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ABSTRACT: An attempt is made for a crude classification of important
types of models used in the biological sciences. This classification com-
prises model organisms, iconographic models, mathematical models,
and computational models. The notion of a model organism is discussed
Jfurther with respect to the problem of biological homology among genes
and gene products. The notion of a mathematical model is further sub-
divided into statistical, functional, phenomenological, causal, analogi-
cal, and idiosyncratic models, classes of models that are not to be seen
as mutually exclusive. Further, reasons are given why the category of
computational models deserves a status separate from that of mathe-
matical models. Finally, it is proposed that all the model categories dis-
cussed, as diverse as they may be, share an important feature.

Different areas in science use the notion of a model with very different
meanings and connotations. These differences are not likely to facilitate
a universal definition of the term, and such a definition is made even
more difficult by the closely related notion of a theory. What is consid-
ered a theory and what a model may depend on the field of research.
What is a model in economics, for example, would be considered a the-
ory in physics, and vice versa. In biology, the distinction between theory
and model is blurry, and does not go far beyond the vague notion that a
theory applies to a larger range of phenomena than a model. Therefore,
the distinction will not be emphasized here. Instead, examples for the
most important classes of models in biology are given. They are fol-
lowed by a brief discussion of what might be a unifying theme among
them.
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1. The model organism

This notion of a model is probably unique to biology, although it bears
some resemblance to that of a model system in other areas. It does not
refer to a conceptual model, i.e., to a mental construct, but to an organ-
ism whose biology may be informative with respect to biological proc-
esses in other organisms. However, a series of assumptions, derived
from a conceptual model (or theory) of biological evolution stand behind
this very material notion of a model.

The vast and growing field of molecular biology has lead to spectacu-
lar insights into the mechanistic basis of a multitude of biological proc-
esses, such as the regulation of cell division, embryonic development,
genetic and epigenetic inheritance, and many more. However, there may
be of the order of 107 species on earth, many of them still unknown.
Given finite resources, we will only be able to study a small fraction of
these species. Moreover, the exploration of biological processes at the
submicroscopic and molecular level is a difficult, time consuming, and
expensive endeavor. In order to gain a deep understanding of the mo-
lecular mechanisms governing living beings, it is therefore advisable to
study a select few organisms in depth, and to hope that they provide use-
ful information that can be generalized to others. Examples of such
model organisms include Escherichia coli as a member of the bacteria,
Caenorhabditis elegans as a member of nematode worms, and Droso-
phila melanogaster as a member of the insect order diptera, and, more
general, of arthropods. They all are studied as members of a larger class
of organisms, and biologists hope to learn something about the other or-
ganisms in that class by studying one member. This notion of a model
organism also extends to medical genetics, an area whose progress is
hampered by the fact that its main subject, humans, can not be subjected
to genetic experiments. If a particular disease is to be studied, an animal
model for the disease is often used, i.e., a species in which a similar dis-
ease occurs and which is as closely related to humans as possible. In
addition to relatedness, several other considerations enter the choice of
the model system. These include the availability of mutants in disease
causing genes, or the availability of techniques to carry out a particular
line of experimentation in the chosen species.

The assumption behind such a research strategy is that biological tax-
onomy reflects evolutionary relatedness of organisms, and that similar
biological processes are at work in related organisms. Although ques-
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tions regarding the origins of observed biological similarities harbor
deep conceptual problems for evolutionary biology in general, the strat-
egy has overall been very successful. Especially if the relevant organ-
isms are not separated by enormous time intervals (on an evolutionary
scale), the approach is likely to produce fruitful results. Investigations of
the immune system of mice contribute in important ways to an under-
standing of its human counterpart, results from research on limb devel-
opment of chickens is likely to be applicable to most, if not all verte-
brates, and insights into Drosophila eye development are relevant to the
development of facet eyes in general. In addition to its "local" success,
this research approach has also shown that some biological processes
share important properties even in very different species. On the far end
of the spectrum of possibilities are cellular processes that may be similar
in most eucaryotic organisms. For example, proteins regulating the onset
of cell division are thought to function in similar ways in yeast and in
humans (Nurse 1990), and therefore probably also in most other
eucaryotes. As a general rule, however, it can be observed that problems
regarding the evolutionary origin of observed similarities arise, as the
evolutionary distance between taxa increases. This is best illustrated
through the example of a common line of experimental analysis used to
establish functional similarities between genes in different species.
Genes acting in a particular biochemical pathway of distantly related
species often show striking similarity in their DNA sequence. This
similarity, along with further phylogenetic and biochemical evidence is
often taken to support the hypothesis that the two genes derive from an
ancestral gene in a species that existed before the two lineages split. The
two genes are then said to be homologous (more specifically, ortholo-
gous). In some organisms, techniques are available to replace one gene
by another gene, and to assay the effects that such a replacement has on
the organism. In some such experiments, it is found that a homologous
gene from a very distantly related species can substitute for the function
of the "native" gene in the context of a particular experiment. From the
point of view of the experimenter, the two genes have identical func-
tions. In some cases such functional similarity can be quite surprising,
because hundreds of millions of years may have passed since the linea-
ges leading to the two species split. To give an example, the cell cycle
regulatory gene CDC?2 of humans has a homologous counterpart in the
yeast Scnizosaccharomyces pombe, the gene cdc2*. CDC2 can com-
pletely substitute for the function of the yeast gene cdc2* (Nurse 1990).
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An example illustrating the potential problems that may arise in inter-
preting the results of such experiments is given by the mouse gene
Hoxb-6 which is part of a regulatory gene network implicated in mouse
development. It has a homologue in the Drosophila gene Antennapedia,
which plays an important role in establishing the identity of individual
body segments in the body plan of Drosophila. When expressed (i.e.,
"turned on") during development in body regions outside its normal
range of activity, a striking change in the phenotype of the adult fly oc-
curs, namely the transformation of legs into antennae. When the mouse
gene is expressed in a similar fashion in Drosophila, the same transfor-
mation of legs to antennae is observed (Malicki et al. 1990). This exam-
ple points towards a potential difficulty in determining on what level the
similarity resides in this example. Clearly, vertebrate and segmented in-
sect bodies are two very different structures, where "different" is to be
understood in terms of the concept of homology. Two structures in two
related organisms are called homologous in the historical sense if they
are derived from the same structure in the common ancestor, i.e., if they
are identical by descent. There are many "similar" structures in two or-
ganisms for which it is not clear whether they are derived from one
structure in the common ancestor. However, there are also many cases
where non-homology is established beyond reasonable doubt, the ex-
ample given here being one of them. Thus, the mouse gene Hoxb-6 that
may be able to substitute for the function of Antennapedia in Drosophila
does so in an entirely different functional context. Is it possible to iden-
tify some sense in which the respective biological processes in both or-
ganisms are similar, solely based on the fact that some of their compo-
nents are similar in DNA sequence and that they can functionally substi-
tute for each other in the context of a given experiment? The question is
likely to have a straightforward answer in this particular example which
is benign compared to others. This is because a large body of independ-
ent evidence suggests that the two genes are embedded in a network of
interacting genes, and features of the whole network may be conserved
between flies and vertebrates. It is likely that a transfer of function of the
entire network has taken place during evolution. While the network is
embedded in the process of body segmentation of the fly, it is used to
pattern non-homologous structures, such as the limb or the hindbrain of
mice (McGinnis and Krumlauf 1992). How such transfers of function
take place is not understood, since it is hard to envision functional in-
termediates in other organisms. However, it can be said that the appro-
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priate level of similarity or representation is the organization of a system
of interacting developmental genes. As evolutionary distances increase,
the perceived similarities among biochemical processes may comprise
smaller and smaller parts of these processes, until they do not extend
much beyond the level of individual molecular components. Indeed,
there are many examples of individual molecules that seem to be used as
building blocks of entirely different biochemical processes in different
organisms. A prominent one is that of ras proteins which are ubiquitous
in eucaryotes, and have an important role in many signal transduction
processes. They are involved in the nutrient driven control of the cell
cycle in the yeast Saccharomyces cerevisiae, as well as in the develop-
ment of the genitals of the nematode worm Caenorhabditis elegans, and
in the development of photoreceptor cells in Drosophila (Greenwald and
Broach 1990; Rubin 1991). While their biochemical functions and amino
acid sequence are similar in all these cases, the biochemical pathways in
which they are embedded may be entirely different. Many of the compo-
nents with which they interact need not even be the same in two organ-
isms. In this and similar examples, it is often not clear in which sense an
observed functional or sequence similarity implies that one process can
be used as a model for another one in a different organism. Not even the
organization, but only individual building blocks of a biochemical path-
way may be similar among different organisms. As in many other cases,
there is a large grey zone between dissimilarity and similarity of bio-
chemical processes, and only the two extremes of the spectrum are
clearly defined.

2. Iconographic Models

This class of models consists in pictorial or qualitative descriptions of a
system's parts or of a system's behavior. It is often used to merely illus-
trate properties of a system that are already represented in a mathemati-
cal model. Whereas in this role a pictorial presentation might not be
viewed as a model in its own right (because the mathematical represen-
tation is the operationally useful model), there are cases where pictorial
representations do clearly serve as models. These are situations where no
mathematical model may exist, and where spatial relations among a
system's parts are important. Especially molecular biology and biochem-
istry are rife with examples for such models. This is because in these ar-
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eas frequently qualitative rather than quantitative (kinetic) features of
interactions among molecules are studied. To give an example, an ico-
nographic model might consist in a representation of how exactly a
DNA-binding protein binds to DNA, i.e., what the general shape of the
protein is, which parts of it make contact with DNA, and which amino
acid residues contact DNA. Another example is the model of the ribo-
some, the cell's protein synthesis machinery. Here, issues of concern are
the interaction of the ribosome with RNA, the access of aminoacyl-
tRNA molecules to the site of translation, the location of the catalytic
site generating peptide bonds, etc. As is evident from these examples,
such models are usually not a wild guess, but often emerge from ex-
perimental evidence accumulated over years or even decades of research.
Often, they can be used to guide further experiments or even predict the
results of such experiments. For example, in a DNA-binding protein
changes of amino acid residues that are in contact with DNA are likely
to cause more profound changes in its biological activity than changes in
other residues.

3. Mathematical Models

In this area the activity of modeling is most similar to modeling in the
physical sciences. The literature is vast, and it comprises modeling ef-
forts at all levels of biological organization, from the regulation of gene
activity to models of cultural evolution. Any attempt to give a compre-
hensive overview would be futile. Here, only a crude classification along
a few general diagnostic axes shall be given.

3.1 Statistical and functional models

A statistical model represents relations among random variates that cor-
respond to empirically measurable quantities. A simple statistical model
is the linear relation Y=aX among two random variates, X and Y. To give
an example, X might be blood pressure in humans and Y the temperature
of the environment. The model Y=aX is a hypothesis regarding the sta-
tistical relation between these random variates. It states that they are
linearly related via a proportionality constant a.hether this hypothesis for
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a particular value of a is supported by a data set can be established by
statistical methods, in this case linear regression analysis.

Functional models, on the other hand, are models that pertain to func-
tional interactions among a systems parts, or among a set of state vari-
ables used to characterize a system. A possible example is enzyme kinet-
ics. Many enzymes show an almost linear dependency of reaction veloc-
ity on substrate concentration for low substrate concentrations. Velocity
then levels off at a maximum value towards very high substrate concen-
trations. This observation is predicted by the Michaelis-Menten model of
enzyme kinetics, which has at its core some basic assumptions about
how enzymes interact with their substrates (e.g., Murray,1989). In the
kinetic equations derived from this model, the relevant state variables are
concentrations of enzyme, substrate, and reaction product, as well as
other quantities derived from these, e.g., velocity as the change in sub-
strate concentration. The physicalistic assumptions of Michaelis-Menten
kinetics translate into certain functional relations among the state vari-
ables in the kinetic equations.

Statistical models about relations of observable quantities often follow
from functional models. For example, in the case of enzyme kinetics,
one might observe that the statistical relation among substrate concen-
tration and velocity is approximately linear for intermediate substrate
concentration, but that there is no such relation at high substrate concen-
trations. Therefore, statistical models can be considered "weaker" than
functional models, because a statistical model does not imply a func-
tional relation among its constituent variables. Moreover, the reverse
statement, that statistical relations will follow from functional relations,
is often true. Statistical models are nevertheless important tools in the
validation of functional models. They can often be used to validate pa-
rameters or even assumed functional relations among state variables em-
bedded in the functional model. Furthermore, in cases where there is no
functional model available, statistical models may be the only tool to
make predictions regarding a system's behavior.

3.2 Causal and phenomenological models
In a causal model a biological process is represented through the inter-

action of well-specified variables at a lower level of biological organiza-
tion. For example, in reaction-diffusion models of embryonic pattern
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formation, the interaction of specified substances (activators and inhibi-
tors) produce stable patterns of concentrations that influence the devel-
opment of body structures. In phenomenological models, on the other
hand, it is only the organization of the system that is known, and one
may be quite ignorant of the system's constituents. A potential example
are biological clock models. Here, the molecular oscillators that underlie
biological rhythms are in most cases unknown. All that one may have at
hand is some quantifiable oscillating variable (the "phenomenon"), such
as activity patterns of an organism, physiological parameters, or bio-
chemical markers (without knowledge of whether these parameters are
causal to the oscillation, or just associated with it). In these cases, one
may nevertheless be able to make some profound statements about the
nature of the oscillators. This is because different types of oscillators be-
have quite differently when perturbed. Whatever the oscillating variables
are, an undamped harmonic oscillator will react quite differently from a
nonlinear limit cycle oscillator to moderate perturbations. The latter will
assume its original oscillation with a phase shift depending on the
magnitude and time of the perturbation, whereas the former is likely to
oscillate at a different amplitude after the perturbations. Biological
clocks can often be ubjected to experimental perturbations (e.g., light
pulses during periods of low light for a circadian rhythm), and through
the effect of such perturbations, one can infer the type of oscillation at
hand. In order to do that, little information about the variables causing
the oscillation may be necessary. In other words, one could say that
causal models account for both the organization and the nature of the
state variables that underly a biological process. Phenomenological
models account only for the organization among the variables. The dis-
tinction is not clear cut, since one can easily envision systems that are a
mixture of both types. For example, some state variables may be known
whereas others are not.

3.3 Analogical and idiosyncratic models

By an analogical model I mean a mathematical model of a biological
process which resembles a process in some other area, e.g., classical me-
chanics. This resemblance is usually found in models involving differ-
ential or difference equations. In these cases, it is also straightforward to
pinpoint the origin of the resemblance, which lies within the functional
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relations of the state variables used to characterize a system. The state
variables themselves may have completely different interpretations in
the two models. Two examples shall illustrate the nature of analogical
models.

The first example is an analogy between chemical kinetics and ecol-
ogy. It is taken from community ecology, an area in which theoretical
work is dominated by the Lotka-Volterra equations (Murray 1989; Ro-
sen 1970). In these equations, the individual state variables are popula-
tion densities, x;, of individual species i. The structure of the equations is
given by

dxj/dt = xj (aj + 2 byjxj) 1 <i<n
J

The coefficients b;; if denote interactions among the species, where 5; i>0
implies that species j enhances the growth of species i (e.g., it might be a
food source for species i), and blj<0 implies that species j inhibits the
growth of species i. The parameters a;>0 reflect the intrinsic growth
rates of species i. These equations are analogous to a system of chemical
reactions involving a set of reactants whose concentrations are denoted
by the state variables x;. The parameters b,-j correspond to reaction rates
of the bimolecular reactions between i and j. The a;'s correspond to
autocatalysis of reactant i. Thus, formally Lotka Volterra equations cor-
respond to chemical reaction networks, although for any given Lotka-
Volterra system, the corresponding chemical network need not be known
or even exist.

The second example is taken from solid state physics and neurobiol-
ogy. One of the tasks of solid state physics is to explain the behavior of
various magnetic materials under different assumptions about the inter-
action of the atoms within these materials, and under different external
conditions, such as varying temperature or external magnetic fields. In
this area, the Ising model, a mathematical model representing the mag-
netic moments of individual atoms as spins S; with values £1 has proven
enormously successful (Binder and Young 1986). A sizable industry de-
voted to the exploration of this and related models exists in physics. A
simple version of the model is given by the dynamical system

Sit+1) = U[Zw,] () + h]
lj"
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Here, & corresponds to a constant external magnetic field, and wij to the
influence that the magnetic moment of atom j has on that of atom i.
These coefficients will depend on factors such as the distance of two at-
oms within the material. Various extensions of the model are possible,
such as stochastic or asynchronous dynamics, or continuous state vari-
ables. This class of models has found important applications in neurosci-
ence as the Hopfield model of associative memory (Amit 1989). The
task of an associative memory lies in "recalling" a stored pattern (e.g., an
image) after being presented with a similar (incomplete, distorted etc.)
pattern. In the Hopfield model, whose formal structure is identical to that
of the Ising model, the state variables now represent the activity states of
individual neurons (a value of (+1) implying that a neuron fires at time
7). The interactions of individual neurons are not mediated by a magnetic
field. Instead, the coefficients wij correspond to the influence that neuron
Jj exerts on neuron i through the axon that connects the two neurons. The
summation of individual influences corresponds to the integration of the
inputs of all neurons at the cell body of neuron j, and % corresponds to a
firing threshold, a level of activation that has to be reached in order for a
neuron to fire. As with any analogy, the correspondence between fea-
tures of one model and the other is limited, and features unique to each
modeled system enter both models. Here, such assumptions regard
mostly the nature of the connectivity coefficients wj;. For example, in
the magnetic case a fundamental symmetry, Wii=Wjj holds. This symme-
try is violated in the neural case. If neuron 7 is connected to neuron ; via
an axon, the reverse connection need not even exist, let alone be of equal
strength.

Analogical models in the spirit of these examples are ubiquituous, so
ubiquituous in fact that it may be difficult to find models whose struc-
ture bears little resemblance to models in other areas. Possible cases for
such "idiosyncratic" models are to be found where a model was designed
to fit a particular experimental phenomenon with great accuracy or de-
tail. One example is the Hodgkin-Huxley model of nerve membranes
(e.g., Murray 1989). It was designed to represent the propagation of
electric signals along the nerve axon of the giant squid. Because its
structure closely adheres to the studied system, it is capable of making
very specific predictions about the system. This entails that the model
structure is complicated, involving numerous parameters and state vari-
ables specific to the axon. Because it is tailored to a very specific prob-
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lem, with as little abstraction as possible, analogies to models in other
areas are not likely to be extensive.

The three axes of model classification suggested here, statistical-
functional, causal-phenomenological, and analogical-generic are neither
intended to be comprehensive, nor are they to be seen as orthogonal. For
example, a causal model is usually also a functional model. In the re-
mainder of this section, the relation of biological models to observa-
tional or experimental data is briefly discussed.

3.4 Mathematical models and data

Similar to mathematical models in other areas, biological models interact
with data to varying degrees. A crude classification in this regard might
take into account the extent to which a model was initially designed to
solve a concrete experimental problem. There are models, one might call
them conceptual models, that may never have been intended to explain a
particular experimental result. Instead, they provide a new perspective
on large classes of evidence, evidence that might be only qualitative.
Connectionist models of parallely distributed neural processes are a po-
tential example (e.g., Rumelhart and McClelland 1986). Their com-
monalities with neural networks may not go much beyond the fact that a
large number of simple computational units are connected in a network-
like fashion. Individual units may function substantially different from
real neurons, and also the connectivity architecture of the entire system
may be quite unrealistic. Nevertheless, such models have provided re-
searchers with an intuition for high level cognitive processes, including
associative memory, generalization, and abstraction. They may not accu-
rately reflect the structure of any biological network, but their value lies
in providing a new perspective on previously poorly understood phe-
nomena. Also, such conceptual models may provide a general frame-
work, within which it may be possible to design realistic models explain-
ing a particular experimental phenomenon. They may thus serve the
function of a paradigm, providing a particular perspective on a large
body of data.

Contrary to originally conceptual models, most mathematical models
in biology are likely to have originated from an attempt to explain a par-
ticular set of experimental or observational data. Take the example of
Lotka-Volterra equations in ecology. They were originally designed to
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explain an aspect of the population dynamics of predatory fish in the
Adriatic after the First World War. Such models may retain their initially
close interaction to an underlying body of data. However, in many areas
one observes a tendency towards abstraction and generalization, which is
not always motivated by experimental evidence. A sizable industry may
develop which explores properties of the model from a mathematical
rather than a biological point of view. Lotka-Volterra equations again
serve as an example. Their mathematical structure can be expanded to
cover very general scenarios of species interactions, and a sizable indus-
try has developed in this area. Often, a specific scenario of species inter-
action is postulated either in terms of plausibility, or in terms of a more
or less vague reference to empirical evidence. Then, an equation describ-
ing the scenario is established and a detailed analysis of the equation is
carried out, usually without further reference to biological evidence. The
resulting body of work may be one of the reasons why many experimen-
tally oriented biologists do not hold mathematical work in their area in
high esteem. It is often perceived as irrelevant to biological problems, as
inaccessible to experimental tests, or even as intrinsically unfalsifiable.
This perception is due to a fundamental difference of what a mathemati-
cal model is to an applied mathematician and to a biologist.

4. Computer models

Computer power has increased exponentially over the last decades, and a
concomitant increase in the importance of computers in biological
modeling can be observed. Two basic uses can be distinguished, only
one of which is sufficiently self-contained to be called a computer model
in its own right.

Many mathematical models of biological processes are so complex
that they can not be solved analytically. If this is the case researchers
often resort to numerical solutions of the equations representing the
biological process, solutions that are obtained either through determinis-
tic or stochastic (Monte-Carlo) methods. The computer is then only a
tool to obtain the solution of a mathematical problem which is the actual
representation of the biological problem. However, computers serve
more and more often as stand-alone devices in determining a solution to
a biological problem. For example, population genetic models of evolu-
tionary processes involving many genes are almost always analytically
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intractable. In some cases it may be possible to write down a differential
or difference equation describing the evolution of some variable of inter-
est. However, this equation may be very difficult to solve numerically.
Also, crucial simplifying assumptions may be hidden in the equation. In
these cases, a simulation approach is often the method of choice. For ex-
ample in the case of population genetics, a simulation usually involves a
representation of individuals (through their genome) and of populations
of individuals in the computer. The simulated individuals undergo proc-
esses thought to be of importance in the evolutionary scenario under
consideration, e.g., simulated mating and recombination, (implemented
by swapping of genes between the simulated genomes of two stochasti-
cally chosen individuals), or selection (implemented by stochastic choice
of individuals for survival into the next generation according to some
fitness criterion). While there are usually aspects of the simulation that
are analytical, e.g., the calculation of fitness from given values of genetic
variables according to some algorithm, it is the simulation itself that is
the representation of the biological process. No all-encompassing
mathematical framework need exist in which the simulation is embed-
ded. Even if such a framework exists, however, the simulation can often
be used to validate whether assumptions of that framework can be vio-
lated without affecting the results. Because the simulation is in this case
used to validate or refute assumptions of a mathematical model, it merits
the status of a representation of a biological process independent of that
model.

Taken to its extreme, this approach of individual based modeling har-
bors considerable dangers. Because of ever increasing computing power,
one can simulate the behavior of systems with more and more complex
interactions among their parts. If no intuition is available independently
of the simulation on what the essential features of the modeled system
are, one may arrive at results that do not yield any insight regarding
these features, and how they govern the behavior of the system. As the
complexity of the model approaches that of the modeled system, one
may lose predictive and/or explanatory power.
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5. Conclusions

The examples for biological models given here show that there are not
only considerable differences in the usage of the term between fields, its
meanings vary also widely within biology. Because of this heterogeneity
of meanings, the question "what is a model?" may be ill-posed. How-
ever, to just leave things at that is not very satisfactory. Although any
very general characterization of models is likely to be vacuous, a practi-
tioner, i.e., in this case a biologist, would probably argue that models do
share a basic property. They are epresentations of something else, of a
process or of a structure. In this sense, one might be tempted to say that
a model is a sign in the semiotic sense, but this is not a sufficient crite-
rion. All models can be viewed as signs, because they are used to com-
municate something (an aspect of a system's dynamics or structure).
However, not all signs are models. This is because, from a practical
point of view, a model has to capture some aspect of the modeled entity,
an aspect that one might be interested in. In order to be useful, the model
must possess some internal structure that resembles the structure of the
modeled entity.

If one is willing to accept a model as being some sort of a representa-
tion, it becomes evident that one can not easily refine the notion of a
model via a certain relation to reality that it might have. Since our per-
ception is also a representation of reality constructed by our mind or our
brain, one can only meaningfully speak of relations among models. Fal-
sification then consists in a certain type of mismatch between the struc-
ture of two models, one of which we feel is closer to reality. Whether it
is possible or necessary to refine the distinction between sign and model
will be left open. As a weak substitute for such clarification, it is noted
that the classes of biological models listed here adhere to the admittedly
vague characterization given. They are all representations of a biological
process or structure, and their goal is to convey information about the
internal workings of the entity they represent.
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