital Tech. 151, 287-294. (doi:10.1049/ip-
¢dt:20040014)

Harvey, I. & Thompson, A. 1996 Through the labyrinth evol-
ution finds a way: a silicon ridge. In ICES "96: Proc. of the
1st Int. Conf. on Evolvable Systems, Tsukuba, Japan, 7-8
October 1996 (eds T. Higuchi, M. Iwata & W. Lei),
pp- 406-422. London, UK: Springer.

Holland, J. 1992 Adaptation in natural and artificial systems.
Cambridge, UK: MIT Press.

Hollingworth, G., Smith, S. & Tyrell, A. 2000 The intrinsic
evolution of virtex devices through internet reconfigurable
logic. In ICES °00: Proc. of the Third Int. Conf. on
Evolvable Systems, Edinburgh, UK, 17-19 April 2000 (eds
J. Miller, A. Thompson, P. Thompson & T. C. Fogarty),
pp. 72-79. London, UK: Springer.

Huynen, M. A. 1996 Exploring phenotype space through neu-
tral evolution. J. Mol. Fvol. 43, 165—169.

Irvine, K. 2007 Assembly language for Intel-based computers.
Upper Saddle River, NJ: Pearson Prentice Hall.

Keymeulen, D.; Zebulum, R., Jin, Y. & Stoica, A. 2000 Fault-
tolerant evolvable hardware using field-programmable
transistor arrays. IEEE Trans. Reliability 49, 305—316.
(doi:10.1109/24.914547)

Kitano, H. 2005 Scientific and technical challenges for systems
biology. In Systems biology (eds L. Alberghina & H. V.
Westerhoff), pp. 373-385. Topics in Current Genetics,
vol. 13. Berlin/Heidelberg, Germany: Springer. (doi:10.
1007/b137124)

Koza, J. 1992 Genetic programming. Oxford, Oxfordshire:
Oxford University Press.

J. R. Soc. Interface

Lipman, D. J. & Wilbur, W. J. 1991 Modelling neutral
and selective evolution of protein folding. Proc. R. Soc.
Lond. B 245, 7-11. (doi:10.1098 /rspb.1991.0081)

Macia, J. & Solé, R. V. 2009 Distributed robustness in cellular

networks: insights from synthetic evolved circuits.
J. R. Soc. Interface 6, 393-400. (doi:10.1098/rsif.2008.
0236)

Marbach, D. & Ijspeert, A. 2005 Online optimization of mod-
ular robot locomotion. In Proc. of the IEEE Int. Conf. on
Mechatronics and Automation (ICMA 2005), Niagra
Falls, Canada, 29 July—1 August 2005, pp. 248-253.
Washington, DC: IEEE.

McCulloch, W. S. 1960 The reliability of biological systems. In
Self-organizing systems (eds M. C. Yovits & S. Cameron),
pp. 264-281. New York, NY: Pergamon Press.

Meyer-Baese, U. 2007 Digital signal processing with field
programmable gate arrays. Berlin, Germany: Springer.

Miller, J. F. 1999 An empirical study of the efficiency of learn-
ing Boolean functions wusing a Cartesian genetic
programming approach. In Proc. of the Genetic and Evol-
utionary Computation Conference, vol. 2 (eds W. Banzhaf,
J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar,
M. Jakiela & R. E. Smith), pp. 1135-1142. FL, USA:
Morgan Kaufmann.

Miller, J. F. & Smith, S. L. 2006 Redundancy and compu-
tational efficiency in cartesian genetic programming.
IEEE Trans. Evol. Comput. 10, 167-174. (do0i:10.1109/
TEVC.2006.871253)

Miller, J. F. & Thomson, P. 2000 Cartesian genetic program-
ming. In EuroGP (eds R. Poli, W. Banzhaf, W. B.
Langdon, J. F. Miller, P. Nordin & T. C. Fogarty), vol.
1802 of Lecture Notes in Computer Science, pp. 121—
132. Springer.

Miller, J. F., Job, D. & Vassilev, V. K. 2000 Principles in the
evolutionary design of digital circuits—Part II. Genetic
programming and evolvable machines 1, 259—288.
(doi:10.1023/A:1010066330916)

Millet, P. & Heudin, J.-C. 1998 Fault tolerance of a large-scale
mind architecture using a genetic algorithm. In Evolvable
systems: from biology to hardware, pp. 356—363. Berlin/
Heidelberg, Germany: Springer.

Mitchell, M. 1996 An introduction to genetic algorithms.
Cambridge, UK: MIT Press.

Moeckel, R., Jaquier, C., Drapel, K., Upegui, A. & Ijspeert, A.
2005 YaMoR and Bluemove—an autonomous modular
robot with bluetooth interface for exploring adaptive loco-
motion. In Proc. of the 8th Int. Conf. on Climbing and
Walking Robots, London, UK, 12—15 September 2005
(eds M. O. Tokhi, G. S. Virk & M. A. Hossain), pp.
685—692. London, UK: Springer.

Munteanu, A. & Solé, R. V. 2008 Neutrality and robustness in
evo-devo: emergence of lateral inhibition. PLoS Comput.
Biol. 4, €1000 226. (doi:10.1371/journal.pcbi.1000226)

Ray, T. S. 1991 Is it alive or is it GA? In Proc. of the 1991 Int.
Conf. on Genetic Algorithms (eds R. K. Belew & L. B.
Booker), pp. 527-534. CA, USA: Morgan Kaufmann.

Rodrigues, J. F. M. & Wagner, A. 2009 Evolutionary plas-
ticity and innovations in complex metabolic reaction
networks. PLoS Comput. Biol. 5, €1000613. (doi:10.
1371 /journal.pcbi.1000613)

Schuster, P., Fontana, W., Stadler, P. F. & Hofacker, I. L.
1994 From sequences to shapes and back: a case study in
RNA secondary structures. Proc. R. Soc. Lond. B 255,
279-284. (doi:10.1098 /rspb.1994.0040)

Shirazi, N., Benyamin, D., Luk, W., Cheung, P. Y. K. & Guo,
S. 2001 Quantitative analysis of FPGA-based database
searching. J. VLSI Signal Process. Syst. 28, 85—96.
(doi:10.1023/A:1008163222529)

http://dx.doi.org/doi:10.1002/cplx.10021
http://dx.doi.org/doi:10.1098/rsif.2006.0152
http://dx.doi.org/doi:10.1098/rsif.2006.0152
http://dx.doi.org/doi:10.1098/rspb.2007.1617
http://dx.doi.org/doi:10.1098/rspb.2007.1617
http://dx.doi.org/doi:10.1016/j.jtbi.2006.06.020
http://dx.doi.org/doi:10.1109/IOLTS.2006.13
http://dx.doi.org/doi:10.1109/IOLTS.2006.13
http://dx.doi.org/doi:10.1109/CEC.2000.870345
http://dx.doi.org/doi:10.1049/ip-cdt:20040014
http://dx.doi.org/doi:10.1049/ip-cdt:20040014
http://dx.doi.org/doi:10.1109/24.914547
http://dx.doi.org/doi:10.1007/b137124
http://dx.doi.org/doi:10.1007/b137124
http://dx.doi.org/doi:10.1098/rspb.1991.0081
http://dx.doi.org/doi:10.1098/rsif.2008.0236
http://dx.doi.org/doi:10.1098/rsif.2008.0236
http://dx.doi.org/doi:10.1109/TEVC.2006.871253
http://dx.doi.org/doi:10.1109/TEVC.2006.871253
http://dx.doi.org/doi:10.1023/A:1010066330916
http://dx.doi.org/doi:10.1371/journal.pcbi.1000226
http://dx.doi.org/doi:10.1371/journal.pcbi.1000613
http://dx.doi.org/doi:10.1371/journal.pcbi.1000613
http://dx.doi.org/doi:10.1098/rspb.1994.0040
http://dx.doi.org/doi:10.1023/A:1008163222529
http://rsif.royalsocietypublishing.org/

Downloaded from rsif.royalsocietypublishing.org on June 10, 2010

Evolvability of programmable hardware

K. Raman and A. Wagner 13

Solé, R. V., Ferrer i Cancho, R., Montoya, J. M. & Valverde,
S. 2002 Selection, tinkering, and emergence in complex
networks. Complex 8, 20—33. (doi:10.1002/cplx.10055)

Stallings, W. 2006 Cryptography and network security. Upper
Saddle River, NJ: Pearson/Prentice Hall.

Tempesti, G., Mange, D. & Stauffer, A. 1997 A robust
multiplexer-based FPGA inspired by biological systems.
J. Syst. Archit. 43, 719-733. (doi:10.1016/S1383-
7621(94)00312-2)

Thompson, A. 1995 Evolving electronic robot controllers that
exploit hardware resources. In Advances in artificial life:
Proc. 8rd Eur. Conf. on Artificial Life (ECAL95) (eds F.
Moran, A. Moreno, J. J. Merelo & P. Chacon), vol. 929
of LNAI pp. 640—656. Berlin, Germany: Springer.

Thompson, A. 1996a Evolutionary techniques for fault toler-
ance. In Proc. UKACC Int. Conf. on Control 1996
(CONTROL’96) (eds T. Higuchi, M. Iwata & W. Liu),
pp. 693—698. IEE Conference Publication no. 427.

Thompson, A. 19966 Silicon evolution. In GECCO ‘96: Proc.
of the 1st Annual Conf. on Genetic Programming, pp. 444—
452. Cambridge, MA, USA: MIT Press.

Thompson, A. 1997 An evolved circuit, intrinsic in silicon,
entwined with physics. In First Int. Conf. on Evolvable
systems: from biology to hardware, ICES96, Tsukuba,
Japan, 7-8 October 1996 (eds T. Higuchi, M. Iwata &
W. Liu), pp. 390-405. Berlin/Heidelberg, Germany:
Springer.

Torresen, J. & Glette, K. 2007 Improving flexibility in on-line
evolvable systems. In FEwolvable systems: from biology to
hardware, Seventh Int. Conf., ICES 2007, Wuhan, China,
12—-15 September 2005 (eds L. Kang, Y. Liu & S. Zeng),
pp- 391-402. London, UK: Springer (doi:10.1007/978-3-
540-74626-3)

Upegui, A. & Sanchez, E. 2008 Reconfigurable computing,
chap. Evolvable FPGAs, pp. 725-752. San Diego, CA:
Morgan Kaufmann.

van Nimwegen, E., Crutchfield, J. P. & Huynen, M. 1999 Neu-
tral evolution of mutational robustness. Proc. Natl Acad.
Sci. USA 96, 9716-9720.

Vassilev, V. K. & Miller, J. F. 2000 The advantages of land-
scape neutrality in digital circuit evolution. In ICES "00:

J. R. Soc. Interface

Proc. of the 3rd Int. Conf. on FEvolvable Systems, pp.
252-263. London, UK: Springer.

von Neumann, J. 1956 Probabilistic logics and synthesis of
reliable organisms from unreliable components. In Auto-
mata studies (eds C. Shannon & J. McCarthy), pp. 43—
98. Princeton, NJ: Princeton University Press.

Wagner, A. 2005a Distributed robustness versus redundancy
as causes of mutational robustness. Bioessays 27, 176—
188. (doi:10.1002/bies.20170)

Wagner, A. 2005b Robustness and evolvability in living
systems. Princeton, NJ: Princeton University Press.

Wagner, A. 2008a Neutralism and selectionism: a network-
based reconciliation. Nat. Rev. Genet. 9, 965-974.
(doi:10.1038 /nrg2473)

Wagner, A. 2008b Robustness and evolvability: a paradox
resolved. Proc. R. Soc. B 275, 91-100. (doi:10.1098/
rspb.2007.1137)

White, R. & Miles, F. 1996 Principles of fault tolerance. In
Proc. of the 11th Annual Applied Power FElectronics
Conf. and FEzposition. APEC 96, San Jose, CA, 3-7
March 2006, vol. 1, pp. 18-25. Washington, DC: TEEE.
(doi:10.1109/APEC.1996.500416)

Yu, T. & Miller, J. 2001 Neutrality and the evolvability of
Boolean function landscape. In Genetic programming
(eds J. Miller, M. Tomassini, P. L. Lanzi, C. Ryan,
A. G. B. Tettamanzi & W. B. Langdon), vol. 2038 of Lec-
ture Notes in Computer Science, chap. 16, pp. 204—217.
Berlin/Heidelberg, Germany: Springer. (doi:10.1007/3-
540-45355-5_16)

Yu, T. & Miller, J. 2002 Finding needles in haystacks is not
hard with neutrality. In Genetic programming (eds J. A.
Foster, E. Lutton, J. Miller, C. Ryan & A. Tettamanzi),
vol. 2278 of Lecture Notes in Computer Science, chap. 2,
pp. 46-54. Berlin/Heidelberg, Germany: Springer.
(doi:10.1007/3-540-45984-7_2)

Yu, T. & Miller, J. F. 2006 Through the interaction of neutral
and adaptive mutations, evolutionary search finds a way.
Artif. Life 12, 525-551. (doi:10.1162/art1.2006.12.4.525)

Zipf, G. K. 1972 Human behaviour and the principle of least
effort. An introduction to human ecology. New York, NY:
Hafner.

http://dx.doi.org/doi:10.1002/cplx.10055
http://dx.doi.org/doi:10.1016/S1383-7621(94)00312-2
http://dx.doi.org/doi:10.1016/S1383-7621(94)00312-2
http://dx.doi.org/doi:10.1007/978-3-540-74626-3
http://dx.doi.org/doi:10.1007/978-3-540-74626-3
http://dx.doi.org/doi:10.1002/bies.20170
http://dx.doi.org/doi:10.1038/nrg2473
http://dx.doi.org/doi:10.1098/rspb.2007.1137
http://dx.doi.org/doi:10.1098/rspb.2007.1137
http://dx.doi.org/doi:10.1109/APEC.1996.500416
http://dx.doi.org/doi:10.1007/3-540-45355-5_16
http://dx.doi.org/doi:10.1007/3-540-45355-5_16
http://dx.doi.org/doi:10.1007/3-540-45984-7_2
http://dx.doi.org/doi:10.1162/artl.2006.12.4.525
http://rsif.royalsocietypublishing.org/

	The evolvability of programmable hardware
	Introduction
	Results
	Circuit spaces and logic functions
	Some logic functions are frequent, others rare in circuit space
	Circuits computing the same function form large connected networks
	Very different circuits can compute the same function
	Larger circuits are more robust to configuration changes and gate failure
	Many new functions are accessible in the neighbourhood of ‘evolving’ circuits
	Different neutral sets are often nearby in circuit space

	Discussion
	Methods
	Representation of FPGAs
	Random sampling of circuits
	Fraction of neutral neighbours

	We are grateful for support through Swiss National Science Foundation grants 315200-116814 and 315200-119697, as well as through the YeastX project of SystemsX.ch.
	References

