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Biological systems at various levels of organisation exhibit robustness, as well as phenotypic

variability or evolvability, the ability to evolve novel phenotypes. We still know very little about

the relationship between robustness and phenotypic variability at levels of organisation beyond

individual macromolecules, and especially for signalling circuits. Here, we examine multiple

alternate topologies of the Saccharomyces cerevisiae target-of-rapamycin (TOR) signalling circuit,

in order to understand the circuit’s robustness and phenotypic variability. We consider each of

the topological variants a genotype, a set of alternative interactions between TOR circuit

components. Two genotypes are neighbours in genotype space if they can be reached from each

other by a single small genetic change. Each genotype (topology) has a signalling phenotype,

which we define via the concentration trajectories of key signalling molecules. We find that the

circuits we study can produce almost 300 different phenotypes. The number of genotypes with a

given phenotype varies very widely among these phenotypes. Some phenotypes have few

associated genotypes. Others have many genotypes that form genotype networks extending far

through genotype space. A minority of phenotypes accounts for the vast majority of genotypes.

Importantly, we find that these phenotypes tend to have large genotype networks, greater

robustness and a greater ability to produce novel phenotypes. Thus, over a broad range of

phenotypic robustness, robustness facilitates phenotypic variability in our study system.

Our observations show parallels to studies on macromolecules, suggesting that similar principles

might govern robustness and phenotypic variability in biological systems. Our approach points a

way towards mapping genotype spaces in complex circuitry, and it exposes some challenges such

mapping faces.

Introduction

Biological macromolecules such as proteins and RNA show

intriguing properties that increase their ability to withstand

perturbations, as well as to evolve novel phenotypes with

new functions. Their genotypes—amino acid or nucleotide

sequences—exist in vast genotype spaces. Genotypes that form

the same phenotype—a secondary or tertiary structure with a

specific function—are connected into large neutral networks

or genotype networks.1–5 Individual genotypes in such a

network have many neighbours with the same phenotype.

They are therefore to some extent robust to mutations that

change single amino acids or nucleotides.5,6 At the same time,

through evolutionary exploration of a genotype network,

these molecules encounter novel phenotypes in the immediate

vicinity of the genotype network, some of which may be useful

evolutionary adaptations.4–7 The existence of such genotype

networks is thus important for the evolvability of molecules.

Although much is known about how different molecular

genotypes and their phenotypes are organised in genotype

space, much less is known in this regard about biological

systems on higher levels of organisation, that is, about

biological networks. We increasingly appreciate that biological

systems on multiple levels of organisation are robust to

perturbations. They remain able to continue performing their

functions, even in the face of environmental or genetic

perturbations.8–14 This feature emerges from how phenotypes

form from genotypes, and how phenotypes are distributed in

genotype space. However, with few exceptions,7,15–18 we know

little about this organisation. Our ignorance in this area is

especially stark for the complex signalling circuits that

play key roles in many physiological and developmental

processes.19–23 How do circuit genotypes map onto circuit

phenotypes, and how are the resulting signalling phenotypes

distributed in genotype space? Does their organisation in

genotype space have implications for their robustness, as well
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as for their ability to evolve new phenotypes? We here address

these questions for a biochemically realistic model of a

eukaryotic signalling circuit, namely the target of rapamycin

(TOR) signalling circuit in the budding yeast Saccharomyces

cerevisiae.21,24–26

Quantitative modelling of biological systems forms the

cornerstone of systems biology.27,28 Modelling and simulation

provide powerful means for developing and testing hypotheses

on the function and behaviour of complex biological systems.

Quantitative models have been useful in furthering the

understanding of many biological systems.29–32 Examples

include bacterial chemotaxis,33 early Drosophila development,10

and synthetic oscillator circuits.34 Different models of the same

process may differ in their parameters, or in their topology,

the qualitative interaction pattern of circuit components.

Alternative circuit topologies often represent variants in

circuit structures that can evolve through accumulating small

genotypic changes on evolutionary time scales.35–37

In this study, we ask how topological changes in the TOR

signalling circuit in S. cerevisiae affect the circuit’s behaviour.

TOR is a highly conserved atypical protein kinase that

controls the growth of proliferating yeast, fly and mammalian

cells in response to nutrients.25,26 It is the target of rapamycin,

an immuno-suppressant and anti-cancer drug. Despite several

biochemical experiments aimed at characterising the components

and the mechanisms of the TOR signalling circuit,24,38–43

uncertainty prevails about the qualitative interactions between

various circuit components—the circuit topology—and the

parameters describing the quantitative dynamics of these

components. Recently, Kuepfer and co-workers proposed

multiple alternate dynamic models for TOR signalling in

S. cerevisiae.24 Specifically, these authors proposed a core

topology of TOR signalling, consisting of molecular inter-

actions and reactions that are well-understood, along with 18

extensions to the core (Fig. 1). Each extension can be viewed as

a variant of the signalling circuit that affects a set of

elementary molecular interactions (Table S1, ESIw, ref. 24),
and represents a hypothesis about the mechanism of TOR

signalling. Individual extensions are based on direct and

indirect evidence from biochemical experiments (Table S1,

ESIw). For example, variant V1 is based on a study by Hall

and co-workers, who suggest that Tip41p is phosphorylated at

multiple sites, based on immuno-precipitation of Tip41p

followed by treatment with phosphatase.41 The complex

formation between Tap42p and Pph21/22p or Sit4p (variants

V17 and V18) has been suggested by Di Como and Arndt,38

based on the co-precipitation of Tap42p with Sit4p, as well as

with Pph21/22p. Jiang and Broach40 hypothesise that

the Tap42p–Pph21/22p complex would protect substrate

phosphoproteins from dephosphorylation by PP2A or other

phosphatases (variant V2)
40; this hypothesis is able to

account for many of their observations on the effects of

over-expressing or activating Tap42p. Each combination of

these and other elementary variants of the TOR signalling

mechanism leads to a different topology of the signal

transduction circuit.

Any one yeast strain would typically harbour only one

circuit topology. We can think of this topology as the signalling

circuit’s genotype, a pattern of molecular interactions that is

ultimately encoded in the strain’s genome. Other topologies,

formed by different combinations of elementary variants may

occur in different yeast strains, or in one of several species

closely related to S. cerevisiae, although such variants have

thus far not been characterised in yeasts. By examining all

topologies, we may get insights into different evolutionary

trajectories that a signalling circuit may take.

A signalling circuit’s phenotype includes the concentrations

of signalling molecules, and how this concentration changes in

response to environmental signals. We here determined the

phenotype of each TOR circuit topology based on the

concentration trajectories of several key proteins/complexes

(see Methods). Specifically, we clustered these trajectories to

group similar ‘signalling behaviours’, into different phenotypes.

By mapping the topology of a signal transduction circuit to

a genotype, and by computing a signalling phenotype from

this genotype, we can address a number of questions with

implications for circuit evolution: can one alter the topology of

a signal transduction circuit without affecting its behaviour?

Can signal transduction circuits with significantly different

topologies exhibit the same behaviour? Do different topologies

have very different or similar behaviours? How diverse is the

range of novel behaviours that variation in a single topology

can produce? We here address these questions by studying

multiple alternate circuit topologies for TOR signalling, and

their phenotypes.

Results

The possible combinations of the 18 elementary variants we

consider create 218 > 2.6 � 105 circuit topologies. After

eliminating incompatible combinations of such variants (see

Methods), 6.9 � 104 topologies remain. To date, only few of

them have been examined.24 We here analyse all of them. To

facilitate their comparison, and to relate our observations to

previous work,4,5,7,15,16 we discretize both genotypes and

phenotypes. Specifically, we represent each genotype as an

18-bit long Boolean vector (a vector with binary co-ordinates

0 or 1), where each bit indicates the presence or absence of one

elementary variant (Table S1, ESIw) in a circuit topology.

For the signalling circuits that we study here, it is challenging

to map genotypes to different signalling behaviours, because

these behaviours are continuous in nature. To obtain a

classification of phenotypes, and a discrete mapping of

genotypes to phenotypes, we therefore clustered the trajectories

for the 6.9 � 104 models to obtain 286 well-separated clusters,

representative of different phenotypes (see Methods). Each

‘trajectory’ in this case represents a set of measurements of the

(normalised) concentrations of key signalling molecules

including Tap42p ( indicates phosphorylation), the

Tip41p–Tap42p complex and the Tap42p –Sit4p complex,

at a set of time points (see Methods). Our approach provides a

clear separation of phenotypes into different clusters (Fig. S1,

ESIw).
To facilitate a systematic analysis, we also mapped the

circuit topologies onto a graph. Each node in this graph

represents a specific topology. Two topologies are neighbours

and thus connected by an edge, if they differ in exactly one

of the 18 elementary variants (Table S1, ESIw). Any such
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Fig. 1 Schematic of TOR signal transduction models. Schematic illustration of the connectivity of TOR circuit genotypes in genotype space. The figure

illustrates a few circuit topologies (blue circles), and indicates neighbouring topologies through black lines. Each of the displayed genotypes has

18 neighbours in genotype space (stubs emerging from blue circles), only few of which are shown in detail. Each topology is labelled by the elementary

topological variants (Table S1, ESIw) that it contains. The core circuit (top rectangle), together with three other topologies (middle and bottom

rectangles) are illustrated. Differences in topologies are indicated by shaded boxes. Each topology is represented according to a standardised process

diagram graphical notation.44,45 In this notation, green rectangles represent proteins and protein complexes (with or without phosphorylation), while

green ellipses correspond to small molecules, such as rapamycin. On arrows, open squares indicate transitions, while filled circles indicate complex

formation. Arrows ending in open circles adjacent to reactions indicate catalysis. The process diagrams were drawn using CellDesigner.46
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difference can potentially be caused by a small genetic change.

This graph is the genotype space for the set of TOR circuit

topologies we study. A small portion of this space is shown in

Fig. 1. The stubs emerging from the blue circles (representing

topologies in the figure) indicate that each topology has

multiple neighbours, of which only few are shown in detail.

Since there are 18 elementary variants, each node in this graph

has at most 18 neighbours.

All genotypes that adopt a given phenotype form this

phenotype’s genotype set. A genotype set can consist of one

or more connected genotype networks, which are connected

sub-graphs of genotype space. Such networks have also been

called neutral networks.1,6 We deliberately refrain from using

the term neutral network here, because phenotypes in one of

the clusters we study may not be neutral variants in the strict

sense used by evolutionary biologists.47 Genotype networks

have very different sizes and differ in many of their properties,

which may have implications for the evolutionary dynamics

of these systems.48 In the following sections, we discuss the

genotype sets and genotype networks of the TOR signal

transduction circuit.

Most genotypes are contained in few genotype networks

The 6.9 � 104 genotypes of the TOR signalling circuit that

we analysed display 286 different phenotypes. The size

distribution of the genotype set for these 286 phenotypes is

shown in Fig. 2A. The figure shows that a majority of the

genotype sets are quite small, but multiple large sets exist as

well. The largest genotype set has 21,633 genotypes. Fig. 2B

illustrates a rank-ordered size distribution of genotype sets. It

shows that most of the genotypes are contained in a minority

of genotype sets. Specifically, the 57 largest genotype sets

contain over 90% of all genotypes. We report results from

most of the following analyses both for all genotype sets, and

for those genotype sets that contain 90% of the genotypes, in

order to eliminate biases caused by the many smaller networks

that collectively contain few genotypes. For brevity, we will

refer to the latter genotype sets as large genotype sets.

Fig. 2 (A) Genotype set size distribution. Note the logarithmic scale on the vertical axis. While a majority of the genotype sets are small in size,

there are a few genotype sets that are very large. (B) Most genotypes are contained within the largest genotype sets. The horizontal axis (log-scale)

represents genotype sets ranked in descending order of size. The vertical axis indicates the fraction of genotypes contained in genotype sets within a

given size. The dotted line illustrates that 90% of the genotypes are contained within the largest 57 genotype sets. (C) Distribution of the fraction of

a genotype set occupied by the largest genotype network. (D) Distribution of maximum genotype distance within the largest genotype network of a

set. Note that the maximum genotype distance has been expressed as a fraction of genotype space diameter (18). In both (C) and (D), only the large

genotype sets are shown.
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Topologies sharing the same phenotype form highly connected

networks

Two extreme scenarios of genotype set organisation are

possible, and a broad spectrum in between. In one scenario,

all genotypes in a genotype set are disconnected. In this case,

the entire genotype set is a fragmented collection of genotypes

that cannot be reached from one another through phenotype-

preserving evolutionary change. In the other scenario, the

entire genotype set is connected and thus consists of only

one genotype network. In this case, one can move from

one topology to another on this network, through small

evolutionary steps that leave the phenotype unchanged. We

next analysed the connectedness of genotype sets.

Fig. 2C shows the distribution of the fraction of a genotype

set occupied by its largest genotype network, for phenotypes

corresponding to the large genotype sets. Fig. S2A (ESIw)
shows the distribution for all genotype sets. For large

genotype sets, merely 14% have the majority of their nodes

contained in a single genotype network. The largest genotype

set contains 21 633 genotypes, 21 307 of which are connected in

a single genotype network. On such a large genotype network,

one can change the circuit’s topology (genotype) through

small evolutionary steps dramatically, without altering the

behaviour of the signalling circuit.

Dissimilar genotypes can exhibit the same phenotype

The distance between two genotypes can be calculated as the

Hamming distance between the binary vectors representing the

genotypes. This genotype distance corresponds to the number

of elementary variants in which two circuit topologies differ.

Within a genotype network, the maximal genotype distance

indicates how different two genotypes sharing the same

phenotype can be. Fig. 2D shows the distribution of the

maximum genotype distance between any two genotypes in a

Fig. 3 (A) Phenotypes of larger genotype sets are more robust. (B) Robust genotypes encounter fewer phenotypes in their neighbourhood.

(C) Robust phenotypes encounter more novel phenotypes in their neighbourhood. (D) Larger genotype networks encounter a greater number of

phenotypes in their neighbourhood. The panel shows the correlation between phenotype evolvability and the size of the largest genotype network

for the large genotype sets.
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genotype network, for the large genotype sets. We refer to this

maximal distance as the diameter of the genotype network.49

We express this distance as a fraction of the maximally

possible distance, the diameter of genotype space, which is

18 in our model. Fig. S2B (ESIw) shows the distribution of

maximum genotype distance, for all phenotypes.

The largest genotype set of size 21 633 contains the largest

genotype network of size 21 307. This network has a diameter

of 18, equal to the genotype space diameter. This network

corresponds to a cluster of circuits whose phenotype is

closest to the experimentally determined reference signalling

phenotype.24,38–41 The second and third largest genotype

networks have 6913 and 4446 genotypes, and show maximal

distances of 17 and 16, respectively. The median distance for

the 10 largest genotype networks, containing nearly 60% of all

genotypes, is 15.5.

Fig. S3A (ESIw) shows, for all phenotypes, the association

between the fraction of genotypes contained in the largest

genotype network and this network’s diameter. When only

the large genotype sets are considered (Fig. S3B, ESIw), a

significant positive correlation is seen between the two quantities:

unsurprisingly, phenotypes that have a greater fraction of their

genotypes connected in a single network also have a relatively

larger diameters. However, this correlation disappears when

smaller networks are included (Fig. S3A, ESIw). The reason is

that many of the phenotypes have fragmented genotype sets

with very small networks, which must have small diameters.

Taken together, these observations indicate that circuit

genotypes with a given phenotype can be very diverse.

Phenotypes with large genotype sets can well differ in most

of the elementary topological variants we study. For such

phenotypes, one can move through the associated genotype

network via single changes of elementary topological variants,

and change the topology of a signal transduction circuit

dramatically, while preserving similar signalling behaviour.

However, for many phenotypes with small or fragmented

genotype sets, such flexibility is much more limited.

Robust phenotypes have larger genotype sets

The patterns of genotype network connectivity we discussed

above (Fig. 2C) also have implications for robust signalling

behaviour. In a highly fragmented or small genotype set, many

mutations (changes in topology) would lead to a change in the

signalling phenotype. The other extreme is a large genotype set

consisting of only one large genotype network. In such a

network, individual genotypes can have many neighbours—

circuits differing in only one topology-altering mutation—with

the same phenotype. A circuit that is part of such a large

genotype network could absorb many mutations without

changing its phenotype. We define the robustness of a circuit

(genotype) as the fraction of its neighbours with the same

phenotype.

Fig. S4 (ESIw) shows the distributions of genotype robustness
for six genotype networks—the three largest genotype

networks, and three genotype networks of smaller sizes. As

one might expect, the median robustness is substantially

higher for the large genotype sets than for the smaller

genotype sets. In the largest genotype network, for example,

robustness ranges from 0.056 to 0.94, and the average robustness

is 0.49.

Analogously to the robustness of a genotype, we can define

the robustness of a phenotype as the average robustness of all

genotypes with this phenotype.5 Robust phenotypes are less

easy to perturb by changing their circuit’s topology. In Fig. 3A

and Fig. S5A (ESIw), we analyse the relationship between

genotype set size and phenotype robustness. We observe a high

(and highly significant) positive association. In other words,

robust phenotypes typically are phenotypes adopted by many

genotypes. For example, the largest genotype network (with

21 307 genotypes) corresponds to a phenotype that has the

highest average robustness of 0.49. This is also the phenotype

displaying the TOR reference signalling behaviour. Every

circuit displaying this TOR reference behaviour is on average

connected to 9 neighbouring circuit topologies with this

behaviour. Fig. S5B (ESIw) illustrates a strong positive

correlation between genotype network diameter and phenotype

robustness. Genotype networks with greater diameters exhibit

more robust phenotypes. This can be understood in light of

the fact that genotype networks with large diameters harbour

circuits that differ widely in their topologies, yet exhibit

similar behaviour. Thus, their phenotypes are invariant to

many changes in topology, or in other words, show a robust

signalling behaviour.

Robust phenotypes have higher evolvability

We will now turn to the ability of signalling circuits to explore

new phenotypes in a blind, phenotype-preserving search of

their genotype space. We will refer to this ability as evolvability,

and focus here on those phenotypes that occur in the immediate

neighbourhood of a genotype or a genotype set. Specifically,

we define genotype evolvability as the number of different

phenotypes found in the 1-neighbourhood of a circuit genotype

G. This neighbourhood is the set of genotypes that differ from

G in exactly one of the elementary topological variants

(Table S1, ESIw). Analogously, we define phenotype evolvability

as the number of different phenotypes found in the immediate

neighbourhood of the largest genotype network associated

with a phenotype P. Since the majority of genotypes lie on the

largest genotype networks, these networks are most appropriate

for our analysis. This neighbourhood includes all genotypes

that are neighbours of genotypes in the largest genotype

network of P, but that are not themselves members of this

network. The different phenotypes in these neighbourhoods

are precisely the phenotypes that are readily accessible from a

genotype or a genotype network, via single topology-changing

mutations.

We first analyse the relationship between a genotype’s

robustness and its evolvability. Fig. 3B shows that genotypes

with high robustness can access fewer phenotypes in their

neighbourhood. This is not entirely surprising, because robust

genotypes have many neighbours with the same phenotype,

and thus fewer neighbours with different phenotypes. Perhaps

more surprising is that the robustness of a phenotype and its

evolvability show a strongly positive association (Fig. 3C).

The more robust a phenotype is, the greater the number of

novel phenotypes that occur in its phenotypic neighbourhood.
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This relationship is a joint consequence of two facts. First,

robust phenotypes tend to be phenotypes with large genotype

networks, as we discussed earlier (Fig. 3A). Second, large

genotype networks tend to have a larger number of different

phenotypes in their neighbourhood, as shown by the analysis

of Fig. 3D and Fig. S5C (ESIw). These observations mirror

observations made earlier in evolving macromolecules.5 A

high phenotypic evolvability implies that a large number of

unique phenotypes are accessible from the corresponding

genotype network; however, a genotype may have to undergo

one or more neutral mutations, before it accesses these novel

phenotypes, particularly on very large genotype networks.

Evolving networks encounter novel phenotypes in their

immediate neighbourhood

In an extended genotype network, genotypes can change

substantially without changing their phenotypes. Two different

genotypes Gi and Gj on the same genotype network, but at

some distance dij may contain very different phenotypes in

their 1-neighbourhoods. How many novel phenotypes are

accessible in the immediate neighbourhood of these genotypes?

To address this question, we now study the fraction u of

phenotypes that occur in the neighbourhood of one but not

the other genotype. This fraction u(Gi,Gj) can be calculated as:

uðGi;GjÞ ¼ 1� jNi \Nj j
jNi [Nj j

where Ni and Nj represent the sets of unique phenotypes in

the 1-neighbourhoods of the genotype Gi and Gj respectively,

and |N| represents the number of elements in the set N. Note

that this fraction may depend on the distance dij between two

genotypes.

This analysis speaks to a circuit’s evolvability in a fashion

complementary to the last section. If u is large even at small

genotype distance d, then a genotype would not have to

change by much until it can access a different spectrum of

novel phenotypes via single mutations. This is exactly the case,

as Fig. 4A shows. The figure is based on averages over all

286 phenotypes. Even at the smallest possible distance

between genotypes, over 70% of phenotypes occur in the

neighbourhood of one but not the other genotype. This

percentage does not increase dramatically for larger distances.

Circuits with different signalling behaviours can be close

together in genotype space

In addition to the above analysis, we asked how far one must

travel in genotype space from one genotype set to find another

genotype set with an arbitrary new phenotype. To address

this question, we computed the minimal distance between

genotypes having different phenotypes (see Methods). If this

distance is typically large, then it would be rather difficult to

reach a new phenotype from a genotype having a different

phenotype through a small series of genetic changes that alter

the topology of the signalling circuit. If, in contrast, this

distance is typically small, it would be possible to discover

new phenotypes through a relatively small number of

genetic changes. This distance thus has implications for the

evolvability of signalling circuits.

Fig. S6 (ESIw) indicates the distribution of minimal

genotype distances between different genotype sets. The minimal

distances between smaller genotype sets are larger. We do not

normalise for the size of the genotype networks here, because

we are interested in the number of mutations—evolutionary

distance—that separate two genotype networks, irrespective of

their sizes. For larger genotype sets, most distances are equal

to 6% of the genotype space’s diameter, corresponding to a

single topology-altering mutation (Fig S6B, ESIw). Thus, it is
possible to access many novel phenotypes on large genotype

networks through only a single change in circuit topology.

This again reaffirms the earlier observation that robust

Fig. 4 (A) Phenotypic diversity of different neighbourhoods. The horizontal axis shows the distance dij between two circuits with the same

phenotype. The vertical axis shows the mean fraction u(Gi, Gj) of unique phenotypes found in a 1-neighbourhood around these circuits, as defined

in the main text. The analysis is based on the largest genotype network for each of the 286 genotype sets. The error bars indicate one standard

deviation. (B) Populations evolving on larger genotype networks can access more new phenotypes. The largest genotype network from each of the

genotype sets that contained over 90% of the genotypes were binned by size and the mean number of unique phenotypes in the 1-neighbourhood of

a population evolving on each network (after 100 generations) is indicated for the different bins. The error bars indicate one standard deviation.

Mutation rate per generation per individual m = 0.25; population size N = 100.
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phenotypes are also more evolvable; they have many novel

phenotypes in their neighbourhood, and their genotype sets

are also located closer to genotype sets of novel phenotypes.

Populations evolving on larger genotype networks can access a

wider variety of phenotypes

All evolution occurs in populations of organisms. In order

to understand the evolvability of any biological system, a

population perspective is thus necessary. To see whether

phenotypic robustness also facilitates the evolution of new

circuit phenotypes in a population context, we allowed a

population of N = 100 initially identical circuits to evolve

via repeated cycles of mutation—defined as an elementary

change in the bit-string representing circuit topology—and

selection confining the circuits to one genotype network.

During this process, we recorded the number of unique

phenotypes PU(t) in the 1-neighbourhood of the entire

population. PU indicates the number of novel phenotypes that

are immediately accessible to individuals in an evolving

population. Fig. 4B (ESIw) shows how PU after t = 100

generations depends on genotype network size, for a mutation

rate corresponding to m = 0.25 (per generation, per individual).

Fig. S7 (ESIw) shows the same for mutation rates corresponding

to m= 0.10, 0.50. For all mutation rates, populations evolving

on larger genotype networks generally have greater access

to novel phenotypes. The exceptions are the very largest

genotype networks, where access to novel genotypes declines,

again similar to earlier observations in macromolecules.50 We

also observe this trend in Fig. S8 (ESIw), where we illustrate

the evolution of PU(t) for four different genotype networks.

Except for the largest genotype network, we find an increase in

the number of unique phenotypes in the 1-neighbourhood of

the evolving population. Also, for larger population sizes, we

see an increase in the number of unique phenotypes accessible

in the 1-neighbourhood of the population (Fig. S8B, ESIw).
These results highlight the importance of a population-centric

view to understand the evolvability of these signalling circuits.

Diverse topologies can describe TOR signal transduction

We next focus on the phenotype that describes the canonical

TOR signalling behaviour. The genotype set for this phenotype is

the largest set in our genotype space. We will refer to this

genotype set as the TOR genotype set. This set comprises

21 633 genotypes, with the vast majority of 98.5% (21 307

genotypes) connected in a single network, the largest genotype

network for all phenotypes. A typical circuit genotype on this

network can absorb multiple mutations without losing its

phenotype. The maximum genotype distance within this

genotype network is 18; this means that topologies that differ

maximally in their structure can still preserve the TOR signalling

phenotype. For example, the models represented by the

genotypes [000001001010011111] and [111110110101100000]

differ in all their elementary topological variants, but are still

on the same genotype network. In addition, the neighbour-

hood of this genotype network contains 272 novel phenotypes,

>95% of all phenotypes. This observation hints at the high

evolvability of this phenotype. We note that some of these

properties may be a by-product of our parameter optimisation

procedure; we optimised the parameters to reproduce the

canonical TOR signalling behaviour (see Discussion).

We now address the question how unusual the structure of

this genotype set is, by comparing it to a specific class of

random graphs. These random graphs have the same number

of circuits as the genotype set, and two circuits are connected if

they differ in exactly one topological variant; however, these

circuits are simply drawn at random from genotype space, and

thus need not have the same phenotype. Fig. 5 shows

the distribution of three different measures describing the

structure of these random graphs, and compares them to the

TOR genotype set. It can be seen that the structure of the TOR

genotype set is dramatically different from that of the random

graphs. Specifically, the random graphs are highly fragmented

and contain many disconnected networks (Fig. 5A), which are

also smaller in size (Fig. 5B). In contrast, the genotype set for

TOR is cohesively connected, containing one very large

network and few tiny networks (Fig. 5A and 5B). The number

of edges in the TOR genotype network is also substantially

higher, by almost an order of magnitude, compared to the

average number of edges in random graphs (Fig. 5C). Taken

together, these observations show that the genotype set

characterising the canonical TOR behaviour is highly unusual

in its connectivity properties, which also affects its evolvability.

Discussion

We here studied nearly 70 000 biochemically realisable

genotypic variants of the yeast TOR circuit, in order to

understand its robustness, phenotypic variability, and

the relationship of phenotypic variants to experimentally

characterised signalling behaviour.24 The E70 000 potential

TOR genotypes represent alternative interactions between

TOR circuit components, and thus alternative TOR circuit

topologies. We represent these genotypes using systems of

ordinary differential equations, describing mass-action

kinetics.24 For each topology, i.e. genotype, we compute a

phenotype based on the concentration trajectories of key

signalling molecules. Mapping a phenotype to each of the

signalling circuits enabled us to identify genotype networks,

connected sets of genotypes with the same phenotype.

Genotype networks have been previously investigated for

RNA molecules,1,5 regulatory networks,7,15,16,18 as well as

protein structures.3,4 Earlier studies on the evolution of

robustness in biological networks, such as circadian oscillators15

and transcriptional regulatory networks,7,16,18 were based on

more abstract models. In contrast, the TOR circuit we study is

more biochemically detailed; the core of this model is also

experimentally validated.24

Our observations fall into three categories. First, we show

that the circuit genotype space can be partitioned into almost

300 sets of genotypes, where genotypes in each set adopt the

same signalling phenotype. The size distribution of these sets is

highly skewed, with a minority of such sets (phenotypes)

encompassing the vast majority of genotypes. Smaller

genotype sets are highly fragmented and typically contain

multiple small genotype networks. In contrast, large sets

contain extended and connected genotype networks that reach

far through genotype space. Some of these networks contain
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thousands of genotypes (circuits). In large and extended

genotype networks, circuits with substantially different

topologies exhibit similar signalling behaviour. Genotypes

on larger genotype networks also have a signalling phenotype

that is more robust to changes in circuit topology. Such high

robustness of biological circuitry to genotypic change is not

unprecedented. For example, it may exist in Caenorhabditis

elegans vulva development,36,51 where despite substantial

variation in the underlying pathways in different environments,

observed phenotypes are very similar.

The organisation of the genotype space we study

shows some similarities to that of macromolecules and gene

networks,1–5,7,15–18 including a highly non-uniform genotype

set size distribution, and the existence of genotype networks.

However, it also shows differences, for example a stronger

fragmentation of genotype sets into smaller genotype

networks of low diameter. In this regard, we note that our

genotype space is tiny compared to the astronomical genotype

spaces of macromolecules such as proteins and RNAs. The

fragmentation we observe may result from this fact.

A second category of observation regards the phenotypic

variability of signalling circuits, the ability to explore novel

signalling behaviour. We have shown that over a broad range

of robustness, robust phenotypes exhibit higher phenotypic

variability. The reason is that robust phenotypes typically

have large genotype networks, which have more novel

phenotypes in their neighbourhood. These observations have

interesting parallels to a recent study on RNA,5 where

phenotypic robustness can lead to higher evolvability, whereas

genotypic robustness hinders evolvability. The only exception

in our study system regards the most robust phenotypes

(Fig. 4B and Fig. S7, ESIw), which have access to slightly

fewer novel phenotypes. Again, this observation has

precedents, for example in models of RNA evolution,50 and in

population genetic models of evolvability,52 which suggest that

extreme robustness can hinder access to novel phenotypes.

Thirdly, we analysed the phenotype that represents the

canonical TOR signalling behaviour. Among all phenotypes

we studied, this phenotype has the largest genotype network.

It extends through the entire genotype space, and its

neighbourhood contains >95% of all other phenotypes. The

large size of this genotype network means that many circuits

with different topologies exhibit a signalling behaviour close to

the experimentally observed TOR signalling behaviour.24,38–41

The large diameter of the network indicates that widely

different topologies can exhibit a similar behaviour. Together,

these observations show that the TOR signalling phenotype is

robust, because the TOR circuit can accommodate multiple

changes to its topology without losing this phenotype.

Furthermore, the large number of phenotypes in the

neighbourhood of this genotype network indicate its ability

to access many novel phenotypes.

Our work has several limitations. A serious limitation of our

study relates to the complexity of our circuits and the resulting

computational requirements for our analysis. We computed

phenotypes from a single parameter set, obtained through a

lengthy optimisation procedure aimed at finding parameters

for which a given topology reproduces the canonical TOR

signalling behaviour most faithfully. One might argue that a

more sophisticated approach should be pursued. For example,

we could have explored the entire parameter space for each

topology. However, this is infeasible. First, our parameter

Fig. 5 The TOR genotype set exhibits unusual connectivity properties

compared to random graphs of similar size. The distributions of three

graph characteristics for 10000 random graphs, whose nodes correspond

to the possible alternate models of TOR, are shown. Each random graph

was established by choosing a random sample of genotypes (as many as

in the genotype set corresponding to the TOR phenotype, viz. 21633),

with the genotypes being connected if they differed by exactly one variant.

(A) Number of networks. (B) Size of the largest network. (C) Number of

edges. In all three cases, the TOR genotype set shows a significant

departure from the characteristics of the random graphs.
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space, depending on topology, may have more than 100

dimensions, and sampling it for even just one topology can

be difficult. Second, we needed to examine not one but

almost 70 000 different topologies. Rigorous sampling of the

parameter space for all of them is impossible.

These computational constraints also introduce uncertainty

in our phenotypic analysis. Our phenotypes result from only a

single parameter set per genotype, while in reality, a large

number of different parameter sets might produce widely

varying behaviours. Because we cannot explore all possible

behaviours a particular topology can produce, we limited

ourselves to one behaviour per topology, which arises from

a single parameter set. In addition, our choice to search for

parameter sets that reproduced the canonical TOR behaviour

most faithfully may have introduced artifacts. For example,

although our analysis shows that the TOR signalling

behaviour is a robust phenotype, because many genotypes

can display it, the observation that it is the most robust

phenotype may be influenced by our optimisation procedure.

To validate whether such artifacts exist, one could in principle

optimise for different signalling behaviours, and ask whether

these behaviours then become associated with the largest

genotype network. However, to do this in a systematic way

again exceeds our current computational abilities.

Further, not all of the different topologies examined in this

study may be realised in vivo. However, many of the individual

variants or hypotheses we considered have varying degrees of

support from biochemical experiments, as we mentioned

before. Another limitation lies in the definition of a phenotype.

To categorise phenotypes is challenging for all systems where

phenotypes are continuous and not discrete in nature. This is

the case for our system, whose signalling behaviour results

from (continuous) concentration changes in signalling

molecules. Because categorisation and enumeration of

phenotypes is useful in analysing phenotypic variability, we

categorised phenotypes according to their similarity in a

continuous space. To do so, we used a clustering approach

that assigned each phenotype to a cluster of similar

phenotypes. Although our approach yielded a clear separation

of phenotypic clusters, this may not be the case for

all comparable systems. In addition, completely different

definitions of phenotypes are conceivable.

In sum, we see two main values of this contribution. First, it

highlights a general approach to analyse the genotype space of

complex regulatory circuitry with many components and

parameters. It provides a framework to systematically analyse

a vast space of alternate circuit configurations, and provides

insights into the organisation of this space. Also, it permits us

to compare and contrast the robustness and evolvability of

regulatory circuits to that of macromolecules and other

well-studied systems.1–5,7,15–18 For example, our observations

suggest that robustness of a circuit’s signalling phenotype can

facilitate the exploration of novel phenotypes. This hypothesis

could also be experimentally tested in the laboratory: if we

were to evolve two yeast species harbouring signalling circuits

with differing robustness, then the species with the more

robust circuit should be able to evolve new signalling

behaviours and exhibit more diverse signalling behaviours

over time. Second, our approach exposes several challenges

that we need to address if we want to understand complex

biological circuitry, and the organisation of their genotype

space. This organisation will hold the key to understand both

robustness and evolvability of regulatory systems.

Methods

Genotype space

We view each topology of the TOR signalling circuit as one

genotype. Such a topology comprises the core pathway with

one or more of the 18 elementary pathway variants listed in

Table S1 (ESIw). Since there are 18 different variants of the

TOR signalling circuit, and because multiple such variants can

occur simultaneously in the circuit, the total number of

topologies is equal to 218 E 2.6 � 105. However, some

combinations of variants are incompatible with one another.

For example, variants V2 and V6 represent conflicting

hypotheses on the mechanism of TOR signalling: while V2

proposes that the Tap42p –Pph21/22p complex forms

an anti-phosphatase that protects phosphoproteins from

de-phosphorylation, V6 proposes that the same complex has

phosphatase activity. V8 and V9 propose opposing roles for the

Tap42p –Sit4 complex. On excluding all such incompatible

variants, the total number of possible TOR circuit topologies

reduces to 69 120. Each topology corresponds to a set of

reactions describing TOR signalling and is represented by a

set of differential equations describing the dynamics of each of

the chemical species involved in the signalling circuit. The

number of reactions in any topology varies from 19–72, while

the number of differential equations ranges from 24–56. These

equations involve a number of parameters, which range from

as few as 24 for the core pathway, to as many as 117, for more

complex topologies.

The various genotypes form a genotype network, which can

be represented as a graph whose nodes are the genotypes, and

where two nodes are connected by an edge if they differ in

exactly one of the 18 elementary variants. Implicit in this

concept is the assumption that single mutations can change

a topology and transform it into another, neighbouring

topology. For example, a mutation in one or more amino

acid residues could cause the loss or gain of a phosphorylation

site (e.g. variants V1, V11 in Table S1, ESIw). Indeed, it is

known that mutations in residues such as serine, threonine and

tyrosine can lead to a loss or gain of phosphorylation sites on

proteins.53,54 It is also known that point mutations that

modify the interface between interacting proteins can affect

protein–protein interactions,55–57 and consequently the

topology of the signalling network.

The simple representation of genotypes that we use enables

the easy calculation of a distance between two genotypes. We

here use the Hamming distance between the two binary

genotype vectors, which indicates the number of differences

between the two genotypes when represented as binary strings.

This distance represents the length of the shortest mutational

path between the two genotypes, in the genotype space. Note

that this is different from (and likely to be smaller than) the

length of the shortest path between the two genotypes on any

one genotype network, because not all the intermediate
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genotypes on the shortest mutational path may be part of the

same genotype network.

Parameter estimation

The equations describing the TOR core pathway contain

24 kinetic parameters,24 but some pathway variants contain

over 100 parameters; these parameters capture the rates

for the association/dissociation of various protein complexes

involved in the signal transduction circuit, as well as the

rates of important protein modifications, such as protein

phosphorylation and dephosphorylation. For the core

pathway and those 18 topologies that can be obtained by

incorporating a single variant (Table S1, ESIw) into the core,

the parameters have already been estimated earlier.24 These

estimates have been obtained through a global optimisation

method employing an evolutionary algorithm, with the

objective of minimising the deviation between predicted behaviour

and experimental data. For each of the 6.9 � 104 models, we

applied an Evolutionary Strategy (ES) based optimisation

procedure, similar to the one described in ref. 24 (for 100

generations), to find an optimal parameter set that minimises

the deviation of the model predictions from the available

experimental data. In each case, we started with a parameter

set based on the published data for the multiple TOR

extensions.24 We bounded the parameters in the interval

{10�2, 103}, as suggested in ref. 24.

For each topology, this approach aims to finds the set of

parameters, K, that can best reproduce the reference signalling

behaviour. In other words, it aims to find a parameter set that

minimises the deviation of the model’s predictions from the

experimental data. This set of parameters is then used to

predict the signalling behaviour of the topology, and to

estimate the deviation from the reference behaviour. Owing

to the differences in topologies between different circuits,

many circuits may not reproduce the reference signalling

behaviour, and give rise to multiple signalling phenotypes.

We calculate the deviation Di from the reference signalling

behaviour, for each experimental measurement i (0 o i o 11)

as in ref. 24:

Di ¼
X
j

x�j � x
p
j ðKÞ

djx�j

 !2

where the integer j runs through all measurements from the ith

experiment (see Tables S2 and S3, ESIw). The vector x*

contains the values of those state variables of the pathway

that were measured experimentally. The vector xp(K) contains

the values of the same state variables, but as predicted by

integrating the differential equations24 corresponding to a

genotype. Note that xp is a function of a particular parameter

set K (see below). The variable dj is the estimated accuracy of

the measured data point j (see Table S3, ESIw, ref. 24). For the
computed optimal parameter set, we computed the predicted

trajectories of various species in the model, which we used to

determine the phenotypes. Fig. S9 and S10 (ESIw) illustrate for
two example models, the time-course data for some of the

signalling molecules and how the predicted time courses

compare with the experimental data.

Clustering phenotypes for TOR signalling

We identify phenotypes for the different models by clustering

the ‘trajectories’ or the time-courses for different species,

thereby distinguishing models with different behaviours. In

particular, we consider eight species with non-zero concen-

trations at t = –90, viz. Tap42p, Tor12p, Pph2122p,

Cdc55p–Tpd3p, Sit4p, Sap, Tip41p and Fpr1p; the time-

courses for these species can be normalised with respect to

the initial concentrations. t = 0 represents the steady state, at

which rapamycin is introduced into the system. The time

course was computed at another 22 time points in the time

interval [0, 180]. These also include time-points for which data

have not been previously estimated. By performing the

parameter estimate as described above, we have already

attempted to fit the trajectories to the available data (reference

signalling behaviour). By introducing additional time-points

and by computing the predicted values of the different species

at these time-points, we increase the amount of information

available, to better differentiate between different models. For

each model, there are 22 � 8 = 176 data axes or ‘features’ to

discriminate different model behaviours. We computed these

features using a single parameter set for each model, which we

had obtained after extensive optimisation, as described above.

Owing to the large size of the data, we performed an

approximate on-line unsupervised clustering using BIRCH

(balanced iterative reducing and clustering using hierarchies).58

The data were grouped into 286 different clusters/phenotypes.

Fig. S1 (ESIw) shows the distribution of inter-cluster distances

and intra-cluster distances for these clusters. The figure

illustrates a stark contrast between the inter-cluster distances

and the intra-cluster distances, which are much lower, indicating

good cluster separation.

Fraction of unique phenotypes in a genotypic neighbourhood

The immediate neighbourhood (1-neighbourhood) of a TOR

topology (genotype) G consists of all topologies that differ

from G in exactly one of the 18 elementary variants (Table S1,

ESIw). We consider all phenotypes in the 1-neighbourhood of

G, which are different from the phenotype of G itself. For

brevity, we refer to these phenotypes as novel phenotypes here.

For two genotypes Gi and Gj, we compute the average fraction

of novel phenotypes in the 1-neighbourhood of Gj that are

different from novel phenotypes in the 1-neighbourhood of Gi,

for all pairs of genotypes with a fixed genotypic distance

k (d(Gi,Gj) = k, k = 1,2,. . .,18). Where the number of such

pairs was greater than 105, we performed the computations

only for 105 pairs, chosen at random.

Minimal distance between genotype sets

We performed this analysis for all pairs of genotype sets. The

minimal distance between two genotype sets can be defined as:

DminðPi;PjÞ ¼ min
8Gm2Pi;8Gn2Pj

dðGm;GnÞ

where P stands for the genotype set whose genotypes have the

same phenotype P. The distance between two genotypes is

calculated through the Hamming distance of their bit-string

representations, as described above.
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Population dynamics on genotype networks

For a given genotype network, we chose a random genotype

(circuit topology) and seeded a population of size N = 100

with this genotype. At time t= 0, the population thus consists

of N individuals with the same genotype (and thus the same

phenotype). We allowed the population to evolve through

repeated cycles (‘‘generations’’) of replication and ‘‘mutation’’,

where each mutation corresponds to a change in a single

topological variant of the model (we used various rates of

mutation, specifically m = 0.10, 0.25, 0.50 per circuit

and generation). During this process, we confined the

population to the genotype network. Specifically, whenever

any mutation yielded genotype(s) outside the genotype

network, we discarded these genotype(s) and maintained the

population size by replacing these individuals with random

individuals sampled (with replacement) from the previous

generation. At each generation t, we computed the number

of unique phenotypes PU(t) in the neighbourhood of the entire

population. We allowed the population to evolve for

100 generations. We examined the association between

PU(t = 100) and genotype set size.
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