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Abstract

We present and analyse a model of protein translation at the scale of an individual messenger RNA (mRNA) transcript. The

model we develop is unique in that it incorporates the phenomena of ribosome recycling and nonsense errors. The model

conceptualizes translation as a probabilistic wave of ribosome occupancy traveling down a heterogeneous medium, the mRNA

transcript. Our results show that the heterogeneity of the codon translation rates along the mRNA results in short-scale spikes and

dips in the wave. Nonsense errors attenuate this wave on a longer scale while ribosome recycling reinforces it. We find that the

combination of nonsense errors and codon usage bias can have a large effect on the probability that a ribosome will completely

translate a transcript. We also elucidate how these forces interact with ribosome recycling to determine the overall translation rate of

an mRNA transcript. We derive a simple cost function for nonsense errors using our model and apply this function to the yeast

(Saccharomyces cervisiae) genome. Using this function we are able to detect position dependent selection on codon bias which

correlates with gene expression levels as predicted a priori. These results indirectly validate our underlying model assumptions and

confirm that nonsense errors can play an important role in shaping codon usage bias.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In this study we explicitly model how codon usage
bias and nonsense errors affect the probability that a
ribosome will successfully translate an messenger RNA
(mRNA) transcript. We also determine how this
probability interacts with the process of ribosome
recycling to determine the overall translation rate of a
protein. Our model is one in a long tradition of models
of protein translation (Bergmann and Lodish, 1979;
Harley et al., 1981; Menninger, 1983; Liljenström and
von Heijne, 1987; Bulmer, 1991; Zhang et al., 1994;
Chou, 2003), but is the first to consider both nonsense
errors and ribosome recycling.
e front matter r 2005 Elsevier Ltd. All rights reserved.
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Codon bias is the non-random usage of synonymous
codons within a gene (Ikemura, 1981; Bennetzen and
Hall, 1982; Sharp and Li, 1987). It has been extensively
documented across a wide range of organisms and varies
greatly both between DNA sequences within a genome
and between species (e.g. Ikemura, 1981, 1982, 1985;
Bennetzen and Hall, 1982; Sharp and Li, 1987; Ghosh
et al., 2000; Carbone et al., 2003; Mougel et al., 2004).
Most explanations of codon bias generally involve a
mixture of factors including purely physical forces, such
as mutational bias and recombination, and selection for
increased translational efficiency or accuracy (e.g.
Bernardi and Bernardi, 1986; Bulmer1988a, 1991;
Shields et al., 1988; Kliman and Hey, 1993, 1994;
Akashi, 1994, 2003; Xia, 1996; Akashi and Eyre-Walker,
1998; Xia, 1998; Musto et al., 1999; McVean and
Charlesworth, 1999; Ghosh et al., 2000; Wagner, 2000;

www.elsevier.com/locate/yjtbi


ARTICLE IN PRESS
M.A. Gilchrist, A. Wagner / Journal of Theoretical Biology 239 (2006) 417–434418
Birdsell, 2002; Comeron and Kreitman, 2002; Musto
et al., 2003). In general, these explanations ignore the
role of nonsense errors. However, there are a few
notable exceptions (Menninger, 1983; Eyre-Walker,
1996; Berg and Silva, 1997; Hooper and Berg, 2000;
Qin et al., 2004).

Ribosome recycling occurs when a ribosome which
has just completed translating an mRNA binds to the 50

untranslated region (UTR) of the same mRNA. Such
recycling is made possible in eukaryotes by the loop-like
arrangement of an mRNA and its translation initiation
complex (Jacobson, 1996; Sachs, 2000; Welch et al.,
2000; Kapp and Lorsch, 2004). In contrast, prokaryotes
lack such an arrangement and, consequently, ribosome
recycling is thought to be uncommon in prokaryotes.
For individual eukaryotic genes, experimental and
theoretical evidence indicates that ribosome recycling
contributes significantly to its protein production rate
(Gallie, 1991; Niepel et al., 1999; Khaleghpour et al.,
2001; Chou, 2003; Rajkowitsch et al., 2004). In terms of
the ribosome population within a cell, recycling should
greatly increase the overall translational efficiency of
each ribosome in the population by reducing the mean
time between the completion of translation and the next
initiation event.

While recycling can increase the overall translational
efficiency of a ribosome which completely translates an
mRNA, a significant proportion of ribosomes terminate
translation before they reach the final stop codon
(Manley, 1978; Tsung et al., 1989; Jorgensen and
Kurland, 1990; Kurland, 1992). These premature
termination events are called nonsense errors (also
referred to as processivity errors) and include ribosome
drop-off, improper translation of release factors, and
frameshifts (Kurland, 1992; Hooper and Berg, 2000).
Many of the incomplete peptides resulting nonsense
errors will be non-functional, possibly toxic to the cell
(Menninger, 1978) or, alternatively, can tie up essential
cell resources such as tRNAs (Dincbas et al., 1999;
Cruz-Vera et al., 2004). In order to avoid these
problems, incomplete peptides need to be recognized
and broken down by the cell. The production and
breakdown of these incomplete peptides may represent a
significant energetic cost to the cell, especially for highly
expressed proteins. Consequently, nonsense errors are
likely to be a potent source of selection shaping the
evolution of the protein translational process (Kurland,
1992; Eyre-Walker, 1996; Hooper and Berg, 2000).

In this study we present and analyse a dynamic model
of protein translation that includes the phenomena of
ribosome recycling and nonsense errors. This model
comes in two versions, a discrete ordinary differential
equation version and a continuous partial differential
equation version. The discrete model is particularly
useful for understanding translation at the scale of an
individual codon and the steady-state of the mRNA.
The continuous model is useful for understanding the
larger scale behavior of the system as well as the effects
of ribosome recycling and nonsense errors on this
behavior.

Our model allows us to calculate the probability that
a nonsense error will occur for any given codon. In
addition, our model illustrates how the risks of nonsense
errors compound one another to determine the prob-
ability that a ribosome will successfully complete
translation of an mRNA. From this work we are also
able to derive how the translational completion prob-
ability of an mRNA transcript interacts with ribosome
recycling to determine the overall translation rate of an
mRNA.

To indirectly test our model’s underlying assumption,
we use our discrete version to build a simple function
that describes the expected cost of nonsense errors for a
given transcript. The cost function we derive makes
explicit how the cost of a nonsense error should increase
with codon position. We test our model by asking
whether the expected cost of nonsense errors, when
compared to a null set of transcripts built with the same
set of codons, conforms to the patterns predicted by
Eyre-Walker (1996).

In addition to its applications for understanding
codon usage patterns, our model has many potential
uses, some of which we develop elsewhere. For example,
we are currently working on a manuscript (Gilchrist and
Wagner, in preparation) which shows how to infer
protein translation rates from measurements of ribo-
some densities per mRNA published by Arava et al.
(2003). This application illustrates how mechanistic
models of biological processes like the one we develop
here can serve to integrate a wide variety of genome-
scale biological information (Troyanskaya et al., 2003;
Jansen et al., 2003; Gilchrist et al., 2004; Lee et al., 2004;
Beyer et al., 2004).
2. Model motivation and formulation

In this section we state and motivate our model
assumptions. We then formalize these assumptions into
a set of coupled differential equations which comprise a
discrete, time dependent model of protein translation.

Protein translation occurs in three distinct phases:
initiation, elongation, and termination. The first phase,
initiation, begins when a charged ribosome binds to an
mRNA and ends when it translates the initial start
codon. The second phase, peptide elongation, occurs
after initiation and involves the interception of the
correct charged tRNA by the ribosome and the transfer
of the amino acid to the growing peptide chain. The
third and final phase, translation termination, occurs
when protein elongation stops, either because a stop
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codon has been reached or a nonsense error has
occurred.

2.1. Initiation

The initiation of protein translation occurs when a
ribosome binds to the 50 UTR of an mRNA and then
moves along the mRNA until it intercepts the appro-
priate start codon. Theoretical and empirical studies
suggest that initiation is the ‘rate limiting’ step in the
translation process (Bergmann and Lodish, 1979;
Liljenström and von Heijne, 1987; Varenne et al., 1984).

Initiation can occur de novo, but in eukaryotes it can
also occur through ribosome recycling. In de novo
initiation, the initiating ribosome comes from the pool
of free ribosomes floating in the cytosol. Here we assume
that in any given physiological condition and for any
given gene there is a rate, g, at which such de novo
initiation occurs. We incorporate ribosome recycling,
into our model by assuming that for each gene there is a
fixed probability, l, that ribosomes which complete
translation are recycled back onto the same mRNA.
Because it is a probability, l can take any value between
0 and 1. Ribosome recycling is thought to be common in
eukaryotes due to the circular nature of the transcript
when bound to the translation complex. Experimental
evidence suggests that the probability can be at least
50% and is affected by the stability of the secondary
structure of the 50 UTR of the mRNA (Niepel et al.,
1999; Rajkowitsch et al., 2004). Quantitative informa-
tion on g is poor and estimates of l are essentially
unknown. Nonetheless, given the variation in 50 and 30

UTRs, both parameters are likely to vary from one gene
to another (Kozak, 2002).

2.2. Elongation

Once initiation has been completed the ribosome
begins the elongation stage of translation. Because
initiation is assumed to be the rate limiting step, and
because recent transcriptome-scale empirical data in-
dicate that ribosome densities per codon are generally
quite low (Arava et al., 2003), we ignore any ribosome–
ribosome interference during the elongation process. At
each elongation step, the ribosome waits until it
intercepts a charged tRNA whose anti-codon pattern
complements the codon at the ribosome’s A site. Once
the ribosome intercepts the correct tRNA, the amino
acid is transferred from the tRNA to the peptide chain
associated with the ribosome, and the ribosome ratchets
forward one codon. Experimental data suggests that the
waiting time for the correct tRNA is the rate limiting
step of the elongation process (Bergmann and Lodish,
1979; Liljenström and von Heijne, 1987; Varenne et al.,
1984). This is in accord with observations that the rate
of elongation can vary greatly among different codons
(Gouy and Grantham, 1980; Chavancy and Garel, 1981;
Varenne et al., 1984; Thomas et al., 1988; Curran and
Yarus, 1989; Sorensen et al., 1989). The waiting period,
in turn, depends on the tRNA’s concentration. For non-
wobble codons, we assume that the rates of codon
translations are proportional to the abundance of their
cognate tRNA within a cell. In vitro and in vivo studies
with Escherichia coli indicate that wobble tRNAs
translate different codons at different rates (Thomas
et al., 1988; Curran and Yarus, 1989). Based on Curran
and Yaruss (1989) measurements, we reduced the
translation rates of G–U and I–C wobble codons by
39% and 36% relative to G–C and I–U ending codons,
respectively. The specific rates used for each codon can
be found in the supplemental Table S1. Rates were
scaled such that the average translation rate of all of the
codons was 10 amino acids/s.

More complicated models of the elongation process
that include such things as initial binding, codon
recognition, GTP hydrolysis, and kinetic proofreading,
could be used to produce more refined estimates of
translation rates of different codons. Ideally, models of
these intra-ribosomal processes would be nested within
our current framework. However, such extensions are
outside of the scope of our current study.

We will use ~c to denote a vector of codon translation
rates used during the elongation process where
~c ¼ fc1; c2; . . . ; cng, ci is the translation rate for codon
i, and n is the number of codons in the mRNA
transcript. Note that ~c does not include the start and
stop codons, which we consider to be part of the
initiation and termination processes, respectively.

2.3. Termination

Protein translation can either terminate normally with
the ribosome completing the translation of the mRNA
transcript or prematurely when a nonsense error occurs.
In normal translation termination, a polypeptide is
released after the translating ribosome encounters one of
three possible stop codon and its corresponding release
factor. Note that a nonsense error which leads to
termination at a stop codon is functionally not an error
since the released product is a complete peptide. For
simplicity, we assume that termination occurs quickly
and, as a result, we do not explicitly model this step in
the translation process. Because the stop codon is only
one out of hundreds or thousands of translated codons,
modeling this step explicitly would not affect our results
in any noticeable manner.

Premature translation termination results from non-
sense errors. Such errors can have multiple causes, such
as reading frameshifts, ribosome drop-off, or false
termination (Kurland, 1992; Hooper and Berg, 2000).
As has been explicitly and implicitly assumed in other
studies (e.g. Curran and Yarus, 1989; Thomas et al.,
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1988), we assume that the nonsense error rate per unit
time is the same at all codon positions. In spite of this
assumption, we will show that the probability that a
nonsense error occurs varies with each type of codon.
This is because the rate at which each codon type is
translated varies. In addition, because nonsense errors
often result in the ribosome disassociating from the
mRNA, we also assume that nonsense errors prevent the
possibility of a ribosome being recycled on the same
mRNA.

2.4. Formalization

We will now formalize the assumptions outlined
above into a discrete mathematical model of protein
translation along a focal mRNA. All model parameter
definitions can be found in Table 1. We begin by
defining ziðtÞ as the probability that a ribosome is found
at codon i at time t of the focal mRNA. The term ~zðtÞ ¼
fz1ðtÞ; z2ðtÞ; . . . ; znðtÞg represents the set of probability
values for all n codons involved in elongation within the
mRNA transcript.

Because we are focusing on the translation processes
at the level of a single mRNA transcript, we define t ¼ 0
as the time at which an mRNA first becomes available
for translation. Codons can become occupied by a
ribosome translating the previous codon i � 1 or, in the
case of the first codon, where i ¼ 1, by initiation.
Codons become unoccupied when the ribosome leaves
the codon either by translating codon i or by disas-
sociating with the mRNA via a ribosome drop-off or
other nonsense error. Reminding the reader that ci

represents the translation rate of the ith codon and b

represents the nonsense error rate, we write:

dzi

dt
¼

k� ðci þ bÞzi; i ¼ 1;

ci�1zi�1 � ðci þ bÞzi; i41

(
(1)
Table 1

List of parameters and variables in formulation of the discrete and continou

ci Translation rate of codon i

~c Set of ci values for an entire mRNA sequence

zi ðtÞ Ribosome occupancy probability, i.e. the probability th

~z Set of zi ðtÞ values for an entire mRNA sequence

n Number of codons in the mRNA

b Nonsense error rate

s ðiÞ Probability a ribosome that begins translating a sequen

s ðnÞ Translational completion probability of a sequence, i.e.

g The rate at which new (i.e. non-recycled) ribosomes bin

l Probability a ribosome which completes translation is r

k ðtÞ The total rate at which ribosomes bind to the 50 UTR

t ðtÞ Protein translation rate at time t

x ð~cÞ Expected cost of nonsense errors for a given sequence ~c
Dxk;m Change in x ð~cÞ value when codons k and m are switche

u ðt; xÞ Density of ribosomes at location x at time t (continuou

s the effective codon translation rate of a sequence (cont

r ðtÞ Number of waves of translation that have been comple
with the initial conditions

zið0Þ ¼ 0 for all i. (2)

The term kðtÞ represents the total initiation rate of
protein translation. Note that the negative ci term in
Eq. (1) indicates that a quickly translated codon will
reduce the probability function more than a slowly
translated codon.

As previously mentioned, experimental evidence
(Niepel et al., 1999; Rajkowitsch et al., 2004) suggests
that in eukaryotes, ribosomes that complete translation
have a significant probability of reattaching to the 50 end
of the same mRNA. Thus kðtÞ is the sum of two separate
processes, the binding of free ribosomes to the mRNA
(de novo initiation), g, and the recycling of ribosome
which have just completed translating the nth codon.

Because we assume that translation of stop codons is
quick, the rate of protein production at time t, tðtÞ, is
equal to the rate at which the nth codon is translated, cn,
weighted by the probability of a ribosome being found
there, znðtÞ, i.e.

tðtÞ ¼ cn znðtÞ. (3)

Further, if tðtÞ is the rate of protein translation and l is
the probability that a ribosome that completes transla-
tion will be recycled to the 50 UTR of the same mRNA,
then the rate at which ribosomes are recycled l tðtÞ.
Thus,

kðtÞ ¼ gþ l tðtÞ. (4)

If ribosome recycling occurs, i.e. l40, then the
initiation rate will change over time because it is a
function of the translation rate, tðtÞ, which is time
dependent.
s models. Steady-state values of variables are indicated by a ^

at a ribosome is found at codon i of an mRNA sequence at time t

ce will translate up to and including codon i

the probability of a ribsome will completely translate the sequence

d to the 50 UTR of mRNA

ecycled back to the 30 UTR

at time t

d

s model)

inuous model)

ted by time t (continuous model)
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2.5. Defining the energetic cost of nonsense errors

If the probability of nonsense errors differs between
codons and the peptide product of these errors is
generally non-functional, then the cost of these errors
should increase with codon position (Kurland, 1992;
Eyre-Walker, 1996; Akashi, 2001; Hooper and Berg,
2000; Qin et al., 2004). This is because at each step of
elongation, more energy is invested into the building
of the peptide. We define the expected energetic cost of
nonsense errors for each translational initiation event, x,
for a given transcript ~c as

xð~cÞ ¼
X
i¼1

nPr ðNonsense error at codon iÞ ða1 þ a2iÞ

(5)

where a1 represent the energetic costs of recharging the
ribosome and a2 represents the energetic cost of forming
a peptide bond. These costs are approximately 2 and 4
high energy phosphate bonds, P, respectively (Bulmer,
1991; Wagner, 2005). Note that Eq. (5) only includes the
cost of peptide assembly and does not include other
potential costs such as the toxic effects of incomplete
peptides.

We can test whether evidence for selection to reduce
the cost of nonsense errors exists by comparing the
expected energetic cost of nonsense errors of an
observed transcript in yeast to a set of hypothetical
transcripts in which codon order for each amino acid
has been randomized separately. This approach allows
us to change the ordering of codons without changing
the amino acid sequence of a gene or its overall codon
bias. For any given transcript we will refer to its
rearranged forms as its null set.

A priori we would expect the observed costs for a
transcript to be consistently smaller than the mean costs
of the transcript’s null set. Because x is a cost per
initiation event, we also expect that more highly
expressed genes, generally those with greater mRNA
abundances, would show greater evidence of selection
for reducing the observed x relative to its null set. We
will take the occurance of these patterns as support for
the validity of our basic model of protein translation, its
underlying assumptions, and our formulation of the cost
function x.
3. Results

While the formulation of our discrete codon model is
rather straightforward, the analysis of its dynamics as it
approaches the steady-state is not. This is due to the
discrete and heterogeneous nature of the system. Its
discreteness requires that we have a system of equations
which includes one equation for each of the n codons in
an mRNA transcript. The heterogeneity in codon
translation rates prevents any direct simplification of
these coupled equations. Therefore, while dynamic
solutions of our model can be calculated using standard
numerical techniques, these calculations are computa-
tionally intensive.

To elucidate the behavior of this system, we take the
following two steps. First, we derive a continuous
approximation to the discrete codon model. This
continuous approximation results in a conceptually
and mathematically concise model that can be solved
analytically. Our solution shows that the probability
that a ribosome occupies a codon can be viewed as a
traveling wave that moves along the mRNA transcript.
Because of nonsense errors, the wave decays as it moves.
However, because of ribosome recycling the wave can
reinforce itself as well. This solution also helps us
understand how the system approaches its steady-state
which we expect to be realized for long-lived mRNAs
that are translated many times. In a second step, we
derive the analytic solution to this steady-state using the
original discrete model.

3.1. Translational completion probability: sðnÞ

One common factor of all of the approaches we take
is their dependence on a term we now define as the
translational completion probability of a transcript.
This is the probability that a ribosome that begins
translating a transcript will reach the stop codon before
a nonsense error occurs. Thus, we begin our analysis by
exploring this function and its sensitivity to a number of
underlying model parameters.

Let sðiÞ represent the probability that a ribosome will
complete translation up to and including codon i. From
(1) it can be shown that,

sðiÞ ¼
Yi

j¼1

cj

cj þ b
, (6)

where each term in the product function cj=ðcj þ bÞ

represents the probability that a ribosome at codon j will
translate the codon as opposed to a nonsense error
occurring. If b40 then sðiÞ is a strictly decreasing
function of i and is less than one for all i. Setting b ¼ 0
implies that sðiÞ ¼ 1 for all values of i and results in a
model conceptually similar to those which ignore
nonsense errors (e.g. Liljenström and von Heijne, 1987).

It is worth noting that codon translation probability,
sðiÞ, is dependent on the values in~c and codon position i

but independent of time, t. Based on our definition of
sðiÞ, it follows that the probability that a ribosome will
translate an entire codon transcript of length n is simply
equal to sðnÞ. Therefore, sðnÞ represents the translational

completion probability of a transcript. Eq. (6) indicates
that sðnÞ is affected by the nonsense error rate, b, the set
of codon translation rates in the transcript, ~c, and the
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total number of codons in the transcript, n. We can
better understand how these factors affect sðnÞ through
a set of Taylor Series approximations.

3.2. Understanding sðnÞ through approximation

In this section we show how we can better understand
the relationship between the translational completion
probability of a transcript, sðnÞ, and its parameters
using Taylor Series approximations of sðnÞ. We begin by
taking a second order Taylor Series approximation of
sðnÞ about the mean codon translation rate of an
mRNA transcript, c̄. Doing so yields,

sðnÞ ¼
Yn

i¼1

ci

ci þ b
�

c̄

c̄þ b

� �n

� exp �
n

2
varð~cÞ

1

c̄2
�

1

ðc̄þ bÞ2

� �� �
, ð7Þ

where varð~cÞ represents the variance of the translation
rates in ~c. The higher order moments of the distribution
of ~c, such as skew and kurtosis, become important in
higher order approximations.

Given that the nonsense error rate, b, is likely to be
much smaller than the mean codon translation rate, c̄,
we can further approximate the translational completion
probability of a transcript, sðnÞ, by taking a first order
Taylor Series approximation of sðnÞ in (7) about b ¼ 0.
Doing so yields,

sðnÞ � 1�
b n

c̄
1þ

varðcÞ

c̄2

� �
. (8)

Eq. (8) clearly indicates that the translational comple-
tion probability, sðnÞ decreases with n, b, and with
variation in ~c. In contrast sðnÞ increases with the mean
codon translation rate, c̄.

The relationship between variation in ~c and the
translational completion probability of a transcript,
sðnÞ, can be simplified further by noting that the
harmonic mean of ~c, c̄H , can be approximated to the
second order around 1=c as c̄H ¼ ð1=c̄þ varðcÞ=c̄3Þ�1.
Using this second approximation we find that,

sðnÞ � 1�
b n

c̄H

. (9)

Eq. (9) demonstrates that the effect of variation in~c on s
is similar to the effect that such variation has on the
harmonic mean of ~c.

This result will re-present itself when we explore the
continuous approximation of our discrete codon model
and suggests that selection for increasing sðnÞ can
manifest itself by maximizing the harmonic mean of ~c,
c̄H . If there is selection for maximizing the translational
completion probability of an mRNA transcript, sðnÞ,
then we would expect selection to minimize the nonsense
error rate, b, and the variance around the mean codon
translation rate, varðc̄Þ, while, simultaneously, maximiz-
ing c̄. This minimization of varðc̄Þ and maximization of c̄

can be achieved by using only the fastest translating
codons at every site.

3.3. Calculating sðnÞ for the yeast genome

While approximating the translational completion
probability of an mRNA, sðnÞ, is useful for under-
standing the factors that shape it, if we know (a) the
translation rate of each codon, (b) the set of codons used
in an mRNA, and (c) the nonsense error rate, b, we can
calculate sðnÞ for a gene exactly. We next calculate sðnÞ
under different assumed values of b for all confirmed
genes in the yeast genome. We do this to illustrate the
potential importance of nonsense errors for transla-
tional completion probabilities.

The rate limiting step for the translation of an
individual codon, ci, is the rate at which ribosomes
intercept the correct tRNA. This interception rate
should be proportional to the tRNA’s concentration in
the cell. The concentration of tRNAs in a cell has been
measured or can be estimated in a number of different
organisms and has been shown to vary over an order of
magnitude (Ikemura, 1982, 1985; Percudani et al., 1997;
Akashi, 2003). We calculate a proportionality constant
between relative tRNA abundance and codon transla-
tion rates such that the average codon translation rate in
yeast is 10 amino acids/s. This rate was chosen based on
the observation that �85% of ribosomes (rib) are
involved in protein translation during the exponential
growth phase (Arava et al., 2003) and that the efficiency
of protein translation per ribosome in the cell is 8.8
amino acids/s (aa/s) (Tuite, 1989) (8:8 aa/sC0:85 rib �
10 aa/(s rib)). The resulting codon translation rates
for each tRNA species are listed in Supplemental
Table S1.

In the yeast genome there are currently 5889
confirmed protein coding genes. We ignored 34 of these
confirmed transcripts due to the fact that they have
internal stop codons. Fig. 1 shows the distribution of
translational completion probabilities for the remaining
5855 genes at four different rates of nonsense errors.

The mean translational completion probability, sðnÞ,
of the yeast genome at b ¼ 0:0001, 0.001, 0.01, and 0.1/s
is 0.99, 0.93, 0.53, and 0.047, respectively. In general,
when the nonsense error rate is low, e.g. b ¼ 0:0001, all
proteins have high protein translation probabilities. In
contrast, when the nonsense error rate is high, e.g.
b ¼ 0:1, very few proteins are translated completely. At
both of these extremes, codon usage and transcript
length have little impact on sðnÞ. However, in the
intermediate range of nonsense error rates, protein
translation probability values vary greatly among genes,
as the figure shows. Our approximation of sðnÞ in (7)
shows that for a given value of b we can attribute the
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Fig. 1. Distribution of translational completion probabilities, sðnÞ, for 5855 confirmed genes in the yeast genome for various nonsense error rates, b.

The translation rate for a particular codon was inferred from tRNA densities within a cell and by assuming that the mean translation rate across all

tRNA species was 10 amino acids/s (see text for more details).

Table 2

Table of estimate nonsense error rates and the mean protein translation probability for the yeast genome based on these values. Error rates were

calculated assuming a uniform codon translation rate of 10 aa/s

Nonsense error rate b Organism Type of observation Mean sðnÞ for yeast Source

0.0025 E. coli Direct 0.84 Jorgensen and Kurland (1990)

0.0052 0.70 Mean of Tsung et al. (1989) and Jorgensen and Kurland (1990)

0.0078 E. coli Direct 0.60 Tsung et al. (1989)

0.0604 Yeast Indirect 0.10 Arava et al. (2003)
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variation in sðnÞ between genes to variation in codon
usage and transcript length.

With this insight into how nonsense error rates, b,
affect the distribution of the translational completion
probabilities, we examine the experimental data that
might inform us of b’s actual value. Available estimates
of b and their corresponding mean protein translation
probability for the yeast genome are presented in
Table 2. Currently, two direct estimates of the frequency
of nonsense errors can be found in the literature (Tsung
et al., 1989; Jorgensen and Kurland, 1990). Unfortu-
nately, both of these estimates are based on observations
in E. coli. Arava et al. (2003) indirectly estimate a
nonsense error frequency for yeast. However, this rate is
significantly greater than the values for E. coli and
results in an average protein translation probability of
only 0.10 for yeast. Clearly the estimate by Arava et al.
(2003) is too large to be biologically feasible. Conse-
quently, for the rest of our study we will use the mean of
estimates from Jorgensen and Kurland (1990) and
Tsung et al. (1989), b ¼ 0:00515.

3.4. Dynamic behavior

While the generation of numerical solutions to our
model is computationally straightforward understand-
ing the behavior of the model from such solutions is less
so. However, it is possible to derive a continuous model
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which is analogous to the discrete model. This approx-
imation can be solved analytically, leading to a great
deal of insight into the behavior of both the continuous
and discrete forms of our model. As a result we continue
our study of the discrete codon model by deriving and
assessing the analytic solution to its continuous approx-
imation. Using the insight gained from our analysis of
the continuous approximation, we will then determine
numerical solutions of the discrete codon model. To do
so, we use the routine NDSolve that is a part of
Mathematica v5.0 (Wolfram Research Inc., 2003).

3.5. Continuous approximations

We now present a partial differential equation which
represents a continuous approximation to our discrete
set of Eqs. (1)–(3). Because we replace an mRNA
transcript with its set of discrete heterogeneous transla-
tion rates with one with a uniform translation rate and
we treat codon position as a continuous, rather than a
discrete, variable, this approximation allows us to
generate analytic solutions.

Let uðt;xÞ be the probability that a ribosome is
centered at point x where 0XxXn. The spatial variable
x corresponds to the codon number i in the discrete
model. The variables i and x are measured in the same
units: codons. The fundamental difference between i and
x, however, is that x is not restricted to only integer
values. (It would be possible to scale x so that it ranges
between 0 and 1, representing the first and last codons,
respectively. However, doing so would make compar-
isons of translational dynamics between genes of
different lengths more difficult.)

Based on our discrete codon model, the behavior of
uðt; xÞ follows the following PDE:

qu

qt
þ

qu

qx
s ¼ �bu, (10)

where

s ¼ �
n b

lnðsðnÞÞ
. (11)

The initial and renewal conditions for (10) are,

uð0;xÞ ¼ 0, (12)

and

uðt; 0Þ ¼ g=sþ l uðt; nÞ, (13)

respectively.
The system of Eqs. (10)–(13) is completely analogous

to the system of equations in the discrete model, (1)–(3).
For example, Eq. (10) essentially states that the
probability of a ribosome occurring at a particular
point moves along the mRNA moves along the
transcript at a constant rate s. Furthermore, as the
wave of probability moves along the transcript it decays
at a constant rate b over time. The initial condition
reflects the fact that in the beginning the probability of
finding a ribosome anywhere along the transcript is
zero. The renewal condition states that the rate at which
ribosomes are flowing into the system is equal to their
initiation rate, scaled by the rate at which they move
along the transcript, and the rate at which ribosomes
that complete translation are recycled.

The term s represents the effective uniform codon
translation rate for the entire mRNA transcript. It is
analogous to the average rate at which ribosomes move
along the transcript adjusted for the fact that some
ribosomes terminate protein translation early. Even in
the limiting case where, b ¼ 0, s is not simply the
arithmetic mean of ~c. This is because ribosomes spend
different amounts of time at different codons. Instead,
one can show that,

lim
b!0

s ¼
nPn

i¼1 ð1=ciÞ
¼

1

c̄H

. (14)

Eq. (14) indicates that the actual average rate at which a
ribosome travels along the transcript is equal to the
inverse of the harmonic mean of ~c, c̄H . The dependence
on the harmonic mean rather than the arithmetic mean
results from the fact that the wait time for each
elongation step is equal to 1=ci and is consistent with
our earlier approximations of sðnÞ derived from the
discrete model.

We can solve (10) given its renewal and initial
conditions in (13) and (12) using the method of
characteristics (Murray, 1993). Using this technique we
first discover that,

uðt;xÞ ¼ uðt� x=s; 0ÞsðnÞx=n. (15)

The term uðt� x=s; 0Þ represents the probability that a
ribosome would have been found at the start of the
transcript x=s time units ago.

The term sðnÞx=n represents the decay in the prob-
ability that a ribosome is still associated with the mRNA
(i.e. that a nonsense error has not occurred) by the time
it is expected to reach point x. Eq. (15) indicates that the
probability of finding a ribosome at point x at time t,
uðt;xÞ, is equal to the probability of a ribosome being
found at the time when this wave originated at x ¼ 0,
i.e. uðt� x=s; 0Þ, weighted by sðnÞx=m.

From (15), we see that uðt; xÞ is proportional to the
density of ribosomes at the beginning of the transcript,
i.e. uðt; 0Þ. The method of characteristics also shows that

uðt; 0Þ ¼
g
s

XrðtÞ
i¼0

ðlsðnÞÞi (16)

where

rðtÞ ¼ t
s

n

j k
. (17)

The notation b c represents the floor function (which is
sometimes referred to as the greatest integer function).
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The variable r represents the number of waves of
translation which have been completed. Note that for
x4t s the position x is too far downstream for any
ribosomes to have arrived given the rate at which
ribosomes move along the transcript. Under this
condition, rðt� x=sÞ ¼ �1 and, consequently, ðg=sÞPr

i¼0 ðl sðnÞÞ
i
¼ 0, i.e. the probability of finding a

ribosome at these positions is zero (Fig. 2 when
tp100). This behavior is consistent with our initial
conditions in (12).

Eq. (16) indicates that when ribosomes are recycled, i.e.
when l40, the density of ribosomes at the beginning of
the transcript, uðt; 0Þ, increases over time. Furthermore,
this term increases in a step-like manner with each
completed wave of translation. The size of each
successive wave is determined by r, sðnÞ, g and l. Early
on in the translation process when ton=s, no ribosomes
have completed translation. As a result, in this time
interval uðt; 0Þ ¼ g=s (Figs. 2 and 3a when tp100). When
2n=s4tXn=s the initial wave of ribosomes has completed
recycling (Figs. 2 and 3a when t ¼ 200). So in addition to
the free ribosomes, recycled ribosomes are also con-
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( ) model versions are presented. Changes in the probability of a ribosome

which moves down the mRNA transcript. In the discrete model the rate of m

At codons with low translation rates the probability spikes. In contrast, at cod

approximation the rate movement is assumed to be uniform, hence no spikes

itself via ribosome recycling. As a result a higher second wave of ribosome

translation rates used are given in Table S1. The de novo ribosome initiation r

preparation) and with the ribosome recycling probability l set to 0.5. The n
tributing to uðt; 0Þ. Consequently uðt; 0Þ ¼ g=s ð1þ l sðnÞÞ
for this range of t values. When 3n=s4tX2n=s, then
uðt; 0Þ is reinforced by a second wave of ribosome
recycling (which was, in turn, reinforced by the first
wave). Thus, uðt; 0Þ ¼ g=s ð1þ l sðnÞ þ ðl sðnÞÞ2Þ (Fig. 3a
when t ¼ 400). If we define ûð0Þ as the steady-state value
of uðt; 0Þ, (16) indicates that,

ûð0Þ ¼ lim
t!1

uðt; 0Þ ¼
g
s

1

1� l sðnÞ
. (18)

Eq. (18) indicates that as long as l sðnÞo1, the steady-
state is well defined.

With each successive wave of translation the initial
amplitude of the wave, i.e. its value at uðt; 0Þ, increases
due to recycling. However, as long as lo1 or sðnÞo1,
the size of each incremental increase due to reinforce-
ment will always be smaller than the previous increase.
As a result the initiation rate increases asymptotically
towards ûð0Þ (Fig. 4a).

By examining (16) more closely, we can assess the
rate, in units of wave number r, at which uðt; 0Þ
approaches its asymptotic value. For example, if we
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ons with high translation rates the probability drops. In the continuous

are observed. Once the wave front reaches the final codon it reinforces

occupancy probability moves down the mRNA transcript. The codon

ate, g was calculated from the locus’ k̂ value in Gilchrist and Wagner (in

onsense error rate was set to b ¼ 0:00515.
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define r0:95 as the critical wave number which results in
uðt; 0Þ being greater or equal to 0.95 times its steady-
state value, ûð0Þ, it can be shown that,

r0:95 ¼
lnð1� 0:95Þ

lnðl sðnÞÞ
� 1

� �
. (19)

Eq. (19) indicates that as the product of l and sðnÞ
increases, so does the number of waves it takes for uðt; 0Þ
to closely approach its steady-state value, ûð0Þ (Fig. 5).
In the special case where l ¼ 0, uð0; 0Þ ¼ ûð0Þ. Thus, in
the absence of ribosome recycling, the ribosome initia-
tion rate is constant for all t. As a result, the system
reaches the steady-state after the wave reaches the last
codon.
To summarize, the solution to our partial differential
equation indicates that the system can be viewed as a
traveling wave propagating from the start codon
propagating in the 50 to 30 direction. Because of
nonsense errors, the amplitude of this wave decays as
it moves towards the final codon. Both the speed at
which the wave travels, s, and the rate at which it decays,
sðnÞx=n are functions of the codon translation rates of an
mRNA transcript, ~c, and the nonsense error rate, b. The
wave reinforces itself via ribosome recycling. The impact
of this reinforcement is a function of the product of the
ribosome recycling probability, l, and the protein
translation probability, sðnÞ. The degree to which the
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of its steady-state value, ûðtÞ. The function r0:95 is an integer function

and contour lines separate regions of different integer values. r0:95
increases with the product of l and sðnÞ. See (19) for the exact solution.

M.A. Gilchrist, A. Wagner / Journal of Theoretical Biology 239 (2006) 417–434 427
wave reinforces itself decreases with each successive
wave so that the system approaches a steady-state. The
time it takes for the system to approach the steady-state,
measured in terms of the number of waves r, increases
with the product of l and sðnÞ.

3.6. Numerical solutions of the discrete model

We now compare our analytic solutions of the
continuous codon model to numerical solutions of the
discrete codon model. The most striking difference
between the discrete and continuous solutions is the
immense short-scale heterogeneity in the distribution of
ribosome occupancy probabilities found in the discrete
model (Fig. 2). Using the steady-state solution of the
discrete model we will explicitly show that this short-
scale heterogeneity in the ribosome occupancy prob-
abilities, ~zðtÞ (the discrete counterpart of uðt;xÞ), results
from heterogeneity of the codon translation rates in the
mRNA. Firstly, this is because the probability that a
ribosome will be found at a particular codon increases
with the waiting time for the correct tRNA while at that
codon. Secondly, this is because the expected waiting
time is inversely proportional to a codon’s translation
rate. As a result ribosome densities spike at slowly
translated codons and decrease at quickly translated
codons. One consequence of this heterogeneity is that,
unlike in the continuous case, the probability of a
ribosome occurring at downstream codons is not always
less than that of upstream codons (cf. Figs. 4a and b).

Although the continuous model cannot capture short-
scale heterogeneity in ribosome occupancy probabilities,
other aspects of its behavior are similar to the discrete
model. For example, both models’ solutions show a
similar wave of ribosome occupancy probability moving
along the transcript. (Although in the discrete model this
wave front is less abrupt than in the continuous model
and spreads out over time (Figs. 2 and 3b when tp100).)
In both the discrete and continuous models one also
observes a general decline in the amplitude of this
probability wave with increasing distance from the start
codon (e.g. Fig. 2). Finally, in both models the wave
reinforces itself through ribosome recycling (Fig. 2 when
t ¼ 200) and approach their steady-state in similar
manners (Fig. 3).

3.7. Steady-state behavior

As our analysis of the discrete and continuous model
dynamics indicates, as t becomes large the distribution
of ribosome occupancy probabilities on a transcript, ~z,
asymptotically approaches its steady-state. We can solve
for the steady-state of ~z by solving our discrete model
under the condition that the derivatives in (1) are equal
to zero. Using the accent ^ to denote the steady-state
value of a variable, from (1) it is easy to show that,

ẑi ¼
k̂

ci þ b
sði � 1Þ, (20)

where

k̂ ¼
g

ð1� l sðnÞÞ
. (21)

Eq. (20) shows that the steady-state probability that a
ribosome occupies codon i has a simple form. It is equal
to the rate at which ribosomes initiate translation
weighted by the probability that a ribosome will reach
the codon, and divided by the total rate at which
ribosomes leave the codon due to either translation or a
nonsense errors. As mentioned earlier, the short-scale
heterogeneity in ~̂z is caused by the variation in expected
waiting time between codons, where longer waiting
times lead to higher densities. This is also evident from
the steady-state solution as ẑi is inversely proportional
to ci þ b.

Fig. 6 presents typical forms of ~z at steady-state for a
number of genes in the yeast genome. While the impact
of heterogeneous c values is apparent in all cases, the
impact of nonsense errors on the probability that a
ribosome will reach a codon, sðiÞ, is especially apparent
in the longer genes.

From (20) we see that the steady-state values in ~̂z
are scaled by k̂. Eq. (21) indicates that the steady-state
initiation rate, k̂, is an increasing function of the rate at
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which new ribosomes initiate translation, g, and the
probability that a ribosome which begins translating the
mRNA transcript will complete translation and be
recycled, l sðnÞ. As l sðnÞ approaches 1, k̂ approaches
infinity because once ribosomes begin translating a
transcript they do not readily leave the translation-
recycling loop. Note that (19) indicates that under this
scenario the amount of time it takes to approach this
state also approaches infinity.

From our definition of the steady-state ribosome
initiation rate, k̂, we can use (4) to get an explicit
definition of the steady-state rate at which a protein
becomes translated, t̂,

t̂ ¼
g sðnÞ

ð1� l sðnÞÞ
. (22)

Note that in the absence of nonsense errors, t̂ ¼ g=ð1�
lÞ and, consequently, the steady-state rate of protein
synthesis is independent of codon usage.

The qualitative behavior of t̂ is a function of the
protein translation probability, sðnÞ and the ribosome
recycling probability, l. In contrast, the de novo
ribosome initiation rate, g, simply scales as t̂. As both
sðnÞ and l are probabilities and are, therefore, bounded
between 0 and 1, it is easy to evaluate the behavior of t̂
(Fig. 7). That t̂ must increase with l is easy to see: l
essentially amplifies the effect of g on t̂. Because
ribosome recycling only occurs with ribosomes that
complete translation, the impact of l on t̂ is dependent
on sðnÞ. At low values of sðnÞ, even a large value of l has
little impact on t̂ because very few ribosomes can be
recycled since very few complete translation. In contrast,
when sðnÞ is close to 1, slight increases in l lead to
large increases in t̂. This is because under this scenario,
ribosomes which begin translating the protein are
likely to complete translation. As a result, any increase
in l will increase the probability that a ribosome
will translate the same mRNA transcript many more
times.
4. The energetic cost of nonsense errors: x

4.1. Calculation and analysis

Based on the work above, we can now calculate the
expected energetic cost of nonsense errors for each
translational initiation event, x as defined in (5), for a
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given transcript ~c as,

xð~cÞ ¼
Xn

i¼1

ða1 þ a2iÞ
b

ci

sðiÞ. (23)

Having a fully defined definition of x allows us to
analyze how x changes when we switch the codons ck

and cm, where kom. We use the symbol Dxk;m to
represent the change in x caused by such a switch. From
Eqs. (6) and (23) it can be shown that,

Dxk;m ¼ 1�
cm

cm þ b

ck þ b

ck

� �Xm�1
i¼k

sðkÞ. (24)

Eq. (24) implies that the sign of Dxk;m, i.e., whether
switching ck and cm increases or decreases the expected
energetic cost of nonsense errors, is determined by the
sign of the term in parentheses. Thus we find,

Dxk;m ¼
40; cm4ck;

o0; cmock:

(
(25)

Thus, the value of x increases if a faster codon late in the
transcript is switched with a slower translating codon
earlier in the transcript. This is because the probability
of a nonsense error occurring before the faster codon is
translated is lower than the slower codon and that later
errors are energetically more expensive due to the larger
number of peptide bonds formed. This result is
consistent with verbal arguments put forth by (Eyre-
Walker, 1996). Note that the parenthetical term in (24)
is scaled by the sum of s values affected by the codon
switch. Since sðiÞ is always positive, this indicates that
the impact of a switch increases with the distance
between codons switched. Furthermore, because sðiÞ is
also a monotonically decreasing function, switching two
codons some distance apart at the start of a transcript
would affect x more than switching two codons of the
same distance towards the end of the transcript. This
suggests that while the strength of selection on codon
usage increases with codon position, the gradient of this
selection force gradual decreases with position. In the
natural world, mutations do not occur via codon
switching. Nevertheless, the calculation of Dxk;m clarifies
relationship between selection on codon usage and how
the strength of selection on codon usage bias changes
with codon position.

4.2. Comparing x to its predicted behavior

To test whether x and, indirectly our model, captures
the underlying biological cost of nonsense errors we
conducted the following computational experiment. For
each confirmed protein transcript in the yeast genome, we
generated a null distribution of 2500 transcripts where
the codons used for each amino acid were randomly
rearranged. For each transcript, we then calculated the
average expected energetic cost of nonsense errors for
the transcripts in the null set and then compared it to the
observed cost expected cost of nonsense errors, xð~cÞ. If
the observed cost was less than the mean of the null set
we scored that as a 1, indicating evidence for selection on
codon order. If the observed cost was greater than the
mean of the null set we scored that as a 0, indicating no
evidence for selection on codon order.

If our model of protein translation and the expected
nonsense error cost function based on it are invalid, then
we would expect the observed costs of nonsense errors
to be distributed in the same way as the values in the null
set. On the other hand, if our model of protein
translation and the expected nonsense error cost
function based on it are generally valid and selection is
acting on codon position as previously posited, then we
would expect that observed costs of nonsense errors are
generally less than the average cost in the null set.

We can test this idea explicitly by comparing the
number of genes where the observed cost is less than the
mean of their corresponding null set to the number
expected based on a binomial model with a success rate
of 0.5. Of the 5855 genes examined, 3562 (�61%) had an
observed cost of nonsense errors less than the mean of
the null distribution, a result which is highly significant
(po10�60). This result strongly supports the idea that
selection on codon usage is site specific and increases
with codon position.

Our cost function, x, describes the expected cost of
nonsense errors for each initiation event of protein
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(po10�60).
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translation of a gene. As a result, we expect the strength
of selection on genes to increase with their expression
level. Consequently, we can validate our model further
by asking whether the probability that a gene’s observed
cost of nonsense errors is less than expected increases
with the expression level of the gene. In this analysis, we
used the mRNA expression levels for yeast during
exponential growth as presented in Beyer et al. (2004).
These mRNA levels were derived from a wide collection
of measurements from multiple laboratories and provide
measurements for 5592 confirmed genes. The results of a
logistic regression indicate that the probability of finding
evidence of selection on codon order increases signifi-
cantly with mRNA expression level (po0:005). More
surprisingly, because the intercept of our regression is at
0.62, these results also indicate that the response to
selection on codon order can even be detected in genes
with weak expression levels (Figs. 8 and 9).
5. Discussion

A combination of a fine-grained model representing
codons as discrete units and a coarse-grained continuous
model of mRNAs shows that ribosomes translating any
one mRNA can be thought of as a probability wave
traveling through a heterogeneous medium. The wave
undergoes decay caused by nonsense errors, but it also
becomes reinforced via ribosome recycling. The hetero-
geneity of the medium (mRNA) is caused by the
different rates at which individual codons are translated.
Because of the heterogeneity in codon translation rates,
the probability of a ribosome being found spikes at slow
codons and drops at fast codons. If nonsense errors
occur at a constant rate per unit time, then they are
more likely to occur at slow codons than at fast codons.
Therefore, codon usage bias not only causes short-scale
heterogeneity in the ribosome occupancy probabilities
along an mRNA, but it also affects the probability that
a nonsense error will occur along an mRNA. It is likely
that the rate of nonsense errors varies between codons,
although we did not consider the possibility in our
model. For example, Freistroffer et al. (2000) show that
near-cognates of the stop codons are more often
mistranslated by the release factors than other codons.
However, the authors also conclude that only a ‘‘small
proportion of nonsense failures can be attributed’’ to
this process. As a result, incorporating such information
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Fig. 9. Distribution of genes with evidence for selection on codon

order vs. mRNA expression level data from Beyer et al. (2004). Genes

were considered to have evidence for selection when their expected cost

of nonsense errors of the transcript, xð~cÞ, was less than the mean

expected cost, EðxÞ from a set of 2500 transcripts where codon order

for each amino acid was randomized. The dashed line (��) represents

the best-fit line based on a logistic regression (N ¼ 5562; po0:005)
with parameters a ¼ 0:47 and b ¼ 0:0048 (Agresti, 2002). The results

indicate that the strength of selection on codon usage increases with

codon position and mRNA expression level.
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will be useful in future studies, but we do not expect this
added level of model complexity to fundamentally
change our findings.

There are numerous explicit models of protein
translation in the literature (Bergmann and Lodish,
1979; Harley et al., 1981; Menninger, 1983; Liljenström
and von Heijne, 1987; Bulmer, 1991; Zhang et al., 1994;
Chou, 2003). Most of these models focus on the
protein production rate of the entire cell and tend to
ignore either nonsense errors and/or ribosome
recycling. One common complication often introduced
in these models is inter-ribosomal interference (i.e.
the blocking of the translation of one ribosome by
another ribosome immediately 30 from it). Historically,
introducing this complication generally precluded any
analytic analysis, causing researchers to resort to
simulation (Bergmann and Lodish, 1979; Zhang et al.,
1994). A notable exception is a recent study by Chou
(2003) which presents an analytic model of protein
translation that included such interference as well as
ribosome recycling. While this work is elegant and
clearly a major step forward, the approach ignores
nonsense errors and heterogeneity in codon translation
rates.

The existing studies of inter-ribosomal interference
indicate that such interference can reduce the translation
rate of a protein and results from either the clumping of
slowly translating codons or from high initiation rates.
If inter-ribosomal interference does occur, it is unclear
how it will ultimately affect the rate of nonsense errors.
On one hand, such interference is likely to increase the
probability of drop-off errors during translation. On the
other hand, interference could possibly decrease the rate
of frameshift errors if ribosome sizes are such that
ribosomes in contact with one another are properly
spaced (i.e., the distance between ribosomes, when
measured in nucleotides, is a multiple of three). Protein
initiation rates are largely unknown, but the data from
Arava et al. (2003) shows that ribosome densities on
mRNA transcripts are generally quite low compared to
their possible saturation values. This evidence suggests
that inter-ribosomal interference is likely to be rare in
yeast.

Despite the large literature produced over the last 25
years on codon usage bias, only a few notable studies
have focused on the role nonsense errors may play in
shaping codon usage bias (Eyre-Walker, 1996; Berg and
Silva, 1997; Hooper and Berg, 2000; Qin et al., 2004).
This is surprising given that prematurely terminated and
nonfunctional protein products that result from non-
sense errors appear to be quite common (Manley, 1978;
Tsung et al., 1989; Jorgensen and Kurland, 1990;
Kurland, 1992). Nonsense errors are also likely to be
quite costly since they can tie up essential cell resource
such as tRNA molecules (Dincbas et al., 1999; Cruz-
Vera et al., 2004), interfere with other cellular processes
(Menninger, 1978), and waste many high-energy phos-
phate bonds.

In our study we used an expected nonsense error cost
function to better understand the energetic cost of these
errors. In this function, the assembly cost of these
nonsense errors increases with the position of the codon.
We indirectly test this cost function and the underlying
translation model on which it is based by asking whether
or not we are able to detect a response to an increasing
selection gradient on codon usage bias as predicted by
Eyre-Walker (1996).

Gradients in codon usage bias have been previously
investigated in a number of studies (Liljenström and von
Heijne, 1987; Bulmer, 1988b; Eyre-Walker and Bulmer,
1993; Berg and Silva, 1997; Hooper and Berg, 2000;
Qin et al., 2004). Most of these studies have focused on
E. coli and the results of the earlier work were hampered
by small sample sizes. The recent study by Qin et al.
(2004) is the most statistically sophisticated one to date
and utilized entire genomes for their analysis. These
researchers applied a special regression technique to the
Drosophila melanogaster, yeast and a number of
prokaryote genomes. In all but D. melanogaster, Qin
et al. (2004) detected consistent increases in codon usage
bias with codon position. They also found that further
increases in the gradients were commonly noticeable
towards the end of the transcripts, which is consistent
with our analysis of the effect of codon switching on the
expected energetic cost function. In fact, in a number of
prokaryotes codon bias actually dropped towards the
very end of the transcript. If nonsense errors which
occur late in a transcript result in fully or partially
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functional proteins, then selection on these final codons
will be relaxed and this drop in codon usage bias can be
explained. Given that gradients in codon usage occur,
we view our detection of a response to position
dependent selection on codon usage bias using our cost
function and mRNA expression levels as indirect
validation of this function and the protein translation
model on which it is based.

In this study, much of our focus has been on nonsense
errors and their costs. However, most discussions of
selection on codon bias focus on selection for increased
translational efficiency. Translational efficiency is gen-
erally thought of as the rate at which the ribosome
population within a cell is forming peptide bonds
relative to some hypothetical maximum rate. Interest-
ingly, studies of translational efficiency generally ignore
the impact of nonsense errors. Yet, if one assumes that
incomplete peptides resulting from nonsense errors are
largely non-functional, then it is clear that nonsense
errors also affect the overall translational efficiency of
the ribosome population. This is because nonsense
errors decrease the number of peptide bonds created
by the ribosome population that actually end up in a
functional protein.

Ribosome recycling is likely to have evolved as a
means of increasing the translational efficiency of the
ribosome population. This is because ribosome recycling
decreases the amount of time a ribosome spends
between completing translation and initiation. However,
ribosome recycling is only likely to occur if the ribosome
translates the entire transcript. Thus we conclude that
the overall efficacy of ribosome recycling is limited by
the translational probability of a transcript which is
determined, in turn, by the probability of a nonsense
error at any one of the codons. As a result, we find that
translational efficiency and nonsense errors are inex-
tricably tied together and we are left with a clearer
understanding of how codon usage bias underlies this
interaction.
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