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Abstract

I present a framework to study the evolution of traits that allow an organism to survive life-threatening but rare risks. Specifically,

I am concerned with risks so rare that any one individual in a population may not experience the risk-causing event in its lifetime.

A theory of rare risk management is virtually absent in evolutionary biology, although it is well developed in economics. This is

surprising because of the great influence economics had on evolutionary biology, and because biology is full of examples for evolved

risk management traits. They include the ability of bacteria to sporulate, of pathogens to survive antibiotic treatment, of temperate

bacteriophages to enter a lytic life cycle, as well as traits that allow higher organisms to survive rare environmental disasters, such as

sporadic wildfires and irregular flooding. I make predictions about the sustenance of risk management traits under two scenarios,

one where the catastrophic events cause individual deaths, and another one where catastrophic events cause population extinction.

A well-developed theory of risk management will not only predict the distribution of risk management traits, but may also serve

other purposes, such as to reconstruct the spectrum of environments that an organism encountered in its evolutionary history from

the record stored in its genome’s memory.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Evolutionary biology has been greatly influenced by
economic thinking. The history of this marriage begins
with Malthus’ insights on population growth and their
influence on Darwins work (Mayr, 1982, p. 82). More
recent examples include the concept that life is
constrained by resources that must be allocated opti-
mally, the notion that organisms play evolutionary
games (Maynard-Smith, 1982), and that organisms
compete in biological markets (Noe and Hammerstein,
1995; Frank, 1998, p. 26). One key economic concept,
however, has received relatively little attention in
evolutionary biology. It is the concept of risk. Risk,
uncertainty as to loss of ‘assets’ or life, is ubiquitous in
both economic activity (Greene et al., 1992) and
organismal life. In human history risk management
originated early, being first documented in the Code of
Hammurabi (about 1800 BC) (Bernstein, 1995), which
contains the first cases of marine insurance against the
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risk of maritime disasters. In modern times, risk
management permeates all areas of economic life. It is
employed in a multibillion dollar insurance industry to
protect property and life, and in sophisticated mathe-
matical tools to protect financial assets against volatility
(Markowitz, 1991; Beckers, 1998). Its importance
extends also to many other areas outside economics,
most prominent among them technology risk manage-
ment, where a vast body of both popular and technical
literature exists (Chiles, 2001; Perrow, 1999; Pritchard,
2001; Vose, 2000; Zhou et al., 2002).

I will give the briefest overview over some economic
risk management strategies for which parallels in non-
human life are easy to find. Economic risk management
techniques fall into several categories (Greene et al.,
1992). The first of them is risk avoidance, exemplified by
individuals who avoid taking airplanes or give up
practicing medicine in the face of risking malpractice
lawsuits. Loss control may present a second option
when a risk is difficult to avoid. Loss control takes at
least three forms, frequency reduction, severity reduc-
tion, and diversification. Frequency reduction aims at
reducing the incidence of loss-causing events. It is
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exemplified by a driver who avoids busy roads to avoid
accidents. Severity reduction, the second form of loss
control, is illustrated by a driver who wears seat belts.
Diversification, finally, is especially important in busi-
ness and finance. For example, a firm may use several
warehouses to store goods to protect against the risk of
fire. A third main strategy of risk management, after risk
avoidance and loss control, is risk retention. It involves
the assumption of risk. A company or individual that
practices risk retention does not try to avoid cata-
strophic events but generates back-up resources. And
finally, there is risk transfer, where an institution
different from the risk carrier assumes the risk. Most
forms of insurance fall under this definition. Needless to
say, the distinction between these risk management
strategies is not clear-cut. For instance, self-insurance
can be viewed as a form of either insurance or risk
retention. And a medical practicioner undergoing
continuing training engages both in frequency reduction
and severity reduction with respect to malpractice
lawsuits.

Countless examples for any of these risk management
strategies can be found in non-human organisms.
Diversification in an organism’s diet assures survival if
one of the food species suffers extinction. The ability to
migrate can be viewed as a strategy to avoid the risks of
climatic extremes. Food storage is nearly ubiquituous
from microbes to mammals. It can be viewed as a risk
retention strategy. However, the parallels between
economics and evolution are limited. One example is
the area of risk assumption. The analog of insurance
companies, institutions whose sole purpose is to assume
the risk of others, may be completely absent in non-
humans. The same holds for the important economic
distinction between pure and speculative risks. A pure
risk is a risk due to an event that may cause a loss (and
only a loss). In a speculative risk, a gain is equally
possible. While it is possible to construe some biological
risks as speculative risks (one organisms death in a
catastrophic event may free resources available for
better risk managers), the very notion of speculation
carries a connotation of planning or foresight, whereas
risk management in non-human organisms reflects past
survival. I will thus limit myself to pure risks, risks of
losses. Economics also distinguishes between static—
unchanging—risks and dynamic risks. Examples include
losses due to lightning or storms on one hand, and the
risk of extinction in a habitat with changing species
composition. While virtually all risks may be dynamic
risks, modeling risk is often only possible if the incidence
of losses does not change over time.

Any life-sustaining activity is fraught with risks.
Foraging animals are subject to the risks of predation,
plants are subject to the risks of herbivore damage,
cooperation in social organisms is subject to exploita-
tion, ectotherms are subject to the risk of extreme
temperature variation, all of life is subject to the risk of
parasitism, and so on. Countless organismal adaptations
can be understood as evolved strategies to manage risks.
Most of these adaptations already have adequate
evolutionary explanations. Specifically, a considerable
body of work on ‘bet-hedging’ regards adaptations to
frequent risks that many organisms encounter (Gillespie
1973, 1977; Hopeer, 1999; Real, 1980; Stearns, 1992).
However, current evolutionary thinking does not extend
to an important class of risks, risks that have two
distinguishing features. First, these risks have severe
impact on the survival of an organism or a population:
They threaten death or extinction. Two examples follow.
Lysogenic bacteriophage can integrate their genomes
into that of a host bacterium (Ackermann and DuBow,
1987). They remain dormant and replicate their genome
along with the host for many generations. When the
host is exposed to severe stress, the proviral genome
enters the lytic life stage. Its genome becomes expressed,
producing many phage particles in a short amount of
time, which leave the sinking ship. The lysogeny-lysis
switch can be viewed as a phage adaptation to the risk of
host stress. Another case in point, from higher organ-
isms, are adaptations to wildfires, such as are found in
vascular plants in the form of fire-stimulated germina-
tion or regeneration through stump-resprouting. Wild-
fires can be rare events whose frequency may be as low
as one per millennium (Clark et al., 1989; Cody and
Mooney, 1978, Ogden et al., 1998). They illustrate the
second feature of the risks I will consider here, namely
their rarity. Unlike risks such as that of predation,
wildfires and life-threatening host stress are not faced on
a day-by-day basis. Loosely speaking, I consider as rare
those catastrophic events that may affect individuals
only once per generation or even less. It is worth noting
that some risks that are normally too frequent to fall in
this category may do so under special circumstances. A
case in point is a population’s risk to become
exterminated by an infecting pathogen. Persistence of
a pathogen in a host population depends on the host
population size. If host population sizes are large,
pathogens persist and any one host is likely to become
infected during its lifetime. If host organisms are few, or
if their density is low (that is, if they are widely
dispersed), endemic infections cannot be sustained and
a pathogen can thus become extinct. Renewed infections
then depend on the reintroduction of the pathogen into
the population, either through migration or through
reinfection from a pathogen reservoir in a different
species. Evidence from island populations, for example,
suggests that human diseases such as measles cannot
persist in populations of less than a quarter to a half
million people. In populations smaller than that, they
periodically go extinct and may become reintroduced,
years later, through travelers (Anderson and May, 1991,
p. 82). Similarly, many human diseases contributing
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greatly to mortality in historic times, such as smallpox
and cholera, could not have persisted in the small
human populations of a pre-agricultural era (Anderson
and May, 1991, p. 654).

Even rare risks might have enormous influence on
organismal evolution. A potential case in point is the
gene content of microbial genomes. Large-scale gene–
deletion studies reveal that free-living microbes contain
thousands of genes that are dispensable for life in a
variety of laboratory environments (Winzeler et al.,
1999). Such apparently dispensable genes may be critical
in rare or unusual environments. Thus, a large fraction
of a genome may embody risk management strategies.
The meaning of ‘rare’ on an absolute time-scale does of
course depend on the organism. It ranges from weeks
for microbes to millennia for higher organisms.

Some risks are so rare, and their impact so severe that
evolving adaptations against them is inconceivable
(think of the proverbial meteor strike.) Others are so
frequent or may have effects so slight that existing
evolutionary theory has no trouble explaining them
(Gillespie, 1973, 1977; Hopeer, 1999; Real, 1980;
Stearns, 1992). The enormous gray area in between is
the subject of this paper. An evolutionary framework to
explain risk management strategies must answer one
main question. Under what conditions can organisms
evolve them? More specifically, how frequent must a risk
be, and how severe its impact for risk management
strategies to evolve? I will here make a first step towards
answering this question for organisms with the simplest
possible life histories and genetics.
2. Model and results

To illustrate the principles at work most clearly, I will
restrict myself to the case of asexually reproducing
organisms or, equivalently, genotypes that differ at one
locus or at several tightly linked loci, such that
recombination can be neglected. Fitness is malthusian,
reflecting population growth rate in continuous time
(Crow and Kimura, 1970, Chapter 1). I will consider
two genotypes, G0 and Gr; which may differ in one or
more genes. Gr is the superior risk manager, that is, it is
less susceptible to a particular rare catastrophic event. I
will consider two evolutionary scenarios that lie at the
extremes of a continuous spectrum. In the first, a rare
catastrophic event affects individuals in a population
independently. That is, a catastrophy is synonymous
with individual death. Examples will typically occur in
populations of macroscopic organisms at low popula-
tion densities, where death may be caused by rare
but localized resource shortages, or by the periodic
introduction of an externally introduced pathogen. In
the second scenario, which may be more important for
large populations of small organisms at high densities,
the rare catastrophic event affects an entire population
and lead to the extinction of all individuals of a
genotype.

The models I present here are very simple. Specifi-
cally, they do not incorporate factors such as polygeny,
sexual reproduction, dispersal, and complex life his-
tories, all of which may affect the evolution of risk
management traits. My motivation for studying such
simple models is twofold. First, they illustrate the
evolutionary principles at work most clearly. Second,
their results can serve as points of reference and
departure for further studies.

2.1. Scenario 1: Risks that cause individual deaths

The absolute frequencies of the genotypes G0 and Gr

are denoted by N0 and Nr; respectively, and the
population size as N ¼ N0 þ Nr: The relative frequency
of Gr is given by pr ¼ Nr=N: The population growth rate
rr of the genotype Gr is defined as

rr ¼ br � ðd þ drÞ: ð1Þ

Here, br is the per capita birth rate, d þ dr is the per-
capita death rate, which has two components, the rate of
deaths d from causes unrelated to the catastrophic event
at issue, and the rate of deaths dr due to such
catastrophic events. One can partition the growth rate
of G0 analogously, i.e., r0 ¼ b0 � ðd þ d0Þ; where b0 is
the birth rate and d0 is the death rate due to the
catastrophic event. Gr is a better risk manager if drod0:
It is perhaps most natural to express this relation as the
ratio dr=d0; such that if dr=d0 ¼ 0:1; Gr is ten times less
likely to perish than G0: Such superior risk management
will usually carry costs in the form of a lower population
growth rate br; that is, brpb0: This cost could be caused
by slower DNA replication, or various energy expendi-
tures, such as that of expressing gene products
associated with the risk management trait. Such costs
are plausible and have been shown to exist in individual
case studies (Cooper et al., 2001; Lenski et al., 1994,
Schrag et al., 1997).

Models with similarly simple genetics have been
explored in different contexts in population genetics,
and pertinent mathematical results can thus be found in
variety of texts (Crow and Kimura, 1970). The key
difference of this model to other population genetic
models is a conceptual one, namely that organisms here
do not differ in fitness, on which selection acts
continuously. Rather, they differ in their propensity to
succumb to rare catastrophic events.

It is easy to see that in large populations, the
frequency pr of the superior risk manager evolves
according to the differential equation

’pr ¼ ðrr � r0Þprð1� prÞ: ð2Þ
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That is, the organism with reduced risk exposure will
come to dominate the population, as long as Dr :¼
rr � r0 > 0 or, equivalently,

b0 � brod0 � dr: ð3Þ

In other words, the cost of risk management in terms of
reduced births, br � b0; must be no greater than the
reduction in deaths due to better risk management. How
large must a population be for this relation to guarantee
the success of Gr? If the cost of risk management is
negligible, then ðN0d0 � NrdrÞb1 will be sufficient. That
is, the difference in the expected number of individuals
killed by a catastrophic event must be greater than one,
otherwise effects of genetic drift (see also below) render
this deterministic approach invalid. To give a numerical
example, in a population with 105 organisms of either
genotype, if d0 ¼ 10�3 and dr ¼ 10�4; the genotype with
lower risk exposure will increase in frequency. The
difference in expected deaths per unit time between the
two genotypes is 90. If units of time are years, and if
every individual leaves, on average, one offspring (i.e.,
population sizes are stable), then the expected waiting
time for a catastrophic event to kill a member of a
family lineage is greater than 1000 years in this example.
This illustrates that selection can be effective against
very rare risks if populations are sufficiently large. (It is
a corollary of the well-known fact that selection can be
effective in large populations even if fitness differences
are very small.) If the cost b0 � br becomes non-
negligible, then the necessary population sizes need to
increase concomitantly. Nrrr � N0r0b1 is a safe margin
for the deterministic model in this case.

The model above does not incorporate variations in
growth rates over time. It lumps differences between
genotypes G0 and Gr into a different overall (average)
growth rate. However, one might take the perspective
that the very concept of risk management must take into
account variation in performance (growth rate) over
time. For example, genotype G0 may have a faster
maximal growth rate under favorable conditions
ðr0;max > rr;maxÞ; but it may do poorly in other environ-
ments where Gr does better. Which of these genotypes
will fare better in the long run? This is known as the
problem of ‘bet-hedging’, which is well-studied and thus
needs only brief elaboration (Gillespie, 1973, 1977;
Stearns, 1992). Because the abundances of genotypes in
a population are calculated by multiplying their
respective growth rates over many generations, the
arithmetic mean growth rate—proportional to the sum
of growth rates—can be a poor indicator of risk
management. For any two genotypes with the same
arithmetic mean growth rate, the genotype with the
lower variance will come to dominate the population.
This genotype is also typically the genotype with the
lowest geometric mean growth rate. I show briefly in the
appendix that this relation between risk management
and variance in growth rates does not extend to the
geometric mean growth rates of genotypes. That is, if
two genotypes have the same geometric mean growth
rate, it is not guaranteed that the genotype with the
lower variance in growth rate will win. In addition, the
genotype with the higher geometric mean growth rate
always has a greater than 50 percent chance of
dominating the population, regardless of how wildly
its growth rates gyrate. Thus, one must apply caution in
choosing the appropriate measure of fitness variation
when studying risk management.

Thus far, I have neglected that genotypes with lower
risk exposure can arise and disappear from a popula-
tion. For example, mutations may continually eliminate
the genotype Gr: To sustain Gr; the growth rate
difference Dr ¼ rr � r0 then needs to be greater than in
the absence of mutations. I denote the rate at which Gr

arises by m and that at which it disappears as n: m and n
will be minute if point mutations are responsible for
creation and disappearance of a genotype. However,
either one may be of moderate size, for example if a
bacterial genotype arises through frequent horizontal
gene transfer (as in the case of bacterial antibiotic
resistance) or if it can disappear through abundant
intragenomic recombination processes leading to gene
deletions. If only m and n influenced the population
frequency of the genotype Gr; its equilibrium frequency
would calculate as #pr ¼ m=ðmþ nÞ: It is best to consider
only the case where mon; because otherwise mutation
alone would sustain Gr at a high frequency without any
catastrophic events.

In large populations, the frequency pr evolves under
the influence of mutation and selection through rare
catastrophic events according to

’pr ¼ Drprð1� prÞ þ mð1� prÞ � npr; ð4Þ

where Dr ¼ rr � r0: This equation admits a unique
(stable) equilibrium for prAð0; 1Þ; which is

#pr ¼ ð1=2DrÞ

� ½Dr � ðmþ nÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDr � ðmþ nÞÞ2 þ 4mDr

q
�: ð5Þ

It is easy to see, by setting m ¼ 0; that the equilibrium
frequency #pr observes

#prX1�
n
Dr

: ð6Þ

Equality holds if m ¼ 0; which is the worst-case scenario
for the genotype Gr: It means that the genotype Gr is not
being continuously reintroduced through mutations or
import, and mutation alone would only lead to its
disappearance. In this case, the ratio of the rate of
disappearance of the risk management trait and its
relative advantage jointly determine its equilibrium
frequency. Equality continues to hold approximately,
even if m > 0; as long as n is small compared to Dr:
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Fig. 1. Maintenance of risk management traits is not sensitive to the

rate at which traits arise. Both panels show a contour plot indicating

how the equilibrium frequency #pr (given by the solution of Eq. (5))

depends on the relative advantage Dr of the risk management trait and

the rate n at which the trait spontaneously disappears from the

population. Color codes are as follows. Black: 0o #pro0:5; dark gray:

0:5o #pro0:9; light gray: 0:9o #pro0:95; white: 0:95o #pro0:99: The rate
m at which the trait originates is chosen such that the mutation

equilibrium m=ðnþ mÞ equals pr ¼ 0:001 in (a) and pr ¼ 0:5 in (b).
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Fig. 1a, based on Eq. (5) shows that whether the
mutation-equilibrium frequency n=ðmþ nÞ is equal to
0.001 or equal to 0.5, 500 times larger, it is still the ratio
n=Dr that dominates the equilibrium frequency in
mutation-selection balance.

The above results hold in large populations. In small
populations, genetic drift renders the evolution of Gr

unpredictable. In this case, it is only possible to predict
for a large (infinite) ensemble of populations, the
probability fðpÞ to find members of the ensemble where
the frequency pr of genotype Gr lies in the (infinitesimal)
interval ðp; p þ dpÞ: For the above parameters, this
probability density is given by

fðprÞ ¼ Cp2Nm�1
r ð1� prÞ

2Nn�1e2Nðpr�1ÞDr; ð7Þ

where C is a normalization factor ensuring thatR 1

0
f ðpÞ dp ¼ 1; and N is the (effective) population size

(Crow and Kimura, 1970, 9.3). The question whether
risk management can evolve now has to be recast in
probabilistic terms. For example, one could ask under
what conditions Gr ‘‘wins’’, that is, when does the
probability that more than a fraction e of a population
consists of Gr exceed some threshold d: Formally,

PðGr winsÞ ¼
Z 1

e
fðprÞ dpr > d: ð8Þ

The behavior of Eq. (8) as a function of its parameters is
well known to be complex, and no closed form solution
exists (Crow and Kimura, 1970, Chapter 9). However, a
few simple generalizations can be made. If NDr; Nn (and
thus also Nm) are much greater than one, then the effects
of genetic drift are negligible, and the above determi-
nistic mutation-selection balance will be attained. If only
NDrb1 then the frequency of Gr in equilibrium will be
close to fixation (1� pr51), as long as Dr > 0: However,
if NDr51; then stable maintenance of Gr through
natural selection is impossible, regardless of mutation
rates. In other words, even though the probability that
any one individual is affected by a catastrophic event
may be exceedingly small, the risk-causing event must
not be so rare that over a prolonged period of time no
individuals at all in the population are affected.

2.2. Scenario 2. Risks that cause extinction of all

genotypes in a population

In this scenario, it is impossible to predict the
persistence of a risk reduction trait in one population.
One can, however, predict whether the trait can
dominate most individual populations in a large
ensemble of populations. Consider again two genotypes
G0 and Gr: As opposed to scenario 1, where d indicated
risks of individual deaths specific to a genotype, d will
now indicate the risk of extinction of all individuals of a
genotype in the population. The respective risks of
extinction for genotypes G0 and Gr can be modeled as a
Poisson processes, where genotype G0 is subject to
extinction at an (infinitesimal) rate d0 in the time interval
ðt; t þ dtÞ: The expected waiting time for one such
extinction event is 1=d0: Genotype Gr is subject to
extinctions at the rate dr; where drod0: (I will treat the
cost of such risk management separately below.)

In this framework, the question whether risk manage-
ment can be evolutionarily successful can be answered
by considering the fraction of populations in an
ensemble that contain Gr: If this fraction is greater than
some arbitrary (but large) threshold e; then risk
management can be called evolutionarily successful. It
is important to note that in this scenario, if one waits
long enough (t-N) all populations will go extinct.
However, one needs only be concerned with the fraction

of populations in which Gr persists.
I will first consider the simplest and idealized scenario

where both genotypes initially occur in each population
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of the ensemble, and where populations are so large that
differences in reproductive rates cannot lead to the
complete elimination of one genotype at any finite time
t: I will treat two extreme cases that lie at the ends of
continuous spectrum. In the first (easier) case, the
probabilities of extinction in Gr and G0 show a strong
form of stochastic dependency, and in the second case
they are stochastically independent.

Assume that some catastrophic events will cause all
individuals of a population to go extinct, regardless of
genotype. These events occur at the rate db: Other
catastrophic events affect only G0 but not Gr: They
occur at a rate d00: Genotype-specific extinction risks
then are dr ¼ db and d0 ¼ db þ d00; but the risk of
extinction is highly correlated between the two geno-
types, especially if d00 is small. Four different prob-
abilities need to be distinguished. First among them is
the probability that at time t none of the genotypes has
suffered a catastrophic event. It is denoted by P0r; which
is easily calculated from the waiting time for Poisson
distributed (rare) events (Karlin and Taylor, 1975,
Chapter 4). Second is the probability that G0 but not
Gr suffered extinction, denoted by Pr: Third is the
probability that Gr but not G0 suffered extinction,
denoted by P0: And fourth is the probability that both
genotypes suffered extinction, denoted by Pex: It follows
from the above assumption that P0 ¼ 0; which makes it
easy to calculate the probability for evolutionarily
successful risk management, namely the fraction of
(nonextinct) populations in which the genotype Gr

occurs

PðGr winsÞ ¼
Pr þ P0r

1� Pex

¼
Pr þ P0r

Pr þ P0r þ P0
¼ 1; ð9Þ

independent of t: The reason is that this scenario does
not permit populations that consist only of genotype G0:
(Whenever Gr goes extinct, G0 does as well.)

The second case of stochastically independent extinc-
tion risks d0 and dr is slightly more complicated. Again,
four different cases need to be considered. First among
them is the case where at time t none of the genotypes
has suffered a catastrophic event. Under the Poisson
assumption (Karlin and Taylor, 1975), its probability is
P0r ¼ e�ðd0þdrÞt: Second, the probability that G0 but not
Gr suffered extinction is given by Pr ¼ ð1� e�d0tÞe�drt:
Third, the probability that Gr but not G0 suffered
extinction is given by P0 ¼ ð1� e�drtÞe�d0t: And finally,
the probability that both genotypes suffered extinction
is given by Pex ¼ ð1� e�drtÞð1� e�d0tÞ: From these
probabilities, the fraction of populations that contain
Gr calculates as

PðGr winsÞ ¼
Pr

1� Pex

¼
1

1þ eðdr�d0Þt þ e�d0t
: ð10Þ

It is easy to see that limt-NPðGr winsÞ ¼ 1 if and only
if drod0: However, the formula also shows that at any
finite t; time enters the relation only through its product
with the extinction risk. That means that the process has
a characteristic time scale determined by d0 and dr:
Fig. 2 shows how the probability PðGr winsÞ ¼ d
depends on the ratio of extinction rates dr=d0 for
different values of d0t: The bottom, middle, and upper
curves correspond to d0t ¼ 5; d0t ¼ 10 and d0t ¼ 20;
respectively. The further time progresses (i.e., the larger
d0t), the smaller a difference in extinction rates d0 � dr is
necessary to sustain Gr at a high frequency.

Everything said thus far assumes that both genotypes
occur in each population of the ensemble. However,
genotypes may both be introduced into a population
and disappear from it for reasons unrelated to a
catastrophic event. Disappearance may be due to three
causes. First, a genotype may occur in a small number of
individuals of a population, which makes it subject to
elimination by mutation. Second, a genotype may be
eliminated in a finite population due to genetic drift.
And third, a genotype—especially one with superior risk
management—may bear a cost in reproduction that will
cause natural selection to eliminate it. Introduction of a
genotype into a population is caused by processes
similar to those in scenario 1 above, namely mutations
and import, e.g., through horizontal gene transfer. I will
denote the rates of introduction and disappearance of
genotype Gr into the ensemble as mp and np; respectively.
Notice that mp and np are different from the rates m and n
indicating the turnover rate of genotype Gr within a
population. Specifically, np does not only include the
effects of mutation alone, but also those of genetic drift
and that of any fitness cost due to superior risk
management. This also implies that neither mp nor np
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are necessarily small. I also note that for the scenario of
population extinction, the frequency of genotype Gr in a
population is irrelevant, as long as the genotype occurs.
(For example, if the extinction risk of a bacterial
population is caused by exposure to an antibiotic, it
does not matter how few resistant bacteria exist in a
population.)

In the absence of catastrophic events, the fraction of
populations that contain genotype Gr (at however small
a frequency) will approach the equilibrium mp=ðmp þ npÞ:
To calculate this equilibrium from within-population
parameters such as m and n; one can evaluate the
fraction of populations of size N that contain Gr at a
frequency greater than 1=N or

R 1

1=N
fðpÞ dp; where fðprÞ

is distribution (7) of Gr in a population ensemble where
Dr ¼ Db:

What happens to this equilibrium if catastrophic
events occur? In the framework of Poisson processes,
one can solve for PðGrwinsÞ exactly, given mp and np; and
the extinction rates d0 and dr: The solution, which I
sketch in the appendix, is surprisingly complex. How-
ever, the key feature of the above, simpler case, is
preserved, namely that

PðGr winsÞ ¼
Pr þ P0r

1� Pex

-1 for t-N if drod0: ð11Þ

In other words, Gr wins regardless of the rates mp and np:
The reason is that the different rates at which popula-
tions that contain only Gr or G0 become extinct
dominate the evolution of the population ensemble.
3. Discussion

I presented two simple mathematical models of risk
management that stand for two extreme scenarios at the
end of a continuous spectrum. In the first scenario, rare
catastrophic events are responsible for deaths of
individuals within a population. Here, natural selection
can sustain genotypes that are responsible for superior
risk management under two conditions. First, popula-
tions must be sufficiently large such that at least some
members of a population are affected by a catastrophic
event every generation. (However, the chances of any
one individual being affected during its lifetime may be
vanishingly small.) Second, the net benefit Dr of risk
management must be greater than the rate n at which the
genotype Gr conferring superior risk management
disappears from the population. Specifically, Gr attains
a population frequency greater than 1� n=Dr (for
noDr; and zero otherwise). The net benefit Dr of
superior risk management is equal to the average
difference in the death rate Dd due to the catastrophic
events, discounted by the cost of risk management
through a reduced birth rate Db; i.e., Dr ¼ Db � Dd:
These results are an outgrowth of standard population
genetic theory (Crow and Kimura, 1970), with one
conceptual exception. In models of risk management,
natural selection does not act continuously on genotypes
whose fitnesses differ at all times. Instead, it acts only
sporadically through rare catastrophic events.

In the second extreme scenario, rare catastrophic
events cause extinctions of all individuals in a popula-
tion, or of all individuals of one genotype. I showed that
in the long-term limit, almost all populations in a
population ensemble (a metapopulation) will contain
genotypes with small extinction probability, regardless
of the cost of such superior risk management, and
regardless of the rate at which the genotype disappears
from a population due to mutation or genetic drift. Note
that the criteria for successful risk management are by
necessity different in the two scenarios. In the first
scenario, one requires most individuals in a population
to be of genotype Gr: In the second scenario, one only
requires that most populations contain at least one
individual with genotype Gr; which will ensure the
population’s survival.

In practice, most catastrophic events may neither
affect only one individual, nor all individuals in a
population, but some fraction of individuals. In addi-
tion, although the models above can be applied to
sexually reproducing organisms under certain condi-
tions, they are designed with asexual populations in
mind. In such populations, where the cohesion provided
by recombination is lacking, it is often a matter of taste
whether to call a group of individuals (such as a colony
of bacteria) part of one population or one member
population of a population ensemble. Taken together,
these two observations suggest that the actual frequency
of a risk management genotype Gr; whether determined
from individuals in a population or from populations in
a metapopulation will be an intermediate between the
two extreme scenarios. Specifically, the lower bound 1�
n=Dr for Gr’s equilibrium frequency still holds. The
difference between the two scenarios lies in how this
frequency is interpreted. In scenario one, it corresponds
to the frequency of genotype Gr within a population. In
scenario two, it corresponds to a frequency of (surviv-
ing) populations containing genotype Gr:

I focus here on largely qualitative predictions, because
estimating population genetic variables important in
quantitative predictions is notoriously difficult. How-
ever, I note that the above models contain all necessary
ingredients to make quantitative predictions if the
relevant factors, such as population sizes are known.
Similarly, I am acutely aware that the biological
assumptions I make are very simple. Especially in
complex risk management traits of higher organisms
(see also below) polygeny will be the norm. Such
organisms also reproduce sexually, show varying de-
grees of ploidy, disperse to varying distances, and have
complex life histories. Innumerable questions can be
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asked about how each of these factors influence the
evolvability of risk management. They present a wide
open field for further investigation. In the following, I
explore a number of potential empirical examples for
risk management.

3.1. Extreme metabolic diversity as risk management

Many free-living microbes thrive on a bewildering
array of substrates which serve as sources of
carbon, nitrogen, phosphorus, and as electron acceptors
(Neidhardt, 1996). Most of the time, the chemically
complex environments of the wild will contain several
substrates that can provide one and the same essential
building block. Availability of only one substrate
(a ‘‘minimal’’ medium) may be a potentially rare
catastrophic event for a microbe that has lost the ability
to thrive on this substrate. Put differently, the ability to
grow on exotic substrates can be viewed as a risk
management strategy for rare times where one such
substrate becomes the only source of an essential cellular
building block.

The results of several studies on microbial evolution
in the laboratory (Cooper et al., 2001; Funchain et al.,
2000; Lenski et al., 1991), although not designed for this
purpose, help answer a specific question in this area.
How fast do risk management capabilities get lost in
environments where they are no longer needed? The
question regards the reproductive cost of risk manage-
ment traits, as well as the rates at which mutations cause
their loss. Small or negligible costs of such traits seem to
be the rule rather than the exception. In a few cases,
individual studies estimated the cost of particular
metabolic abilities. A case in point is the ability to use
the five-carbon sugar arabinose as a carbon source,
where Lenski and collaborators (Lenski et al., 1991)
determined in competition experiments that its loss
provided no detectable fitness advantage. The results of
larger-scale studies involving many cell lineages and
dozens of metabolic capabilities are also available. For
example, Funchain and collaborators (Funchain et al.,
2000) propagated 100 populations of the bacterium
Escherichia coli on a rich medium for thousands of
generations. They found that in populations with
normal mutation rates, only some three percent of cell
lineages had accumulated any detectable mutations
impairing a metabolic function after 1000 generations
of evolution (Funchain et al., 2000). The study
monitored the activity of some 700 genes through
multiple indicators of metabolic function, such as the
ability to grow on a broad spectrum of carbon sources,
and the capacity to synthesize amino acids. Populations
were periodically subjected to severe bottlenecks, which
favor the accumulation of mutations more than
continuous growth. The low loss rate of metabolic
capabilities is thus all the more remarkable.
However, there are exceptions to this rule, that is,
there are metabolic abilities that carry substantial cost.
A well-studied case is that of E. coli’s ability to
metabolize D-Ribose, which carries a growth rate cost
of 1–2 percent (Cooper et al., 2001). Following Cooper
and collaborators (Cooper et al., 2001), it is possible to
calculate the number of cell generations necessary for
this trait to go from fixation to complete loss in a
population growing in rich medium. I am here using the
assumption of a population with N ¼ 3� 107 indivi-
duals, comparable to that of the experiment (Cooper
et al., 2001), and that of a mutation rate taking into
account the total length ð7000 bpÞ of the operon
encoding this trait, n ¼ 3:5� 10�6 (Cooper et al.,
2001). The time until the frequency of individuals
capable to catabolize D-Ribose falls from one to
ð1=NÞ calculates as 2792 generations. In other words,
even traits with substantial reproductive costs can
remain in a population for thousands of generations.
If a limiting environment, in which the ability to
catabolize D-Ribose becomes essential, occurs only
every 2500 generations, this trait can be sustained
indefinitely in a population.

One can also ask what percentage of individuals must
be affected by a catastrophic event such that a risk
management trait with an appreciable reproductive cost
of 1 percent can be sustained at a high frequency such as
#pr ¼ 0:9: The answer follows from solving #pr > 1� n=
ðDb � DdÞ for Dd; i.e.,

Dd > Db �
n

1� #pr

ð12Þ

(note that Dd;Dbo0). Because n is much smaller than
Db; a Dd only slightly larger than Db will suffice to
sustain a risk management trait. For instance, if only as
few as 1.1 percent of individuals in a population
experience a life-threatening shortage of a particular
chemical substrate every generation, then the respective
metabolic risk management trait can be sustained at
#pr > 0:9:
Calculations based on such laboratory experiments

have to be taken with a grain of salt, and not only
because many metabolic capabilities carry much smaller
cost than in the above example. Competition in
laboratory studies is unusually intense over thousands
of generations (Lenski et al., 1991), and it occurs in
unchanging environments, unlike in the wild. Less
intense competition in fluctuating environments may
allow traits to be sustained at higher frequencies and for
longer times as indicated by such calculations. Thus, an
organism’s genome contains a record of rare (and not so
rare) environmental conditions that goes back thou-
sands of generations. This ‘‘genome memory’’ may serve
to reconstruct the breadth of environmental conditions
that molded an organism on evolutionary time scales.
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3.2. Antibiotic resistance and ‘pure’ risk management

From a bacterium’s perspective, antibiotic resistance
is a risk management trait. Some antibiotic resistance
traits get easily lost from a population spontaneously,
partly because they carry a substantial cost in the form
of a reduced bacterial growth rate (Schrag et al., 1997;
Seppala et al., 1997; Rahal et al., 1998). However, this
does not hold for all antibiotic resistance traits. Schrag
and collaborators studied the evolution of E. coli strains
that harbor the streptomycin-resistance gene rpsL,
which confers a serious growth rate deficiency on its
host (Schrag et al., 1997). In some laboratory cultures,
this resistance gene has not been lost after more than
10,000 generations in an antibiotic-free environment.
The reason is that the bacteria harboring the gene have
acquired a compensatory mutation which neutralizes
some of the fitness disadvantages of the antibiotic
resistance (Schrag et al., 1997). In addition, in these
mutant bacterial strains, loss of rpsL now carries a
serious disadvantage (Schrag et al., 1997). This is a case
where a gene that has served one purpose originally may
also have come to serve another (unknown) purpose in
the absence of the antibiotic. In other, similar cases an
antibiotic resistance trait confers a known benefit in the
absence of the antibiotic (Baquero and Blazquez, 1997;
Lenski et al., 1994; Blot et al., 1994).

Such secondarily acquired gene functions may effec-
tively increase the memory of a genome, and retain
genes much beyond their original purpose. They also
raise an important questions. If most genes serve
multiple purposes, then ‘pure’ risk management traits
may not exist. Two lines of evidence speak against this
possibility. First, organisms that experience very stable
(risk-free) environments, such as endosymbionts or
endoparasites, eventually lose a vast majority of their
genes (Mira et al., 2001; Ochman and Moran, 2001).
Second, under laboratory conditions thousands of
genes—about one-third of the genome—in a microbe
such as the yeast Saccharomyces cerevisiae appear
completely dispensable, with no detectable fitness effect
of their removal (Winzeler et al., 1999). These observa-
tion argue against the tight integration of most genes
into all aspects of organismal life.

3.3. Risk management and dysfunctional DNA

Temperate bacteriophages can perpetuate their DNA
indefinitely as part of the host genome. Far from
damaging the host, this may even provide advantages to
the host, such as immunity from superinfection and
metabolic capabilities (Barksdale and Arden, 1974). The
lysogenic state is extraordinarily stable, having been
perpetuated for several decades in some bacterial strains
kept in continuous laboratory culture (Barksdale and
Arden, 1974). When the host is exposed to a variety of
potentially life-threatening stressors, most notably
among them ultraviolet radiation, prophages can enter
a lytic state, where they produce many phage particles,
which leads to cell death through lysis. (Some bacter-
iophages, where phage particles leave the cell through
extrusion or budding, do not kill the host cell and may
simply reduce the host’s growth rate (Ackermann and
DuBow, 1987, p. 66).) From a gene-centered perspec-
tive, that is, from the perspective of the prophage or
proviral DNA, the ability to enter a lytic state upon host
stress is a risk management strategy. At high phage
concentrations, the lytic mode of reproduction can be
extraordinarily efficient (and thus potentially self-
defeating), killing most hosts in a population (Ack-
ermann and DuBow, 1987, p. 52). This, together with
the prevalence of lysogeny, suggests that lysogeny is an
efficient reproduction mode under normal conditions.

Envision a population in which the vast majority of
bacteria carry a prophage (and are thus immune to
superinfection). Under normal conditions, phage pro-
duction in this population is unfavorable, partly because
a large fraction of the population is immune to
infection, partly because producing phage particles
adversely affects the healthy host. Spontaneous muta-
tions at a rate n in the prophage DNA will lead some
prophages to lose this risk management trait, i.e., they
will become defective in their transition to the lytic
stage. If individual cells in this population are frequently
exposed to life-threatening stress, then prophages that
have lost the ability to produce phage particles are at a
comparative disadvantage. They are preferentially
eliminated from the population through their host’s
death, because they cannot produce phage particles.
However, if stressors are extremely rare, this disadvan-
tage disappears. One would then expect that the
frequency of such defective prophages increases in the
population, eventually reaching a stable equilibrium
greater than 1� n=Dr; as prescribed by Eq. (6). Here, Dr

is a measure of the incidence of the stressor per unit
time. The frequency of defective prophages will
approach one when stressors occur more rarely than
the rate n at which the ability to enter the lytic stage
disappears. In other words, in populations extremely
infrequently exposed to stress, individual genomes
should be littered with defective prophages. Also, the
kinds of mutations one observes in such defective
prophages should not be scattered randomly in the
prophage genome, but in early genes of the lytic cycle.
The reason is that defective late genes of the lytic life
cycle—when expressed—incur metabolic costs to the
host, which may not get lysed as a result of the defect,
but will grow more slowly.

How rare must life-threatening stresses be such that a
high frequency of active prophages can be maintained in
a bacterium like E. coli, with an estimated 100–300
(Savageau, 1983; Guttman and Dykhuizen, 1994)
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generations per year in the wild? The mutation rate per
base pair in E. coli has been estimated as 5� 10�10

(Drake, 1991; Drake et al., 1998). The genome of a
bacteriophage like that of phage l comprises some
48,000 base pairs (Russell, 1998), of which about one-
fifth encodes early genes of the lytic cycle, leading to a
mutation rate of 5� 10�6 in the relevant part of the
genome. At least one-third of these mutations are silent,
and many of the remaining amino acid substitutions will
be neutral. Assuming a mutation rate of n ¼ 10�6

mutations towards defective prophages, Dr ¼ 10�5; or
a rare event every 300–1000 years is sufficient to
maintain active prophages at a frequency of 90 percent.
In other words, the evolutionary record of life-threaten-
ing stresses stored in the genome of even a fast-dividing
microbe may well span a millenium. The genome’s
memory is even longer if all individuals of the
population are exposed to the stressor simultaneously,
i.e., in scenario 2 from above. In this case, unless all
functional prophages have disappeared from the popu-
lation (which is extremely unlikely given the enormous
stability and negligible cost of lysogeny) functional
prophage frequency can remain high almost indefinitely.

I have focussed here on examples of risk management
traits whose genetics is simple and well understood.
However, many risk management traits are complex.
Examples from prokaryotes include the formation of
durable endospores in response to adverse environmen-
tal conditions (Sonenshein et al., 2002; Msadek, 1999;
Stragier and Losick, 1996, Chapter 26). For instance, in
the soil bacterium Bacillus subtilis more than 100 genes
are necessary for successful sporulation (Stragier and
Losick, 1996). Examples from higher organisms include
plant adaptations to irregular flooding or to wildfires
(Blom, 1999; Clark et al., 1989; Cody and Mooney,
1978; Ogden et al., 1998). For plants with short
generation times, even fairly frequent environmental
disasters may be sufficiently rare to meet the conditions
on risk I posed here.
4. Conclusions

What purposes would be served by a well-developed
evolutionary theory of risk management—of which I
present only a first step? I see three main purposes. First,
and most generally, such a theory would allow us to
make specific predictions about the conditions, such as
environmental variation, under which risk management
traits like sporulation, the lytic switch, or fire adapta-
tions can evolve. Second, such a theory may allow
estimation of biological parameters important for
successful risk management. A case in point is the cost
of a risk management trait. Especially in microbes,
where laboratory studies of evolution have been very
successful, it is easy to subject populations to rare but
life-threatening events. Other important parameters,
such as population sizes and mutation rates, are either
known or can be controlled in such populations.
Through simple relations like those demonstrated here
between genotype frequency, management cost, event
frequency, and mutation rates, one can estimate the cost
of the trait from other, measurable parameters. Third,
to fully understand an organism’s biology, it is necessary
to understand the spectrum of environmental conditions
under which the organism has evolved. Estimating the
breadth of this spectrum is very difficult in practice.
However, the genome contains a record even of rare
environmental conditions, a record that, as I showed
here, may extend over thousands of generations. A
theory of risk management permits estimates of the time
horizon of this genome memory. With an increasing
number of fully sequenced genomes, ever improving
genome annotations, and a framework to study risk
management, we may thus be able to reconstruct the
breadth of environmental fluctuations in an organism’s
past from its genome’s record.
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Appendix A

A.1. Reducing variance in fitness need not be an effective

risk management strategy

I consider a discrete generation model, where a
population consists of an equal number of individuals
of two genotypes, G0 and Gr: Their growth rates r vary
over time, such that growth rates in consecutive
generations are independent (or only weakly correlated)
and drawn from otherwise arbitrary distributions with
means m0 and mr; and variances s20 and s2r ð0orioN;
0os2i oN). For genotype G0; the number of individuals
at time t calculates as N0ðtÞ ¼ N0ð0Þ

Qt
i¼1 r0ðtÞ: (If

r0ðkÞo1; then the population is shrinking in generation
k:) Assuming, without loss of generality, that N0ð0Þ ¼ 1;
this is equivalent to

log N0ðtÞ ¼
Xt

i¼1

log r0ðiÞ: ðA:1Þ

With t large, log N0ðtÞ approaches a normal distribution
with mean m0t :¼ t log r0 and standard deviation s0t :¼ffiffi

t
p

sðlog r0Þ; where log r0 and sðlog r0Þ denote means and
standard deviations of the distribution of log r0: I note
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parenthetically that the mean logarithmic growth rate
log r0 is proportional to the geometric mean growth rate
ð
Q

i r0ðiÞÞ
1=t; because both logarithm and power func-

tions are strictly monotonic functions. In sum, we have
for t sufficiently large that

log N0ðtÞBNðm0t;s0tÞ: ðA:2Þ

With completely analogous notation, the logarithm of
the population size NrðtÞ of genotype Gr is distributed as
Nðmrt; srtÞ for large t: The risk management strategy of
a genotype Gr is effective if Gr comes to dominate a
population. Cast in the terms of this model, the question
is whether the probability that a large fraction of the
population consists of Gr is greater than a prespecified
threshold d: Formally, this can be put as

P
N0ðtÞ
NrðtÞ

oe
� 	

> d: ðA:3Þ

For instance, e ¼ 0:01 and d ¼ 0:99 are possible choices
for these values. Because ðlog N0ðtÞ � log NrðtÞÞ is

normally distributed as Nðm0t � mrt;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s20t þ s2rt

q
Þ; as long

as growth rates rrðtÞ and r0ðtÞ are no more than weakly
correlated, it follows that

P
N0ðtÞ
NrðtÞ

oe
� 	

¼P log N0ðtÞ � log NrðtÞolog eð Þ

p

Z log e

�N

exp
�ðx � m0t þ mrtÞ

2

s20t þ s2rt

: ðA:4Þ

This expression shows that even if we know little about
the actual distributions of growth rates of two genotypes
ri; questions about effective risk management can often
be reduced to questions about random variates with
normal distributions. I can now ask whether a genotype

Gr with more stable growth rate (s2rtos20t), perhaps at

the price of a smaller mean growth rate (mrtpm0t), is an
effective risk manager. That is, will Gr come to dominate
a population? The following expression shows that this
is not the case:

P
N0ðtÞ
NrðtÞ

oe
� 	

¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pðs20t þ s2rtÞ
q

Z log e

�N

exp
�ðx � m0t þ mrtÞ

2

s20t þ s2rt

p
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pðs20t þ s2rtÞ
q

Z log e

�N

exp
�x2

s20t þ s2rt

o0:5: ðA:5Þ

The last inequality holds because log eo0; and because
the last distribution is symmetric around zero. Thus,
even if Gr does not suffer a reduction in growth rate
ðmrt ¼ m0tÞ; the probability that it comes to dominate the
population is less than 0.5. (It is even smaller if mrtom0t:)
In other words, reduction of variance in performance
need not be an evolutionarily effective risk management
strategy.

This can also be seen in a different manner. Assume
that the growth rate distributions of Gr and G0 overlap
little. That is, the mean growth rate of Gr is smaller than
that of Gr ðmrtom0tÞ; and the variances in growth rates
are also small, e.g., mrt þ 3srtom0t � 3s0t: In this case,
the chances that Gr comes to dominate the population
will be vanishingly small, because G0 will grow faster
almost every single generation. Now let s20t grow,
i.e. s20t-N: In this case, Eq. (A.5) implies that the
probability that Gr wins approaches 0.5 from below,
reaching this value only when the variance s0t reaches
infinity. In sum, the genotype with the higher (logarith-
mic) mean growth rate always has at least a 50 percent
chance of dominating the population, regardless of how
wildly its growth rate gyrates.

A.2. Extinction risk in population ensembles

Denote as P0rðtÞ the probability that both genotypes
G0 and Gr exist in a population at time t; as PrðtÞ the
probability that only Gr but not G0 exists, as P0ðtÞ that
only G0 exist, and as Pex the probability that both
genotypes, that is, the entire population has become
extinct. One can then write down a system of
(stochastic) linear ordinary differential equations which
describe how the vector ~PP ¼ ðPex;P0;Pr;P0rÞ changes
under the influence of rare catastrophic events that
occur at genotype-specific rates d0 and dr; as well as
under the rates mp and np at which Gr gets introduced
and disappears, respectively, into populations of the
ensemble:

’~PP ¼A~PP

¼

0 d0 dr 0

0 �ðd0 þ mpÞ 0 np þ dr

0 0 �dr d0

0 mp 0 �ðdr þ d0 þ npÞ

0
BBBB@

1
CCCCA

�

Pex

P0

Pr

P0r

0
BBB@

1
CCCA: ðA:6Þ

It is easily verified that the temporal derivative of ðPex þ
P0 þ Pr þ P0rÞ is equal to zero, such that the sum of the
individual probabilities always remains one, as is
required. The solution of Eq. (A.6) is

~PPðtÞ ¼
X4
i¼1

civie
li t; ðA:7Þ

where vi is an eigenvector of the matrix A to the
eigenvalue li: The ci’s are constants depending on the
initial condition ~PPð0Þ; and can be obtained by solving
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the linear system of equations V~cc ¼ ~PPð0Þ; where V is a
matrix whose column vectors consist of the eigenvectors
vi of A (Boyce and DiPrima, 1997). The eigenvalues of A

are ~ll ¼ ð0;�d0;�dr;�ðd0 þ dr þ mp þ npÞÞ: I will denote
as vij the j-th component of the i-th eigenvector of A:
From Eq. (A.7), it follows that

PðGr winsÞ ¼
PrðtÞ þ P0rðtÞ
1� PexðtÞ

¼
P4

i¼1 civi3e
li t þ

P4
i¼1 civi4e

li t

1�
P4

i¼1 civi1eli t
: ðA:8Þ

For a wide variety of initial conditions, including those
where P0rð0Þ ¼ 1; P0 ¼ 1; or Pr ¼ 1; the constant c1 ¼ 1:
This fact, in conjunction with l1 ¼ 0 and v1 ¼ ð1; 0; 0; 0Þ;
yields the expression

PðGr winsÞ ¼
PrðtÞ þ P0rðtÞ
1� PexðtÞ

¼
P4

i¼2 civi3e
li t þ

P4
i¼2 civi4e

li t

�ð
P4

i¼2 civi1eli tÞ
: ðA:9Þ

(The equation describing PðGr winsÞ in Eq. (10) of the
main text derives as a special case if mp ¼ 0 and np ¼ 0 in
A:) Multiplying both numerator and denominator by
el3t; it is easy to see that

lim
t-N

PðGr winsÞ ¼
v33 þ v34

�v31
¼ 1; ðA:10Þ

because v3 ¼ ð�1; 0; 1; 0Þ: A more stringent definition of
successful risk management, PðGr winsÞ ¼ Pr=ð1� PexÞ;
yields the same limit of one.

These results may seem surprising, especially in light
of the fact that in the absence of extinction ðd0 ¼ dr ¼
0Þ; P0 and P0r attain a stable equilibrium prescribed by
mp and np: The following qualitative perspective on the
underlying dynamics shows that the reason for the
eventual dominance of Gr is that the extinction
dynamics overrides all other influences. Inspection of
Eq. (A.6) shows that the temporal derivative of P0 þ P0r

equals ’P0 þ ’P0r ¼ �d0ðP0 þ P0rÞ; and thus ½P0 þ
P0r�ðtÞ ¼ expð�d0tÞ½P0 þ P0r�ð0Þ ¼: expð�d0tÞh; indepen-
dent of mp and np: Moreover, the third equation in
Eq. (A.6) which describes the change in Pr shows that
the solution to PrðtÞ can be written as PrðtÞ ¼
expð�drtÞPrð0Þ þ f ðtÞ > expð�drtÞPrð0Þ; where f ðtÞ is
some positive function that depends on time t and
P0rðtÞ: From these considerations it follows that

1� Pex

P0 þ P0r

¼
Pr þ P0r þ P0

P0 þ P0r

¼
e�d0th þ e�drtPrð0Þ þ f ðtÞ

e�d0th

>
e�d0th þ e�drt

e�d0th
-N for t-N: ðA:11Þ
It follows that the inverse of this ratio converges to zero,
i.e.

P0 þ P0r

1� Pex

-0 for t-N ðA:12Þ

and thus that

Pr

1� Pex

¼ 1�
P0 þ P0r

1� Pex

-1 for t-N: ðA:13Þ

Finally, it is worth noting that the model I discuss
here allows for introduction of genotype Gr into
populations consisting only of G0; but not for introduc-
tion of genotype G0 in populations consisting only of Gr:
It is easy to incorporate this additional component into
the matrix A; but the eigenvalues and eigenvectors
become horrendously complex. However, the qualitative
conclusions of Eq. (A.10) remain unchanged, because
probability mass is only shifted between population
containing Gr; such that ’P0r þ ’Pr and thus Eq. (A.10)
remains unchanged.
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