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Abstract  

 

Background: Neutral networks or sets consist of all genotypes with a given phenotype. 

The size and structure of these sets has a strong influence on a biological system’s 

robustness to mutations, and on its evolvability, the ability to produce phenotypic 

variation; in the few studied cases of molecular phenotypes, the larger this set, the greater 

both robustness and evolvability of phenotypes. Unfortunately, any one neutral set 

contains generally only a tiny fraction of genotype space. Thus, current methods cannot 

measure neutral set sizes accurately, except in the smallest genotype spaces. Results: 

Here we introduce a generalized Monte Carlo approach that can measure neutral set sizes 

in larger spaces. We apply our method to the genotype-to-phenotype mapping of RNA 

molecules, and show that it can reliably measure neutral set sizes for molecules up to 100 

bases. We also study neutral set sizes of RNA structures in a publicly available database 

of functional, noncoding RNAs up to a length of 50 bases. We find that these neutral sets 

are larger than the neutral sets in 99.99% of random phenotypes. Software to estimate 

neutral network sizes is available at http://www.bioc.uzh.ch/wagner/publications-

software.html. Conclusions: The biological RNA structures we examined are more 

abundant than random structures. This indicates that their robustness and their ability to 

produce new phenotypic variants may also be high.  
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Background 

 

Every cell is packed with solutions to the problems its ancestors faced. These solutions 

are embodied in biological macromolecules – RNA and proteins – which produce energy 

from nutrients, neutralize external stressors, coordinate cell division, defend cells against 

invaders, and so on. Most of us think of these solutions as extremely rarefied: They 

would be difficult to find in the space of possible nucleotide or amino acid sequences, 

because they occupy exceptionally small regions in this space. Their discovery by living 

things was hard-won, through innumerable generations of mutation and natural selection. 

Despite this common wisdom motivated by stringent functional constraints on biological 

molecules, we have little rigorous, quantitative understanding of how abundant or rare the 

molecular structures of biological molecules are. The fundamental reason is that our 

ability to characterize genotypes (sequences) still vastly exceeds our ability to 

characterize phenotypes (molecular structures and functions). While it is simple to 

determine the nucleotide sequence of a gene and even of entire genomes, the prediction 

of the structure of individual proteins or RNA molecules, let alone of their integrated 

behavior, is a major challenge.  

 If they are extremely rare, functional phenotypes may be very difficult to find in a 

blind evolutionary search. However, the significance of phenotype rarity does not end 

with this observation. The descendants of biological macromolecules may give rise to 

molecules with new phenotypes and functions – evolutionary innovations. The ease with 

which they do is also called their evolvability [1]. Some molecules have been extremely 

prolific in this regard – highly evolvable – whereas others have been less so. The rarity of 

a molecule may affect its propensity to evolve new structures and functions. To see why, 

it is useful to consider that such molecules are usually part of large networks of 

genotypes [2-6]. Most known structures of protein and RNA molecules are adopted not 

by one sequence, but by large sets of sequences. Many or all of these sequences can be 

connected in sequence space through series of nucleotide or amino acid changes that 

traverse a large fraction of this space, yet leave the structure and function of the molecule 

unchanged. Such sets of sequences are often referred to as neutral sets or neutral 

networks [2]. Specifically, a neutral set is a set of sequences with the same phenotype. A 

neutral set is called a neutral network if all sequences in it can be connected through 

series of single mutations that do not leave this set. This distinction maintains the 

generality of our framework. However, for the RNA phenotypes we study neutral sets are 

almost always connected, so the two terms can be used interchangeably. The size of a 

neutral set is a measure of a phenotype’s rarity in sequence space. The greater this size, 

the easier it should be to find the phenotype in an evolutionary search. We will refer to 

phenotypes with large neutral sets as abundant or frequent phenotypes. 

Evolutionary innovations arise when mutations that explore variants of a 

functional phenotype strike a molecule with a new and useful function. A large neutral 

network can be of advantage in this process, because the immediate neighborhood of a 

large neutral network in sequence space contains many more phenotypic variants than 

that of a smaller neutral network. Through neutral evolution on large neutral networks, 

molecules can thus get access to many molecular variants. This is why high abundance of 

a phenotype can be argued to be beneficial for evolutionary innovation [7]. Recent 

evolutionary work on protein structures shows that abundant protein phenotypes have 
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indeed evolved greater functional diversity [8]. Other factors, such as neutral network 

topology may also play a role in evolutionary innovation [9-11]. 

These observations motivate the need for approaches to estimate the abundance of 

phenotypes in sequence space. We here show how to solve this problem for a 

computationally accessible molecular phenotype, the secondary structure of RNA 

molecules. RNA secondary structure is required for the biological function of many RNA 

molecules [12-14]. It is thus an important phenotype in its own right. Because algorithms 

to predict RNA secondary structure from an RNA sequence are available [15-17]  

secondary structure is an important computational model to understand the relationship 

between RNA genotypes and phenotypes [2, 4, 10, 18]. The computational challenge to 

estimate whether an RNA phenotype is frequent or rare, i.e., whether it is adopted by 

many or few sequences, is formidable. For example, even for sequences of length L=50 

one has to estimate numbers smaller than 10
-15

 (expressed as a fraction of the size 4
L
 of 

sequence space). Below, we discuss the details of the method we developed, which is 

based on a nested sampling of genotypes. We then apply this method to multiple 

biological and random RNA sequences. The results demonstrate that biological RNA 

structures have a large number of sequences that fold into them, much larger than for 

random phenotypes. This number of sequences may also be moderately larger than for 

structures produced from random genotypes. 

 

Methods 

 

Software for structure prediction and inverse folding 

 

For our analyses, we used the Vienna RNA package (http://www.tbi.univie.ac.at; [15]), 

including the routines fold, which determines the minimum free energy (mfe) structure 

of a sequence, and inverse_fold, which creates sequences folding into a given 

minimum free energy structure, using a guided random walk through sequence space that 

begins with a randomly chosen sequence. We also used the utility bp_distance which 

calculates the base-pair distance of two arbitrary structures.  

 

Sampling neutral sets 

 

In the literature, heuristic sampling of neutral sets has been performed by using the 

inverse_fold routine implemented in the Vienna RNA package 

(http://www.tbi.univie.ac.at; [15]). To test this approach, we studied its statistical bias by 

comparing its results to results obtained by random sampling of compatible sequences – 

sequences where only bases capable of pairing occur in the structure’s stacks. We found 

that inverse_fold does not sample the desired set of sequences uniformly: sequences 

that are on the “boundary” of this set are sampled more frequently. We thus refrain from 

using this approach when uniform random sampling is necessary. For our study, the 

routine inverse_fold is used only in the initialization of the Monte Carlo approach 

which quickly loses the memory of this initial choice. 

  

Error estimates 
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To estimate a neutral set size for any given structure S, we first carry out a very long run 

of the Nested Monte Carlo procedure (at least 10
5
 cycles of mutation and exchange at 

each d) to estimate the size of the neutral set. We measure the quantities 

)(GO di χ= (i=1,…50) that are the averages in each of the fractional intervals 

[02.0,02.0)1[( ××− ii  of the total run. That is, each Oi is computed from a fraction of 2% 

of the total run. This gives 50 estimates of neutral set size, where the global average is the 

actual estimated size (e.g., Table 1). We then use the 50 values of Oi to obtain the error in 

this estimate. As in all Markov chain Monte Carlo methods, the 50 values Oi are not 

independent. To address this problem, we apply the jackknife method [19] which is a 

general way to compute errors even for correlated and non-normally distributed data. In 

this method, if one has k samples Oi, one first computes k averages mi of these samples, 

omitting for each average the single value Oi. The resulting set of values (m1, …,mk) has 

some standard deviation σ. The jackknife error estimate is given by σ1−k . It is that 

value we report as the error bar on the neutral set size estimates. 

 In a similar vein, we obtained error estimates for P-values as follows, again using 

the jackknife method. A structure’s P-value is determined from expression (10) for a 

sample of M phenotypes. For each i=1,..., M , we remove the i-th structure from this 

sample and recompute the P-value according to (10) with this altered sample. If σ is the 

standard deviation of these M estimates, then the Jackknife procedure specifies σ1−M  

as the error of these estimates; this is the error we quote in Table 1.  

 

Results 

  

To determine neutral network sizes, one can in principle enumerate all sequences and the 

structures they fold into, or one can sample by “brute force” many sequences from 

sequence space, and estimate the fraction of sequences with a structure of interest. If one 

focuses only on sequences compatible with a given structure – sequences where only 

bases capable of pairing occur in the structure’s stacks – then these approaches are 

practical for single structures up to L≈40. However, for our work we need to do this kind 

of calculation for thousands of structures, and for neutral set sizes that may exceed 10
20

. 

We thus need a more sophisticated approach. In what follows we describe a method that 

leads to reliable estimates for much larger L. In addition, this method achieves uniform 

sampling regardless of whether sequences adopting a given structure fall into one neutral 

network, or into multiple, disjoint neutral networks. In a second part, we explain how this 

approach can be used to quantify whether a structure’s neutral set is atypically large or 

small. 

 

 

Part 1: A Nested Monte Carlo approach to estimate the size of a neutral set 

 

We are given a discrete space of 4
L
 genotypes (RNA sequences), where L is sequence 

length. We would like to determine the number of genotypes in this space that have a 

given “target” phenotype (structure) S
*
. To this end, we have developed a Monte Carlo 

sampling approach. It builds on the Metropolis algorithm [20] that can sample connected 

spaces according to any predefined probability measure. However, the sampling of a set 
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does not yield an estimate of its size. We overcome this shortcoming by considering 

nested sampling. Our approach only assumes that there exists a distance metric d(S,S
*
) 

among all phenotypes, or at least a measure of distance between any phenotype S and the 

target S
*
. (We here used the base-pair or bond distance calculated in the Vienna RNA 

package [15], and note that the choice of distance does not affect the framework of our 

estimation method.) In practice, d will be an integer, ranging from 0 to some integer dmax; 

d = 0 if and only if S = S
*
. We will call V(d) the number of genotypes whose phenotype S 

satisfies d(S, S
*
) � d, and we will refer to the set of these genotypes also as V(d). Our 

quantity of interest is V(0), the size of S*’s neutral set, be it connected or not. To compute 

this quantity, we use the identity 

 

)(
)(
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)2(

)1(

)1(

)0(
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Because L
dV 4)( max = is known, V(0) can be estimated from the estimates of all the ratios 

V(d)/V(d+1). These ratios can be estimated using the Metropolis algorithm by sampling 

uniformly the space V(d+1), and measuring the average of the indicator (characteristic) 

function χd of V(d)  
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Note that by construction the sets V(d) are nested, either like Russian dolls, or in more 

complicated ways, since each set need not be connected. The innermost set, V(0), is the 

ultimate set of interest and its size is the desired neutral set size; all the other sets are just 

of use to connect V(0) to the known quantity V(dmax)=4
L
. 

 To estimate the ratio V(d)/V(d+1) we sample V(d+1) uniformly using the 

Metropolis algorithm. Specifically, we begin with an arbitrary genotype G1 in V(d+1), 

and produce a (Markov) chain, G1, G2 . . .Gk . . ., of genotypes. To obtain Gk+1 from Gk, a 

random nucleotide in Gk is changed, producing a mutated genotype G�; if G��V(d + 

1), then Gk+1 = G�, otherwise Gk+1 = Gk. At sufficiently large k, the distribution of Gk is 

uniform in V(d+1), allowing for unbiased statistical estimates of )(Gdχ . To be precise, at 

this stage the sampling is uniform but restricted to the connected component of V(d+1) 

that contains G1. 

 As described so far, nested sampling estimates the ratios V(d)/V(d+1) by 

performing independent Monte Carlo simulations for each d, but the algorithm is sound 

only if each set V(d) is connected. To guarantee soundness even when this is not the case, 

we estimate all the ratios in (1) simultaneously, introducing genotype “swaps” similar to 

those used in the Exchange Monte Carlo approach [21, 22]. Specifically, we first 

initialize the Monte Carlo procedure by establishing as many sequences in V(0) as there 

are ratios to estimate in (1). It is simplest to initialize all these sequences to the same 

element of the neutral set which we assume to be non empty. Whether this initial 

sequence is from an unbiased (i.e., uniform) distribution does not matter. We thus use 

inverse_fold [15] to establish such a sequence. Each of these sequences will then 
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start a random walk that will be used to estimate one of the ratios of (1). At each round of 

the Nested Monte Carlo, there are now two steps. The first is a mutation step, in which 

each random “walker” is mutated as described above according to the Metropolis rule; it 

is thus confined to the set V(d+1) used to estimate the ratio V(d)/V(d+1) (d is different 

for every random walker). The second step consists of a swap of two sequences: 

genotype 1 in V(d) is exchanged with genotype 2 in V(d+1), if and only if genotype 1 

also lies in V(d+1), and if genotype 2 also lies in V(d). That a genotype lies in two sets is 

possible, because the sets are nested. Just as in Exchange Monte Carlo, one can prove that 

the detailed balance condition upon with the success of the Metropolis algorithm rests [20] 

is still satisfied with this procedure; thus the desired fractions can still be computed in the 

same way as for the simple sampling previously described.  

While it may seem that this generalized Monte Carlo method is simply a parallel 

version of our initial sampling, the introduction of swaps has two important benefits. First, 

as in all Markov chains, the successive sequences of genotypes generated in the 

Metropolis algorithm are correlated. This correlation leads to statistical errors and thus is 

undesirable. The random swaps reduce this correlation and thus lead to greater 

computational power. Second, ergodicity – uniform sampling regardless of whether the 

sets V(d) are connected or not – is guaranteed by the modified Monte Carlo algorithm. 

The reason is as follows. The detailed balance condition for each walker ensures that all 

genotypes which can be reached are necessarily sampled with equal probability. Now in 

the largest volume V(dmax) (the entire sequence space), the random walk is ergodic, 

simply because the entire sequence space V(dmax) is connected. Through swaps, walkers 

can reach any genotype in V(dmax-1), so that the random walk in V(dmax-1) is also ergodic. 

By recurrence, one can see that the random walk in V(d) is ergodic for all d. 

We note that the sampling scheme from (1) can also be generalized to other 

nested sets of volumes that do not use successive values of d as in (1). Greater efficiency 

could be obtained by adapting the choice of d-values: Having too many fractions to 

estimate in (1) leads to excessive computational cost, while too few fractions lead to poor 

sampling and large sampling variance. In our application to RNA molecules below, we  

found that the simplest procedure, of using all d up to dmax was adequate. Note also that 

our approach will work not only for RNA genotypes, but for any genotype space (discrete 

or continuous) as long as a distance metric between phenotypes exists. Our software to 

estimate neutral network sizes is available at 

http://www.bioc.uzh.ch/wagner/publications-software.html.  

 

Part 2: Evaluating the abundance of secondary structures 

 

We now have described how to estimate the neutral set size of an individual structure.  

One of our goals is to find out whether biological structures have neutral sets that are 

atypical in size. Since evolvability arguments suggest that these sizes might be large, we 

shall ask whether biological neutral network sizes are much larger than those of typical 

structures. Specifically, we wish to test the null hypothesis H0 that a given secondary 

structure of a biological RNA molecule has an associated neutral set whose size could 

have been drawn at random from the distribution of all neutral set sizes, i.e., from 

randomly chosen phenotypes. (Further below, we shall also briefly consider phenotypes 

generated from random genotypes.) This task requires us to estimate neutral set sizes for 
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many different structures. However, already for moderate length L, there is an 

astronomical number of structures, and we thus cannot enumerate them exhaustively. We 

here demonstrate the theoretical foundation of an enhanced sampling method that allows 

us to estimate the comparative abundance of a phenotype.  

 Neutral set sizes NS follow some distribution P(NS=x), defined as the probability 

that NS equals some integer x (xmin≤x≤xmax). Although this distribution is discrete, there 

are so many different structures that a continuous notation with a corresponding 

probability density ρ(x) is appropriate. Note that 1)(
0

=∫∞ dxxρ . We would reject H0 if, for a 

specific phenotype S
*
 and its neutral set size NS*,  

05.0)()(

*

* <= ∫∞ dxxSP

SN

ρ         (3) 

 

i.e., we integrate over the right tail of the distribution, thus performing a one-tailed test . 

If (3) holds for a neutral set, we call the set atypically large at a confidence level of 0.05, 

but this threshold can of course be reduced if a more conservative test is needed. 

 We next demonstrate an intimate link between the P-value and the rank histogram 

of neutral set sizes, which will lead us to a sampling scheme to estimate small P-values. 

For very short sequences, one can calculate P-values by exhaustive enumeration of 

sequences and structures. Consider, for example Figure 1, which shows all 58 RNA 

secondary structures for L=12 for which there exists at least one sequence folding into the 

structure. (We never consider structures for which the neutral set is empty, i.e. NS =0.) In 

this case with L=12, each neutral set (network) size is unique. In the figure, the structures 

are rank-ordered with the largest neutral network size (lowest rank of 1) to the right. For 

any given structure, we can immediately evaluate whether (3) holds by verifying whether 

it is among the 5% of phenotypes with lowest rank. More precisely, if N is the total 

number of structures, and R is the rank of a given structure S
*
, then the associated P-value 

can also be thought of as a “relative rank” P(S
*
)=r:=R/N.  Ties, where two or more 

structures have the same neutral set size, can be resolved by assigning these structures 

successive ranks. Note that the most abundant, lowest ranked structure in Figure 1 

corresponds to the unfolded “structure”. Because that structure is of no interest for our 

work, we shall not include it in our figures or data sets hereafter. 

 For large L, such rank histograms cannot be computed, because the number of 

structures scales exponentially with L, so it is not generally possible to identify all 

structures. Our sampling approach avoids this problem, thereby allowing the estimation 

of P-values at much larger L. The key point is that the (absolute) rank of a structure is not 

necessary, we only need an estimate of its relative rank, and that can be obtained as 

follows.  First, we generate M random structures, where each structure is obtained with 

equal probability, compute their neutral set sizes, and then sort these sizes. For the second 

step, consider a structure S
*
 of neutral set size NS*. Its (absolute) rank R is unknown, but 

its relative rank R/N can be estimated as R’/M where R’ is the number of structures in the 

sample of size M that have neutral sets at least as large as NS*. The associated estimate of 

P(S*) is then simply R’/M.     

A complication to this sampling approach comes from the requirement of random 

(uniform) sampling of phenotypes. For RNA secondary structures, phenotypes could be 
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sampled by random assignments of allowed base pairings [23], but in other systems, such 

phenotypic sampling may not be straightforward. In addition, some phenotypes may have 

empty neutral sets, i.e., NS =0, in which case the phenotype is not “designable” [15, 23-

25]. Undesignable phenotypes are of limited biological interest, but certain knowledge 

that  a phenotype is undesignable is hard to come by. To overcome this challenge, and to 

avoid undesignable phenotypes, one can perform random sampling of genotypes instead. 

However, in this approach, the computation of the P-value has to be modified because 

one does not sample phenotypes uniformly, but only genotypes. In effect, each phenotype 

S is chosen with a probability ∑S SS NN  that is linearly proportional to the size NS of 

its neutral set. In such a sampling, phenotypes with large neutral sets arise more 

frequently than those with small neutral sets. In this sense, the sampling of phenotypes is 

biased (non-uniform). Incidentally, this bias focuses the sampling on structures with large 

neutral sets, which allows us to estimate small P-values with a small statistical error. We 

next explain how to calculate the P-values of equation (3) with this sampling scheme. 

Returning to our continuous notation, denote by dxx)(µ the probability of 

obtaining a neutral set size in the interval [x,x+dx] through this random genotype 

sampling. The linear dependence of the sampling probability on neutral set size leads to 

the following expression for )(xµ : 

∫∞
=

0

)(

)(
)(

dyyy

xx
x

ρ

ρ
µ          (4) 

        

The denominator is a normalization constant which ensures that )(sµ  is a proper 

probability density. Equation (3) can be rewritten as 

 

dx
x

x
xSP

SN
)(

)(
)()(

*

*

µ

ρ
µ∫∞=         (5) 

        

 

It follows from (4) that 

 

∫∞=
0
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1
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ρ

µ
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Taking advantage of (6) to modify (5) yields 
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dyyydx
x

xdxdyyy
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xSP

sS NN

ρµρµ     (7) 

 

We can determine the value of the rightmost integral by setting NS*  to zero, because 

Equation (3) shows that in this case P(S
*
)=1.  We then obtain 
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dx
x

x

dyyy
1

)(

1
)(

0

0 ∫∫ ∞

∞

=

µ

ρ         (8) 

   

Finally, substituting (8) into (7) gives  

 

dx
x

x

dx
x

x

SP SN

1
)(

1
)(

)(

0
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∫
∫
∞

∞

=

µ

µ

         (9) 

 

In sum, we can use (9) to estimate P(S
*
) by sampling genotypes at random (which is 

equivalent to sampling phenotypes with a probability density given by equation (4)). In 

practical terms, in order to estimate the P-value of any (biological) structure S
*
 of interest, 

we first determine the neutral set sizes (NS1, …, NSM) for M structures obtained from a 

sample of M random sequences, using the Nested Monte Carlo approach. We then 

estimate the structure’s neutral set size NS*. Finally, we estimate the P-value of S
*
 as 

 

{ }

∑
∑

=

>
≈

1

|*

1

1

)(
*

i S

NNi S

i

Sis i

N

N
SP         (10) 

Here, summation in the numerator extends over all structures in the sample whose neutral 

set is greater than that of S*.  

Analogous P-values can be estimated for related hypotheses. For example, 

beyond testing for anomalously small neutral set sizes, one can ask whether the neutral 

network of a particular phenotype is significantly larger than neutral networks associated 

with the phenotypes of random genotypes; to test this hypothesis, no reweighting is 

necessary and P(S*) is simply given by the fraction of random genotypes that have 

neutral sets larger than S*. Additional File 1 shows a comparison of our procedure with 

an exact enumeration method that is tractable for very short sequences. 

 

Algorithm performance  

 

The Nested Monte Carlo approach overcomes the difficulty of measuring the tiny fraction 

V(0)/V(dmax) by replacing it with the problem of measuring the series of larger fractions 

V(d)/V(d+1). The cost paid is the need to follow dmax random walkers rather than just one 

such walker. For our RNA application, this cost is dominated by the cost of folding 

sequences. In the Vienna package [15], the time to fold a sequence of L bases grows as L
3
. 

This is to be compared with the time to implement a random mutation (O(1)) or to 

implement a swap (O(L)). It is thus no surprise then that the Nested Monte Carlo 

procedure consumes nearly all its CPU time within the folding routine.  In an individual 
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run, at least 10
5
×L mutations are carried out. On today's standard desktop workstations 

(AMD Opteron, 2.4GHz) it takes approximately 30 minutes to compute the neutral 

network size to within 2% when L=30, about 145 minutes when L=50, and more than 24 

hours when L=100. The longer the run, the more precise the estimate becomes.  

We have the choice of sampling the whole space of genotypes, or of imposing any 

additional constraint on the genotypes, as long as V(0) (the neutral set size, NS ) is 

unaffected and the restricted V(dmax) can be computed. We thus implemented in our 

software tool the ability to impose the constraint of working only with “compatible” 

sequences. We here use this ability. Specifically, we force those bases which are paired in 

V(0) to always be “compatible” i.e., the pairs A-C, A-G and C-U are not allowed. This 

constraint leads to a smaller sampling space in our nested Monte Carlo approach, and 

thus to a smaller statistical error. 

Since the sampling is performed via a Markov chain, the successive genotypes are 

highly correlated, because they differ by only one mutation. One can observe these 

correlations very clearly via the distance between a genotype at mutation/swap cycle t 

and the genotype at cycle t+τ. These correlations are expected to persist on a time scale 

that is on the order of the number L of bases of the sequence. The reason is that each base 

should be mutated at least once, if the distances are to decorrelate completely; the inset of 

Additional File 2 validates this expectation. Clearly, a Monte Carlo run must be much 

longer than this decorrelation time, and even in that situation the statistical error analysis 

requires some care. For illustration, we display in Additional File 2 the estimator of V(0) 

as a function of the cycle number, using window averages. The signal is clearly noisy and 

on this time scale the short term memory (correlation) is invisible.  

 

Application to biological RNA sequences 

 

We next applied the Nested Monte Carlo algorithm to 82 sequences of length 30≤L≤50 in 

the functional RNA database fRNAdb [http://www.ncrna.org/frnadb, ref 26]. The 

database does not provide curated structures, so we used the secondary structures 

predicted by the Vienna package [15]. Only computational limitations prevented us from 

studying a larger data set or a data set of longer sequences. We determined both neutral 

set sizes and P-values for secondary structures, where a structure’s P-value is, as defined 

above, the fraction of structures with a larger neutral set. Table 1 shows one 

representative from each functional category in this data set. It is evident that even for the 

relatively short sequences considered here, neutral set sizes are enormous. For example, 

there are more than 10
22

 sequences forming the predicted structure of a snRNA of 

Pyrococcus abyssi (genbank ID AJ248287). However, even the collection of all these 

sequences constitutes only a small fraction (1.1×10
-9

=1.1×10
22

/4
50

) of the vast sequence 

space. The computation of the P-value of this structure gives 2.95×10
-5

. This means that 

fewer than one in 30,000 (1/2.95×10
-5

=33,898) structures have a larger network than this 

structure. Similar P-values arise for the other structures in Table 1. We note that the error 

estimates of both neutral set sizes and P-values are generally substantially smaller than 

the estimates themselves, that is, the relative error is small. In the Supplementary 

Material (Table S1), we give the neutral network sizes for all 82 sequences examined. 

 Figure 2a shows a comparison of neutral network sizes and P-values for randomly 

(i.e. uniformly) chosen RNA secondary structures and biological RNA sequences. The 
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data for randomly chosen structures were obtained by sampling 5000 random sequences 

of length L=50, and determining their neutral network size and P-value as explained 

above. Superimposed are the corresponding data for 38 biological RNA sequences of 

length L=50. Neutral network size estimation errors have been omitted for clarity, but the 

median relative error did not exceed 2%. The median neutral network size among the 

biological structures shown is 9.1×10
21

, with a 10
th

 percentile of 6.4×10
19

 and a 90
th

 

percentile of 5.54×10
23

. The median biological structure in this data set comprises a 

fraction 7.2×10
-9

 of sequence space.  The median P-value is 3.81×10
-5

 (10
th

 percentile: 

1.4x10
-7

; 90
th

 percentile: 4.03x10
-3

). This means that, on average only one in 26,247 

(=1/3.81×10
-5

) random structures have a neutral network greater than biological 

structures in this data set.  

An analogous analysis can be performed by comparing the neutral network sizes 

of biological structures to neutral network sizes of random genotypes. Random genotypes 

adopt phenotypes whose neutral network sizes are larger than that of random phenotypes, 

because each phenotype is produced with a probability proportional to the size of its 

neutral network (see also the formulae in Part 2). In this analysis, we find that for random 

sequences of length L=50, the associated median neutral network size is 3.64×10
21

  while 

the 90
th

 percentile is 2.87×10
23

. Thus the biological sequences we studied have larger 

neutral networks than random sequences, but the difference is less dramatic than for 

random phenotypes, and our sample sizes are too small to make statistical conclusions. 

 Because of the different sizes of sequence spaces for different L, rank histograms 

like that of Figure 1 cannot be produced for sequences mixing different lengths. However, 

P-values can be compared for such sequences, because their meaning is length-

independent. Figure 2b shows a histogram of logarithmically transformed P-values for all 

82 (Additional File 3) structures examined here. Again, this larger data set also shows 

that biological structures have atypically large neutral networks when compared to 

random structures. The median P-value for all 82 structures is 5.7×10
-5

, with a 10
th

 and 

90
th

 percentile of 4.1×10
-7

 and 4.4×10
-3

. In sum, fewer than one in 10,000 randomly 

chosen structures have more associated sequences than the typical biological RNA 

structure in our data set. Only one out of 82 structures has a P-value of greater than 0.05, 

and only four have a P-value greater than 0.01. Figure 2c shows, for the same 82 

structures, a histogram of neutral network sizes, expressed as fractions of sequence space. 

As in the above examples, the neutral networks of even such highly abundant structures 

span only a tiny fraction of sequence space. (Median/10
th

/90
th

 percentile:1.4×10
-7

/9.2×10
-

10
/9.6×10

-5
). This can be understood from the fact that even the set of sequences 

compatible with a secondary structure, which contains the neutral network, encompasses 

only a tiny fraction of sequence space [4, 27]. 

 The mutational robustness of a sequence is the fraction of its neighbors that are 

neutral (have the same phenotype as it), or, equivalently, the fraction of mutations that 

leave a sequence’s structure unchanged [28, 29]. Similarly, we can define the mutational 

robustness Rµ of a structure as the mean mutational robustness of the sequences 

belonging to its neutral network. Figure 3 shows how Rµ depends on neutral network size. 

For the 82 biological RNA sequences we examined, mutational robustness increases 

(Spearman’s r=0.78) with increasing logarithm of the neutral network size, NS. If we 

focus on structures of a given length L, this association is even stronger (e.g., for L=50 

Spearman’s r=0.95; n=38; P<10
-17

; Figure 3, inset). The partial correlation coefficient 
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between the two quantities (controlling for length) is r=0.92 (P<0.05). We also observe 

that as neutral network size increases by eight orders of magnitude (note the logarithmic 

scale on the horizontal axis of Figure 3), mutational robustness increases only modestly, 

i.e., by a factor of approximately two. 
 

Finally, given the computational cost of our Nested Monte Carlo approach, it is 

reasonable to ask whether there are good indicators of neutral network size that are more 

easily computed. Possibly the simplest candidate indicator is the number of paired bases 

in a structure. In line with the simple expectation that each base has a certain probability 

of being paired in a random structure, one finds empirically that the mean number of 

paired bases grows linearly with L. Similarly, the entropy of a structure, defined 

thermodynamically as the logarithm of the neutral network size NS, is expected to grow 

linearly with L. As a consequence, to compare indicators of neutral network size across 

structures of different length L, it is useful to compare these quantities to their mean or 

median values. For that reason, we consider the association between log(NS)/L and the 

fraction of paired bases. We find a significant negative association (Figure 4a; 

Spearman’s r=-0.63; P<10
-9

). The more paired bases a structure has, the smaller is thus 

its neutral network. However, this association explains less than 40% of the variance of 

neutral network size (coefficient of determination r
2
=0.39). We note that omitting the 

length-normalization of neutral network size or the number of paired bases leads to even 

lower associations. Previous work, partly based on artificial random graphs, partly based 

on genotype-phenotype maps of short sequences, points to reasons why such indicators 

have limited value [27-32]. It also indicates that the minimum free energy itself may be 

an indicator of the biological origin of a structure [30]. 

Recently, an easily computed contiguity statistic of neutral network sizes was 

proposed [33]. This indicator adds a structure’s total bases in stem-loops to the number of 

paired bases, and divides this sum by the number of stacks. We find that this indicator is 

positively associated with neutral network size (Figure 4b; Spearman’s r=0.36; n=82; 

P=1.05×10
-3

), an association that decreases if neutral network size is not length-

normalized. The association explains a fraction r
2
=0.16 of the variance. Our observations 

above suggest that the biological RNA phenotypes we examined differ very significantly 

from random phenotypes, which raises the possibility that the previous indicators may 

work better or worse for random RNA sequences. We find that this is in fact the case. For 

example, in a random sample of 2500 sequences of length 40, Spearman’s r=-0.58 for 

numbers of paired bases and log-transformed neutral network size, and Spearman’s 

r=0.54 for the contiguity statistic and log-transformed neutral network size (P<10
-17

). 

However, the fractions of explained variances are less than r
2
=0.4 and r

2
=0.3, 

respectively. In sum, rapidly computed indicators of neutral network size exist, but these 

indicators leave the majority of neutral network size variance unexplained. 

 

Discussion 

 

The method we presented to compute neutral set sizes makes direct estimation of 

astronomically large neutral set sizes possible for the first time, but this ability comes at a 

cost. With currently available computational resources, the method can accurately 

estimate neutral set sizes for individual RNA molecules up to length L=100.  If one wants 

to estimate the relative abundance of an RNA phenotype, this size reduces to L=60  
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because one needs to estimate relative ranks from a sufficiently large sample of 

genotypes in the same sequence space, as we did in Figure 2a. Many functional RNA 

molecules are substantially longer than that, so computational cost is currently a 

limitation.     

 In earlier work, an RNA structure was called frequent if its associated neutral set 

had a size greater than that of the average neutral set [18, 34]. Using our notation, such a 

frequent structure has a P-value of P<0.05. The 82 biological structures from the 

functional RNA database [26] that we examined here are vastly more abundant than that. 

Their median P-value of 5.7×10
-5

 means that fewer than 1/P≈17,500 structures are more 

abundant than the average biological structure. Despite their atypically large neutral sets, 

these networks occupy only a very small (median) fraction of 1.4×10
-7

 of sequence space. 

These observations show that a structure may both occupy a tiny fraction of sequence 

space, and have a huge neutral set. The reason is simply that sequence space is 

unfathomably large, and has enough space for an astronomical number of structures with 

enormous neutral sets. Being atypically abundant and occupying a small fraction of 

sequence space are thus no contradictions. This would hold even more so for sequences 

longer than those we were able to study. When comparing neutral network sizes of 

biological structures to structures adopted by random genotypes, we found the biological 

structures to have somewhat larger neutral network sizes, but our sample sizes were too 

small to draw statistically sound conclusions.  

 Why are structures of biological molecules not atypically rare? Consider an 

evolutionary search in sequence space that is successful only if it discovers a sequence 

with a desirable structure, a structure that can be involved in some biological function 

beneficial to the organism. If both a rare and a frequent structure can satisfy these 

constraints, then the search will most likely find the frequent structure first. In other 

words, the abundance of biological structures suggests that solutions to problems that 

organisms face will be more readily found among abundant structures. 

 A high abundance of biological structures – if true generally – would have 

implications for the ability to find new structural variants starting from any one structure 

S. Rare structures S have small neutral networks. Their immediate neighborhood– defined 

as all sequences that differ by one nucleotide from a sequence on the network – will 

contain few structures different from S. In contrast, abundant structures have large neutral 

networks, in whose neighborhood many structural variants reside. If we accept that some 

small fraction of such variants may be novel structures beneficial to the organism – 

evolutionary innovations – then abundant structures may have an advantage in 

discovering such innovations, simply because they have access to more structural variants. 

A large neutral network may thus facilitate the production of useful phenotypic variation 

[7, 33, 35, 36]. (Incidentally, among these structural variants, abundant structures would 

again be more easily found.) In addition, it has been shown that populations of RNA 

molecules which evolve under the influence of mutation and selection to maintain their 

structure, can spread more rapidly on a large neutral network. They thus gain access to a 

greater amount of structural variants in their immediate neighborhood [7]. All in all, 

structural abundance can facilitate the production of structural variation, as can other 

factors [27, 28, 37-40]. 

 Our observations on average mutational robustness of RNA sequences also speak 

to the importance of neutral network size. RNA sequences with extremely high 
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mutational robustness have few new structures in their neighborhoods [6]. One might 

thus think that RNA phenotypes with large neutral networks would show such extremely 

high robustness. However, for the 82 structures we analyzed here, mutational robustness 

is modest and varies by a factor of less than two (Rµ=0.23-0.52), whereas the 

corresponding neutral network sizes vary by more than fourteen orders of magnitude 

(1.7×10
11

-2.2×10
25

). A similar observation has been made previously in studies of 

random graphs that can be used as models for the RNA genotype-phenotype relationship 

[4]. It suggests that a modestly reduced number of neighbors with different structures in 

large neutral networks is much more than compensated for by the vastly increased neutral 

network size observed in abundant structures.   

 Some caveats to our findings are in order. First, while they suggest that many 

biological RNA sequences may have abundant structures, it is clear that there are 

biological RNA structures that are rare. The most prominent example is the simple stem-

loop (or hairpin), which, unadorned by other structural elements, is a frequent regulatory 

motif, for example in translational regulation [41]. Because its many paired bases 

constrain its sequence severely, it is a rare structure. Second, although for some 

regulatory RNA molecules, only the secondary structure may be important, many RNA 

molecules may evolve under substantial additional constraints. Consider, for example, the 

hammerhead ribozyme [42], where some mutations that leave the secondary structure 

intact may completely abolish its biochemical activity; or the telomerase RNA, whose 

interaction with telomerase is critical for telomerase function [43]. For such RNA 

molecules, the set of mutations that do not abolish RNA function will be substantially 

smaller than the set of mutations that preserve the secondary structure. However, even in 

that case, structures with a larger neutral network to begin with may tolerate more 

sequence change.  Third, for reasons of computational limitations, we have considered 

only a small sample of RNA structures. The most prominent known functional RNA 

structures are much longer than those we could study here, and it is an open question 

whether the same observations will hold for longer sequences. We hope that the method 

we propose here will help answer this question.   

  

Conclusions 

 

We here presented a method to estimate the size of the set of genotypes that adopt a 

given phenotype, and to estimate the size of this set relative to other such sets.  

Because the method is based on the Nested Monte Carlo approach, it can estimate neutral 

set sizes even where these sets are disconnected. Although we applied the method to 

RNA molecules, the method is general and can be applied to different systems, such as 

proteins or biological networks, provided that two prerequisites are met. First, for the 

study system it must be possible to determine a phenotype from a given genotype. The 

number of genotype-phenotype maps where this is possible is increasing, and includes 

not only molecular phenotypes (e.g., lattice proteins and simple peptides), but also 

phenotypes adopted by genetic networks [44-46]. Second, a notion of distance among 

different phenotypes must exist. This is generally not a problem because such measures 

can be readily defined for phenotypes as different as protein structures and gene 

expression patterns.  The overall computational framework may also be of use in other 

disciplines such as computer science or engineering.   
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Figure Captions: 

 

Figure 1: Validation of algorithm. For all 58 structures adopted by sequences of length 

12, the horizontal axis shows neutral network sizes, the vertical axis shows the rank of 

each structure, as determined by neutral network size. This rank was determined in two 

different ways, by exact enumeration (black, solid circles), and by the Nested Monte 

Carlo approach (grey circles, error bars) described in the text.  

 

Figure 2: Biological RNA molecules have atypically large neutral networks.   

a) The horizontal axis shows neutral network sizes, the vertical axis shows P-values 

determined for a random sample of 5000 RNA structures of length L=50 (grey circles), as 

well as all 38 RNA molecules of length L=50 from the functional RNA database (black 

circles) [26]. b) distribution of P-values, and c) distribution of neutral network sizes, for 

structures in the functional RNA database with length L≤50. 

  

Figure 3: Mutational robustness correlates with neutral network size.  

The horizontal axis shows the logarithm of neutral network sizes divided by 4
L
 for the 

biological RNA sequences examined here. The vertical axis shows Rµ , the average 

mutational robustnes of sequences belonging to a neutral network (see main text for 

definition of mutational robustness). Each data point for Rµ  is based on 40000 sequences 

obtained through the uniform sampling of one neutral set using the Nested Monte Carlo 

procedure. The inset shows only data for biological sequences with the same length of 

L=50. The diagonal line was obtained by linear regression.
 

 

Figure 4: Other indicators correlate modestly with neutral network size. The 

horizontal axes show the logarithm of neutral network sizes for the 82 biological RNA 

sequences examined here, divided by their length L. a) The vertical axis shows the 

number of paired bases in each of these sequences divided by L. b) The vertical axis 

shows the contiguity statistic [33] described in the main text. The diagonal lines were 

obtained by linear regression.  

 

 

Additional Files:  
Additional File 1 

File format: DOC 

Title: The effect of our sampling procedure.  

Description: The horizontal axis shows neutral network sizes, the vertical axis shows P-

values determined in two different ways, for all 224 structures adopted by sequences of 

length 14. For molecules this short, all sequences can be enumerated, and neutral network 

sizes, as well as P-values can thus be determined exactly (black circles). Grey, open 

circles with error bars indicate estimates obtained for M=10000 sequences through the 

Nested Monte Carlo method with our sampling procedure. As discussed in the main text, 

the biased sampling procedure preferentially identifies structures with large neutral 

networks. This is reflected in the higher accuracy of our estimates for large neutral 
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network sizes (main figure), which are most relevant to the analysis of biological RNA 

molecules (enlargement displayed in inset).  

 

Additional File 2 

File format: DOC 

Title: Cycle to cycle correlations in the Markov chain procedure.  

Description: Variation in estimated neutral network sizes during 700,000 

mutation/exchange cycles for a 54nt hammerhead structure 

“(((((((.(((((...))))).......(((((......)))))...)))))))” involved in the self-cleavage of peach latent 

mosaic viroid. Data is plotted every 2000 cycles and shows that correlations arise only on 

short time scales. The horizontal line indicates the mean of 8.0×10
22

 over the entire 

window shown. The inset shows the autocorrelation function C(τ) of genotype distances 

at cycle t and t+τ : 50 cycles is enough to lose memory of the preceding genotype. Thus, 

the Markov chain explores efficiently all genotype space. 

 

Additional File 3: 

File format: PDF 

Title: The 82 biological RNA molecules used in this study. 

Description: None 
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