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ABSTRACT We analyze the structure of the yeast transcriptional regulation network, as
revealed by chromatin immunoprecipitation experiments, and characterize the molecular evolution
of both its transcriptional regulators and their target (regulated) genes. We test the hypothesis that
highly connected genes are more important to the function of gene networks. Three lines of
evidenceFthe rate of molecular evolution of network genes, the rate at which network genes
undergo gene duplication, and the effects of synthetic null mutation in network genesFprovide no
strong support for this hypothesis. In addition, we ask how network genes diverge in their
transcriptional regulation after duplication. Both loss (subfunctionalization) and gain (neofunctio-
nalization) of transcription factor binding play a role in this divergence, which is often rapid. On the
one hand, gene duplicates experience a net loss in the number of transcription factors binding to
them, indicating the importance of losing transcription factor binding sites after gene duplication.
On the other hand, the number of transcription factors that bind to highly diverged duplicates is
significantly greater than would be expected if loss of binding played the only role in the divergence
of duplicate genes. J. Exp. Zool. (Mol. Dev. Evol.) 302B:000–000, 2004. r 2004 Wiley-Liss, Inc.

INTRODUCTION

Transcriptional regulators and the genes whose
expression they regulateFtheir target genesF
form large gene regulation networks (Perez-Rueda
and Collado-Vides, 2000; Guelzim et al., 2002; Lee
et al., 2002; Salgado et al., 2004). These and other
molecular networks, such as protein interaction
networks and metabolic networks, are intensely
studied, because their characterization has been
greatly facilitated by new techniques in genomics
and bioinformatics (Uetz et al., 2000; Ito et al.,
2001; Lee et al., 2002; von Mering et al., 2002;
Salgado et al., 2004). Information about the
structure of molecular networks opens a new
dimension to studies of molecular evolution,
because it allows inquiries that go beyond the
evolution of individual genes. Network evolution
and gene evolution are of course not independent.
On the one hand, we know that mutations at the
level of individual genesFincluding gene duplica-
tionsFinfluence the structure of these networks.
On the other hand, natural selection acting on the
global structure of a network may influence what
kind of mutations can be tolerated on the gene
level (Wagner, 2001; Sole et al., 2002; Wagner,
2003; Chung et al., 2003; van Noort et al., 2004).

Put differently, the structure of the network may
influence the evolution of genes and vice versa.
This interplay is part of the reason why network
evolution is an intriguing and increasingly popular
subject of study.

We currently know very little empirically about
the evolution of large genetic networks. The first
step towards acquiring more knowledge consists of
a basic characterization of network structure
and of how a gene’s connectivity may affect the
gene’s evolution and the network’s function. We
here present such a basic analysis for the yeast
transcriptional regulation network. Such an ana-
lysis may be interesting in its own right, but it also
sheds light on questions that biologists have been
asking for decades. We illustrate this with one
question, how gene functions diverge after gene
duplication.

Gene duplications play dual roles in evolution.
On the one hand, gene duplicates that retain simi-
lar functions can be a source of gene redundancy,
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which may buffer organisms against mutations
(Wagner, ’99; Gonzalez-Gaitan et al., ’94; Wang
et al., ’96; Nowak et al., ’97; Gu et al., 2003;
Conant and Wagner, 2004). On the other hand,
gene duplicates that diverge in function contribute
to evolutionary innovation on the biochemical
level (Hughes, ’94; Zhang et al., ’98; Briscoe,
2001). Which of these roles is predominant? That
is, do most gene duplicates retain similar func-
tions long after duplication, or do they diverge
rapidly? Furthermore, when two genes diverge
in their functions, how does this divergence
take place? The two principal possibilities are
the acquisition of new functions (neofunctiona-
lization) and the partitioning of existing functions
between two duplicates. The last mode of diver-
gence has generated considerable recent atten-
tion, because it has been argued that such
divergence can account for the maintenance of
many gene duplicates in eukaryotic genomes
(Force et al., ’99a; Lynch and Force, 2000; Prince
and Pickett, 2002). However, most evidence
regarding the tempo and mode of divergence
comes from studies of individual genes and is thus
anecdotal.
To answer the above questions one must define,

quantify, and compare gene functions. However,
to do so raises enormous difficulties, which are
encapsulated in the multiple complementary ways
to categorize gene functions (Ashbuner et al.,
2000). They include the biological process a gene
acts in, its product’s subcellular localization, and
its biochemical activity. These difficulties are also
illustrated by the discovery that many genes long
thought to have one mundane and well-character-
ized functionFsuch as enzymatic activityFalso
have entirely, often completely unanticipated roles
(Jeffery, ’99). Examples include the glycolytic
enzyme phosphoglucose isomerase, which also
serves as the cell-signaling molecule neuroleukin,
a cytokine causing immune cell maturation, and
survival of some embryonic spinal nerve cells
(Chaput et al., ’88; Faik et al., ’88); thymidine
phosphorylase, which catalyzes the dephosphory-
lation of thymidine and deoxyuridine, and is the
same as an endothelial growth factor (Furukawa
et al., ’92; Haraguchi et al., ’94); aconitase, an
enzyme in the tricarboxylic acid cycle, which also
serves as a translational regulator of ferritin
expression (Kennedy et al., ’92); and carbinola-
mine dehydratase, which serves in phenylalanine
metabolism but also regulates the DNA binding
activity of the homeodomain transcription factor
hepatic nuclear factor 1a (Jeffery, ’99).

With such examples in mind, it may seem
utterly hopeless to exhaustively quantify gene
function to gain insight into the questions raised
above. However, not all is lost. A possible alter-
native approach consists in studying only one
aspect of gene functionFhowever minuteFand
assay this aspect of gene function for many
(duplicate) genes. Take the example of gene
expression. When and where a gene is expressed
may provide an indication of its function: there are
several known cases of gene duplicates in devel-
opmental genes, duplicates whose biochemical
activity is identical, but whose biological function
is different because they are expressed in different
tissues or cell populations. With the advent of
microarray technology, large-scale measurements
of gene expression have become feasible. They can
be used to compare this indicator of gene function
among many duplicate genes and to determine
their rate of divergence (Wagner, 2000; Gu et al.,
2002). Other gene function indicators include the
molecular interaction partners of a gene product;
a gene’s synthetic lethal interactions with other
genes; the spectrum of transcription factors
regulating the expression of a gene (because it
may indicate similarity in gene expression); andF
specific to genes encoding transcription factorsF
the regulatory targets of a transcription factor. In
this paper, we use the last two indicators of gene
function.

The subject of this paper is the transcriptional
regulation network of the yeast Saccharomyces
cerevisiae and the evolution of its genes. Although
primarily descriptive, our analysis provides pre-
liminary answers to the questions raised above, as
well as to several others. Do gene duplicates
diverge in function, or do they retain similar
functions, and thus partial redundancy, for a long
time? Which is the dominant mode of functional
divergence, partitioning of existing transcriptional
regulation interactions, or the acquisition of new
interactions? Does a gene’s connectivity influence
its chances to undergo gene duplication, its rate of
molecular evolution, or the ability to tolerate
mutations? The answers we obtain are prelimin-
ary, because information on the network’s struc-
ture is still limited. Each among several data sets
on transcriptional regulation networks (Perez-
Rueda and Collado-Vides, 2000; Bhan et al.,
2002; Guelzim et al., 2002; Lee et al., 2002;
Salgado et al., 2004) has its own weaknesses,
which include ascertainment biases and some-
times only indirect evidence for transcriptional
regulation. We here chose to use the most recent
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and most exhaustive data available, based on a
genome-wide chromatin immunoprecipitation ex-
periment (Lee et al., 2002). This analysis involved
106 transcriptional regulators and thousands of
likely transcriptional regulation interactions, in-
dicated by the binding of transcriptional regula-
tors to a gene’s regulatory regions.

METHODS

Transcriptional regulation data

To identify transcriptional regulators and their
target genesFthe genes whose expression they
regulateFwe used results of an immunoprecipita-
tion experiment conducted by Lee and collabora-
tors (Lee et al., 2002). This experiment
determined the binding affinity of well-documen-
ted transcriptional regulators to regulatory re-
gions of all S. cerevisiae genes. The authors started
with the 141 best-characterized transcription
regulators in the Yeast Proteome Database (Cost-
anzo et al., 2000), and constructed yeast strains in
which each of these regulators was tagged with an
epitope. Thirty-five of the regulators were elimi-
nated from the study because they were not
expressed under the experimental conditions
(growth in the rich medium YPD, which contains
yeast extract, peptone, and dextrose) or because
their tagging was unsuccessful. This left 106
regulators for analysis (Lee et al., 2002).
For each of these 106 regulators, the epitope tag

was used in three replicate chromatin immuno-
precipitation experiments (Knop et al., ’99) to
identify genomic DNA to which these regulators
bound (Ren et al., 2000). The immunoprecipitated
DNA was hybridized to DNA microarrays contain-
ing the regulatory regions upstream of known
yeast genes. The fluorescence intensity of a spot
(regulatory region) on the array indicates the
binding strength of a transcriptional regulator to
the regulatory region. This indication of binding is
quantitative, but for many analyses, a qualitative
(all-none) indication of binding and transcrip-
tional regulation is more useful. The authors thus
developed an error model of binding that allowed
them to assign a probability or P-value of binding
for each transcriptional regulator to a gene’s
regulatory region (Lee et al., 2002). This P-value
indicates the confidence one has in a factor’s
binding to a specific DNA region. We here
generally follow the authors’ suggestion of equat-
ing bona fide binding of a transcriptional regulator
to a target gene if this P-value is smaller than
10�3. This P-value minimizes the number of

false-positive binding interactions, while maximi-
zing the number of true positive regulator-target
binding interactions (Lee et al., 2002). Doing so
results in 4358 interactions with Po10�3. We also
repeated our analysis for drastically less stringent
(Po10�2) and more stringent (Po10�5) binding
thresholds (results not shown), with no qualitative
change to the results we report in detail here.

Connectivity

It is important to be aware that the number of
regulatory regions bound by a transcription
factors depends on the factor’s affinity to its
binding sites, as well as on the factor’s concentra-
tion in the cell. Thus, connectivity is best thought
of as a composite variable rather than as a simple
number. This does not hold only for our data but
for all analyses of molecular interaction networks
to date. With this caveat in mind, a natural
representation of the transcriptional regulation
data generated by Lee (Lee et al., 2002) is a
directed graph. A node represents a gene and a
directed edge from gene x to gene y indicates that
x is a transcription factor that has bound to the
regulatory region of gene y at Po10�3. In this
case, we will refer to gene x as a transcription
factor and to gene y as its target gene. The
connectivity of a transcriptional regulator is then
the number of edges that emanate from it, its
outdegree, which is interpreted as the number of
target genes it may regulate. The connectivity of a
target gene is its indegree, and reflects the number
of transcriptional regulators that bind to the
regulatory region of that gene. Because of con-
siderable noise in the data, and because of the
influence of binding affinities and protein concen-
trations we mention above, a gene’s connectivity is
also best interpreted as a relative measure rather
than as an absolute number. In other words, when
we call a gene highly connected, we mean highly
connected relative to other genes.

Duplicate genes

We identified pairs of duplicate genes in the
yeast S. cerevisiae using a modified version of
a previously published genome analysis tool
called GenomeHistory (Conant and Wagner,
2002) (http://www.unm.edu/Bcompbio/software/
GenomeHistory). This tool determines the extent
of synonymous and nonsynonymous nucleotide
divergence between any two sufficiently similar
genes in a whole genome.

MOLECULAR EVOLUTION IN THE YEAST 3



Briefly, we used GenomeHistory to carry out a
three-step analysis. The first step uses gapped
BLASTP (Altschul et al., ’97) at an E-value thresh-
old of 10�7 to identify candidates for duplicate genes
in a whole genome. The second step consists of an
amino acid sequence alignment for candidate genes
identified in step one to determine pairs of duplicate
genes. For our purpose, a global sequence alignment
in this step is less than ideal to identify duplicates of
transcriptional regulators. The reason is that only
parts of transcriptional regulators, especially their
DNA binding domains, evolve slowly and are
reasonably well conserved in evolution (Ptashne,
’88). Other parts, most notably transcriptional
activation domains, can evolve very rapidly. The
presence of rapidly evolving domains may hinder
the identification of gene duplicates through global
sequence alignments. This is, for example indicated
by the observation that the yeast genome harbors
fewer duplicates of transcriptional regulators than
of other classes of genes (Conant and Wagner,
2002). For our data set, global alignment yields less
than five duplicate transcriptional regulators. We
thus modified GenomeHistory to carry out a local
alignment, using the Smith Waterman algorithm
(Smith and Waterman, ’81), of candidate genes
identified in the first step. Only gene pairs whose
local alignment extended over at least 100 amino
acids, and whose amino acid sequence was identical
in more than 40% of its residues were included as
gene duplicates in the final, third step of the
analysis. This third step consists of a maximum
likelihood estimate of the synonymous divergence
(Ks) and the nonsynonymous divergence (Ka) of
every pair of duplicate genes, using a method
established by Yang and Nielsen (2000). Because
of the well-known multiple substitution problem
(Li, ’97), both synonymous and nonsynonymous
divergence estimates show limited reliability for
Ka(s)>1.0 respectively. Therefore, we retained only
gene pairs with Kao1 for further analysis.

Orthologous genes

A recent study by Kellis and colleagues reported
the genomic DNA sequences of three yeasts,
Saccharomyces mikatae, Saccharomyces paradoxus,
and Saccharomyces bayanus, closely related to
S. cerevisiae (Kellis et al., 2003). From this study,
we used data on synonymous divergence Ks and
nonsynonymous divergence Ka between S. cerevi-
siae genes and their unambiguous orthologues from
the yeast S. mikatae (file ‘b.KaKs_details-5.xls’
at http://www.broad.mit.edu/annotation/fungi/comp_

yeasts/). We also used the ratio of nonsynonymous
to synonymous divergence Ka/Ks averaged for
orthologues in the three species pairs, S. cerevi-
siae–S. bayanus, S. cerevisiae–S. paradoxus and
S. cerevisiae–S. mikatae (file ‘b.KaKs_average.xls’).

Growth rates of mutant yeast strains

We utilized results from a genome-scale experi-
ment conducted by Steinmetz and collaborators,
which assayed the growth rates of 4,706 homozygous
diploid yeast deletion strains (Steinmetz et al.,
2002). Briefly, the authors generated a pool contain-
ing cells from each deletion strain, and allowed cells
in this pool to grow in a variety of media. These
included the rich medium YPD mentioned earlier,
YPDGE (0.1% glucose, 3% glycerol and 2% ethanol),
YPE (2% ethanol), YPG (3% glycerol), and YPL (2%
lactate). The investigators assayed the growth rate
of individual strains by hybridizing DNA tags that
identified each strain to an oligonucleotide micro-
array. The growth rate thus measured is a growth
rate relative to the pool’s average growth rate. We
here discuss our analysis of publicly available data
from one of two replicate experiments (file ‘Regres-
sion_Tc1_hom.txt’ at http://www-deletion.stanfor-
d.edu/YDPM/YDPM_index.html) that reported the
growth of homozygous mutant strains grown in the
five different media listed above. The other replicate
experiment yielded qualitatively identical results
(not shown). We were able to analyze 1716 genes for
which both gene deletion data and transcriptional
regulation data was available. We discuss results in
detail for only one of the five media, YPD, because
the other four media yielded qualitatively identical
results (not shown). However, we also report results
for a mutant’s maximum growth rate difference
among the five media to the pool’s average growth
rate (Steinmetz et al., 2002). This last measure of a
gene deletion’s effect indicates the greatest growth
rate reduction a strain suffers in any of the five
media, because most gene deletion strains with a
change in growth rate suffer a reduced growth rate.
In our statistical analysis of this and other data, we
consider the result of any statistical test that rejects
a null-hypothesis as highly significant if Po0.001,
and as nonsignificant if P40.05.

RESULTS

Network representation

The data we use here (Lee et al., 2002) contains
the binding affinity of 106 yeast transcriptional
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regulators to regulatory regions of genes in the
S. cerevisiae genome. This data can be viewed as a
directed graph whose nodes are genes. A directed
edge from gene x to gene y indicates that x is a
transcription factor likely to regulate the expres-
sion of gene y. We will refer to the genes whose
expression a transcriptional factor regulates as the
regulator’s target genes. The outdegree of a
regulator, that is, the number of directed edges
emanating from it, is the number of its target
genes. The indegree of a target gene is the number
of regulators that potentially influence the target
gene’s activity by binding to its regulatory region.
Figure 1a shows the structure of this network. The
majority of the 106 regulators and 2363 target
genes are part of one large subgraph or component
with 2925 edges. There are four regulators that
are at the center of disconnected components,
which involve a total of 21 target genes. The
distributions of both indegrees and outdegrees
have previously been characterized for transcrip-
tional regulation networks, and we will not
belabor them here (Featherstone and Broadie,
2002; Bhan et al., 2002; Guelzim et al., 2002; Lee
et al., 2002). Information on gene duplications can
be superimposed onto this network by introducing
undirected edges into the graph: any two nodes
are connected by an undirected edge, if they are
the products of a gene duplication. Gene duplica-
tion is rampant in this transcriptional regula-
tion network. For example, 27% (1688/6267) of
target genes have at least one duplicate in the
yeast genome. Figure 1b shows an undirected
graph whose nodes correspond to duplicated
target genes, where an edge between two nodes
indicates that they are duplicates of each other.
The vast majority of gene families in this graph
contain fewer than four genes, with a few larger
gene families clustered in the center. The size and
complexity of the graphs in Figures 1a and 1b
show that little useful information can be ex-
tracted from a mere visualization of this data. A
more quantitative analysis is called for, an
analysis that we will pursue below. We will
separately ask similar questions of the two classes
of genesFtranscriptional regulatory genes and
their target genesFconstituting the network
depicted in Figure 1a. Unfortunately, the distinc-
tion between transcriptional regulators and target
genes is not clear-cut, because a regulator’s
expression can itself be transcriptionally regu-
lated. Specifically, of the 106 transcriptional
regulators, 50.9% (54/106) are also potentially
subject to transcriptional regulation by one of

the 106 regulators. We here make the choice to
include transcriptional regulators regulated by
other regulators in our analysis of target genes.
Doing so does not materially affect our results,
because transcriptional regulators that are them-
selves regulated constitute only 2.3% (54/2363) of
target genes.

Transcriptional regulators

A majority (83 among 106 or 78%) of regulators
are single-copy genes, whereas 23 regulators (22%)
have at least one duplicate elsewhere in the
genome. Ten transcriptional regulators constitute
5 pairs of duplicates, whereas the duplicates of the
remaining 13 duplicate regulators are not among
the 106 transcriptional regulators analyzed by Lee
and collaborators (2002). However, the duplicates
of the 13 regulators whose function has been
characterized have been implicated in transcrip-
tional regulation as well, according to information
available in the Saccharomyces Genome Database
SGD (http://www.yeastgenome.org/). All of the
duplications are ancient, as indicated by the fact
that all pairs of duplicates involving one regulator
have a synonymous divergence of Ks>1. This
and the small number of duplicate regulators
make it difficult to render a meaningful statistical
analysis of functional divergence after regulator
duplication.

Figure 1c shows a network representation of
all the regulators that have regulatory interac-
tions with other regulators. The majority of the
regulators in the network (87% or 66/76) are con-
tained in one large connected component. For this
network, we asked whether there are any sys-
tematic differences between regulators that affect
the expression of other regulators and regulators
that do not. We found one such difference.
Regulators that do not affect the expression of
other regulators and have large numbers of target
genes are underrepresented in this network
(Table 1). Specifically, about half of all regulators
that regulate other regulators have fewer than
50 target genes, and the other half has as many
as 250 target genes. In contrast, the vast majo-
rity (96%) of other regulators have fewer than 50
target genes, with the remaining 4% having
between 50 and 100 target genes. An exact
binomial test shows that this difference between
the two classes of regulators is highly significant
(P=5.08� 10�13; n=51). Among those regula-
tors that may affect the expression of other
regulators, there is another prominent statistical
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trend: The higher a regulator’s number of target
genes, the smaller the fraction of regulators
whose expression it regulates (Fig. 2). Again,
this statistical association is highly significant
(Kendall’s t=�0.50; P=1.17� 10�7 n=54).

Connectivity and importance

The connectivity of a molecule is the result
of multiple factors, such as the binding affinity

to other moleculesFDNA in the case of transcrip-
tion factorsFand a molecule’s concentration
in the cell. It has been argued that highly
connected molecules may be more important to
the functioning of a cellular network and to
fitness, such that mutationsFpoint mutations,
gene deletions, or gene duplicationsFwould
have on average a more drastic fitness effect in
such molecules (Albert et al., 2000; Jeong et al.,
2001). We examined this hypothesis in three
complementary ways, by analyzing the effects
that mutations in regulators of different outdegree
have on the organisms. First, has the removal
of a highly connected regulator a more deleterious
effect on cell growth? Figures 3a and 3b show
the answer to this question, obtained from data
on the growth rates of gene deletion strains in
yeast transcriptional regulatory genes (Steinmetz
et al., 2002). Figure 3a shows a weak negative
association between a regulator’s number of
target genes and growth rate on rich medium.

Fig. 1. a) A graph representation of the transcriptional
regulation network. The large red nodes represent transcrip-
tional regulators; the small blue nodes represent target genes;
and a green edge between two nodes represents binding of the
regulator to a target gene’s regulatory region (Po0.001 in the
binding model of Lee et al. (2002)). The edges are shown as
undirected solely to render the representation less cluttered.
Note that all but four regulators are connected in one giant
component. b) Gene duplications among target genes of
transcriptional regulators. Blue nodes represent target genes.
A gray edge connects two nodes if these two nodes are gene
duplicates with amino acid divergence Ka o1.0. c) Regulatory
interactions among transcriptional regulators. All nodes in

this graph represent genes encoding transcriptional regula-
tors. An edge between two nodes represents a potential
regulatory relationship between regulator and its target gene,
as indicated by the regulator’s binding to the target gene’s
regulatory region (Po0.001 in the error model of Lee et al.
(2002)). Three classes of transcriptional regulators are
distinguished here, regulators that may influence the expres-
sion of other transcriptional regulators but are themselves not
transcriptionally regulated (large red circles), regulators that
regulate the expression of other regulators and are also
transcriptionally regulated (medium red circles), and regula-
tors that do not affect the expression of other transcriptional
regulators (small red circles). Squares indicate autoregulation.

TABLE1. An exact binomial test to compare the binomial distri-
bution of each column in the table

Number of
Target Genes

RegulatorsThat
Regulate Regulators

RegulatorsThat
Do Not Totals

(1, 50] 28 49 77
(50, 275] 26 2 28

Totals 54 51 105

Binomial n=54, p=26/54; Pr (xr 2)=5.08�10�13.

Fig. 2. Number of target genes of transcriptional regulators (horizontal axis) plotted against the fraction of a regulator’s
target genes that are regulators (vertical axis). (Kendall’s t=�0.50; P=1.17� 10�7; n=54).
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That is, deletion of highly connected transcrip-
tional regulators leads to slightly slower growth.
However, no significant association exists between
a regulator’s number of target genes and the
maximum difference in growth rates among five
different media when the regulator is eliminated
(Figure 3b).
In a second attempt to address the above

hypothesis, we asked whether highly connected
regulators evolve more slowly, that is, whether
they are under more severe evolutionary con-
straints? This would indicate that their encoding

genes could tolerate fewer mutations. Figure 4a
shows the results of an analysis addressing this
question with 51 unambiguous orthologues of the
regulators in the genome of the yeast, S. mikatae,
which is closely related to S. cerevisiae. We plotted
the ratio of nonsynonymous to synonymous
divergence Ka/Ks as an indicator of evolutionary
constraints (Li, ’97). It shows that highly con-
nected regulators do not evolve at rates different
from other regulators (Kendall’s t=�0.021;
P=0.825; n=51). Identical results (not shown)
hold for nonsynonymous divergence Ka instead of

Fig. 3. Growth rate and highly connected regulators. The horizontal axis shows a regulator’s number of target genes. a) The
vertical axis shows the growth rate of a yeast strain with a homozygous deletion mutant in a transcriptional regulator on the
rich medium YPD (Kendall’s t=�0.207; P=0.011; n=71). The growth data is normalized to one. That is, a value of one
represents no growth change in the mutant, and a value of less than one indicates slower growth. b) The vertical axis shows the
maximum growth rate difference of a mutant to the pool average (Steinmetz et al., 2002) for five different growth media
(Kendall’s t=0.114; P=0.160; n=71). A value of zero indicates that the deletion mutant grows as fast as the wild-type in all five
media. The more a value differs from zero, the more the mutant’s growth rate is affected in at least one medium. Because most
deletions that affect growth cause a reduction in growth rate, this means that large values on the vertical axis indicate a severe
growth rate reduction.
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Ka/Ks for S. mikatae, and also for the average ratio
Ka/Ks among orthologues in the three species pairs
S. cerevisiae–S. bayanus, S. cerevisiae–S. para-
doxus and S. cerevisiae–S. mikatae.
Third, are regulators with many target genes

less likely to have undergone a gene duplication
sometime in the past? The answer is contained in
Table 2, where we categorized regulators by the
number of their target genes. Eighty-nine of the
106 regulators (84%) have 80 or fewer target
genes, and 17 regulators (16%) have more than 80
target genes. An exact binomial test indicates that
single-copy genes are not underrepresented
among highly connected regulators (P=0.060;
n=83). In other words, high connectivity does
not reduce the likelihood that a regulator’s
duplicate is preserved in the evolutionary record.
The converse question is whether a regulator’s
connectivity may not only influence its own like-
lihood to undergo duplication, but also the like-
lihood that any of its target genes undergoes
duplication without deleterious effects. We thus
asked whether there is a correlation between a
regulator’s number of target genes and the
fraction of these target genes that have undergone
duplication. Figure 5 shows that the answer is no
(Kendall’s t=0.104; P=0.114; n=105).

Target genes

Just as we did for regulators, we asked, in three
complementary ways, whether target genes with
high connectivity (indegree) have different pro-
pensity to suffer deleterious mutations. First, has
the removal of a highly connected target gene a
more deleterious effect on cell growth? Figures 6a
and 6b show the answer to this question, obtained
from data on the growth rates of gene deletion
strains in yeast transcriptional regulatory genes
(Steinmetz et al., 2002). Figure 6a shows that
there is no statistically significant association
between indegree and growth rate on rich med-
ium. The same holds for Figure 6b, which uses the
difference between indegree and maximum differ-
ence in growth rate among five different media as
an indicator of deletion effect. However, it is
noteworthy that the figure indicates a negative
association between the maximal reduction in
growth rate on rich medium for any gene of a
given indegree (Figure 6a), as well as a negative
association between the maximal difference in
growth rate among five media and indegree
(Figure 6b). In other words, the maximal effect

of a gene deletion decreases with target gene
connectivity.

Second, do highly connected target genes,
target genes whose expression is influenced by
many regulators, evolve more slowly? That is,
are they under more severe evolutionary con-
straints? This would indicate that their encoding
genes could tolerate fewer mutations. Figure 4b
shows the results of an analysis addressing this
question with 772 unambiguous orthologues of
the target genes in the genome of the yeast,
S. mikatae, which is closely related to S. cerevisiae.
We plotted the ratio of nonsynonymous to synon-
ymous divergence Ka/Ks as an indicator of evolu-
tionary constraints (Li, ’97). It shows that highly
connected target genes do not evolve at different
rates from other target genes (Kendall’s t=0.026;
P=0.285; n=772). Identical results (not shown)
hold for nonsynonymous divergence Ka instead
of Ka/Ks for S. mikatae, as for the average ratio
Ka/Ks for orthologous in the 3 species pairs
(S. bayanus, S. paradoxus, and S. mikatae). All
results show that highly connected target genes
do not evolve at different rates from other target
genes.

Third and finally, are highly connected target
genes less likely to have undergone gene duplica-
tions sometime in the past? The answer is
contained in Table 3, where we categorized target
genes by the number of their regulators. Out of
2363 target genes, 2328 or (98.5%) have seven or
fewer regulators, and 35 target genes have more
than 7 regulators. An exact binomial test indicates
that there are fewer duplicated highly connected
target genes than single-copy highly connected
target genes (P=1.9 x 10�8; n=1871). In other
words, high connectivity may reduce the likelihood
that a regulator’s duplicate is preserved in the
evolutionary record. The converse question is
whether the regulators of highly connected target
genes show different propensity to undergo gene
duplication. Figure 7 shows the indegree of a
target gene plotted against the fraction of its
regulators that have at least one duplicate in the
yeast genome. The association is weak (Kendall’s
t=0.149) but highly significant (P=2.1� 10�27;
n=2364), showing that the regulators of highly
connected target genes are slightly more likely to
undergo gene duplication.

Divergence after gene duplication

Finally, there is the question about the rate
and extent of functional divergence after gene
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duplication. We could not address this question
for the transcriptional regulators, because of
their small numbers, but we can address it for
target genes. The proportion of regulators shared
by two target genes can serve as a proxy of
their similarity in expression regulation, which is
one among several indicators of gene function. We
are well aware that two genes with similar
expression patterns may have different transcrip-
tional regulators, and vice versa. However, there
must be at least some statistical association
between two genes’ expression similarity and their
similarity in the regulators bound to them.

Otherwise highly successful approaches to identify
regulatory DNA sequences through a combination
of DNA sequence and gene expression analysis
would not work (Bussemaker et al., 2001).

We determined for every pair of duplicate
target genes T1 and T2, the number d1 of regu-
lators binding to the regulatory region of T1,
the number d2 of regulators binding to the
regulatory region of T2, as well as the number
d12 of regulators binding both target regulatory
regions. The fraction of shared regulators is then
properly defined as d12/(d1+d2-d12). Figures 8a
and 8b show this fraction of shared regulators

Fig. 4. Do highly connected genes evolve at different rates?
a) Regulatory genes. The horizontal axis shows a regulator’s
outdegree, that is, its number of target genes. The vertical
axis shows the ratio Ka/Ks of nonsynonymous to synonymous
divergence of the regulatory gene to an unambiguous
orthologue in a closely related yeast, S. mikatae (Kellis et al.,
2003). No significant statistical association is observed
(Kendall’s t= �0.021; P=0.825; n=51). b) Target genes.

The horizontal axis shows a target gene’s indegree, that is, the
number of regulators that bind to its regulatory region. The
vertical axis shows the average of the ratio Ka/Ks of
nonsynonymous to synonymous divergence of the target gene
to an unambiguous orthologue in a closely related yeast
S. mikatae. No significant statistical association is observed
(Kendall’s t=0.026; P=0.285; n=772).
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as a function of the nonsynonymous divergence
(Ka) and synonymous or silent divergence (Ks),
respectively, between duplicate target genes. The
solid line in both panels indicates the average
fraction of shared regulators (0.02) between any
two randomly chosen target genes in the network.
The dotted line indicates the average fraction of
shared regulators plus one standard deviation
(0.02+0.14=0.16) between any two randomly
chosen target genes in the network. Both panels
show a highly significant negative association
between sequence divergence and the fraction of
shared regulators. In addition, it is evident that
many duplicate target gene pairs with high
sequence similarity have diverged completely in
the regulators bound to them. In fact, the
statistical association we observe is largely due to
an increasing number of duplicates with no shared
regulators as duplicates diverge. The statistical
association we observe here and the large number
of duplicates with no shared regulators is not
the result of a conservative binding threshold
(Po0.001) we used in this analysis. We observe

it also for greatly relaxed binding thresholds
(Po0.05) (results not shown). In sum, divergence
after duplication is often rapid.

A very similar approach allowed us to ask
whether duplicate target genes diverge largely
through loss of transcriptional regulator binding
in one of the genes. This is what recent models
of gene divergence emphasizing subfunctionaliza-
tion of genes suggest (Force et al., ’99a). Con-
versely, it is possible that divergence evolves
through the addition of many new transcriptional
regulation interactions. Immediately after a gene
duplication, if both the coding and the regulatory
region are duplicated, the sum of the number of
transcription factors binding to both duplicates’
regulatory regions is d1+d2=2d, where d is the
number of transcriptional regulators bound to the
ancestral gene (before duplication). If divergence
occurs only through loss of binding sites, then
d1+d2 will decrease after duplication and ap-
proach d1+d2=d, the number of binding interac-
tions before duplication. Conversely, if divergence
involved largely addition of new interactions, then
d1+d2 should increase after duplication. Figure 9a
clearly shows that the second scenario is not the
case: d1+d2 decreases after duplication.

Does this mean that only loss of binding sites
occurs during divergence? No. It only means that
there is a net loss of binding sites during
divergence after duplication. To assess whether
gain of binding sites is important, we carried
out a second analysis, where we focused only on
those duplicate gene pairs that have completely
diverged, that is, d12=0 so gene pairs share no

TABLE 2. An exact binomial test to compare the binomial distri-
bution of each column in the table

Number of
Target Genes

Duplicate
Regulators

Single Copy
Regulators Totals

(1, 80] 16 73 89
(80, 275] 7 10 17

Totals 23 83 106

Binomial n=23, p=7/23; Pr (x Z10)=0.06.

Fig. 5. No significant association exists between a regulator’s number of target genes (horizontal axis), and the fraction of
target genes that have undergone duplication (vertical axis).
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transcriptional regulators. If loss of transcription
factor binding sites is exclusively responsible for
the divergence of duplicates, then the combined
degrees d1+d2 of completely diverged duplicates

should be identical to the degree d typically found
in single-copy genes. Figure 9b shows that this is
not the case, regardless of whether one examines
very young (Kso0.25) or older duplicates. Com-
pletely diverged duplicate genes always show a
combined degree significantly higher than single-
copy genes, which demonstrates that gain of
transcription factor binding sites plays a signifi-
cant role in their divergence.

DISCUSSION

Our primary focus here was a descriptive
analysis of the largest available genome-scale

Fig. 6. Growth rate and highly connected target genes.
The horizontal axis shows the number of regulators that bind
to the regulatory region of a target gene. a) The vertical axis
shows the growth rate on YPDmedium of a yeast strain with a
homozygous deletion mutant in a target gene (Kendall’s t=
�0.022; P=0.164; n=1716). The growth data is normalized
to one. That is, a value of one represents no growth change in
the mutant, and a value of less than one indicates slower
growth. b) The vertical axis shows the maximum growth rate

difference of a mutant to the pool average (Steinmetz et al.,
2002) for five different growth media (Kendall’s t=0.026;
P=0.101; n=1716). A value of zero indicates that the deletion
mutant grows as fast as the wild-type in all five media. The
more a value differs from zero, the more the mutant’s growth
rate is affected in at least one medium. Because most deletions
that affect growth cause a reduction in growth rate, this
means that large values on the ordinate axis indicate a severe
growth rate reduction.

TABLE 3. An exact binomial test to compare the binomial distri-
bution of each column in the table

In Degree
Duplicate

Target Genes
Single Copy
Target Genes Totals

(1, 7] 487 1841 2328
(7, 18] 5 30 35

Totals 492 1871 2363

Binomial n=1871, p= 30/1871; Pr (xr 5)=1.90�10�8.
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experimental data set on the yeast transcriptional
regulation network, with an emphasis on how the
connectivity of a gene in the network can influence
its molecular evolution. In such an analysis, it is
expedient to distinguish two classes of genes:
regulators and their target genes. Doing so,
however, has a disadvantage: there are many
fewer regulators than target genes, rendering
their statistical analysis more difficult. The pro-
blem is aggravated for one important class of
mutations that affect a network’s structure, gene
duplications. All duplications of transcriptional
regulators in yeast are ancient, and transcrip-
tional regulators have few gene duplicates when
compared with other classes of genes. The latter
pattern has been observed previously in an
analysis that used global sequence alignment to
identify duplicate genes (Conant and Wagner,
2002). Because some domains of transcriptional
regulatorsFespecially their DNA binding do-
mainsFevolve slowly, whereas other domains
evolve rapidly, global sequence alignments may
miss duplicate regulators. However, the under-
abundance of duplicate regulators does not dis-
appear when we use local instead of global
sequence alignment to circumvent this problem.
For instance, we found here that 27% of target
genes have duplicates, whereas only 22% of
regulators do. This indicates that duplication of
transcriptional regulators has been less prevalent
than duplication of target genes in the evolution
of the yeast transcriptional regulation network.

This paucity of gene duplication in transcrip-
tional regulation gene may be specific to yeasts,
because it is not observed in the fruit fly
Drosophila melanogaster or in the worm Caenor-
habditis elegans (Conant and Wagner, 2002). It
may thus be a peculiarity of the evolutionary
history of yeasts rather than a general feature
of transcriptional regulation networks. If this is
the case, then yeast may not be the best species
for this type of study. For the data available
and for our purpose it means that we have very
limited data to examine the role duplications of
regulatory genes have played in this network’s
evolution.

Caveats

The analysis we carried out here has several
caveats. The first of them is that the nature of
the experiment limits transcriptional regulators
to DNA-binding proteins. However, it is increas-
ingly appreciated that transcriptional regulation
in eukaryotes involves large multiprotein com-
plexes, not all of whose members contact DNA
(Ptashne and Gann, 2002). Second, the experi-
ments will preferentially identify regulation of
genes expressed in rich medium. Thirdly, the
data set of 106 transcriptional regulators does
not include all transcriptional regulators in
yeast. Lastly, the binding of a transcription factor
to a target gene’s promoter region is indicative
but not conclusive of transcriptional regulation.

Fig. 7. Regulators of highly connected target genes are more likely to undergo gene duplication (Kendall’st=0.149;
P=0.210� 10�27;n=2364). The horizontal axis shows the indegree of a target gene, i.e. the number of regulators bound to its
regulatory region. The vertical axis shows the fraction of a target gene’s regulators that have undergone at least one gene duplication.
The vast majority of genes have only one potential regulator. For the majority of the remaining target genes, the fraction of duplicate
regulators is smaller than 0.1, in line with the observation that most regulators are encoded by single-copy genes.
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We nevertheless chose to work with this data
because it represents by far the largest unbiased
body of information on potential transcriptional
regulation. Other data sets (Perez-Rueda and
Collado-Vides, 2000; Bhan et al., 2002; Guelzim
et al., 2002; Lee et al., 2002; Salgado et al., 2004)
are not only significantly smaller, they also
have other shortcomings, most prominently an
ascertainment bias of unknown magnitude that
could distort results in unknown ways. We are,
however, aware that our results are preliminary
and await confirmation through improved experi-
mental data.

Gene connectivity and importance

A prominent hypothesis in the study of biologi-
cal networks suggests that highly connected
molecules are more important to the network, in
the sense that the network’s global structureF
and hence its functionFis most severely impaired
when such molecules suffer mutations (Albert
et al., 2000; Jeong et al., 2001). To begin with,
how does one best think of connectivity? Much
genome-scale data on molecular networks identi-
fies two molecules as either interacting or not
interacting. However, the association of two

Fig. 8. Negative association between sequence divergence
and regulators shared by duplicate target genes. The vertical
axes show the fraction of transcriptional regulators bound to
both regulatory regions of a duplicate gene pair. The solid
lines in both panels indicate the average fraction of shared
regulators (0.02) between two randomly chosen target genes
in the network. The dotted lines indicate the average fraction
of shared regulators plus one standard deviation (0.02 +

0.14=0.16) between any two randomly chosen target genes in
the network. These lines are based on one thousand randomly
chosen target gene pairs. a) Sequence divergence as measured
by the nonsynonymous divergence Ka. (Kendall’s t= �0.265;
P=3.60 x 10�36; n=999). b) Sequence divergence as measured
by the synonymous divergence Ks. (Kendall’s t= �0.245;
P=1.50 x 10�21; n=675).
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molecules in a cell is governed by thermodynamic
principles. It is influenced by parameters such
as dissociation constants and a molecule’s con-
centration in the cell. Proteins have widely
varying binding affinities to each other, and
widely varying concentrations in the cell. Simi-
larly, transcriptional regulators have widely
varying binding affinities to their sites on DNA
and widely varying concentrations. Any qualita-
tive data on molecular interactions, such as

available genome-scale protein interaction data,
captures such variation poorly. The problem is
alleviated with the semi-quantitative data that
we use here, because this data reflects the
confidence one has in the binding of a factor to
a regulatory region. However, this data cannot
disentangle the effects of concentration and bind-
ing affinity. The total connectivity of a transcrip-
tional regulatorFits outdegreeFshould thus
be understood as a composite variable influenced

Fig. 9. Sequence divergence and divergence of the number
of regulators affecting duplicate target genes. The horizontal
axis indicates synonymous sequence divergence Ks between
duplicate target genes. a) The vertical axis indicates the sum
d1+d2 of the number of transcriptional regulators binding to
regulatory regions of two duplicate target genes. The solid
horizontal line indicates 2d,where d is the average number of
regulators binding to the regulatory region of single-copy
genes. Standard errors for d are too close to the mean to be
visible in the plot. The number of regulators binding to two
duplicate target genes declines with synonymous divergence
(Kendall’s t= �0.100; P=0.005; n=503). b) Includes only

duplicate target gene pairs that have completely diverged
since their duplication, i.e., gene pairs where d12=0. Gene
pairs are grouped in four bins according to their synonymous
divergence. We tested the null hypothesis that the sum of the
degrees of completely diverged duplicates is identical to the
degree d of single-copy genes using a Mann-Whitney U-test
(Sokal and Rohlf, ’81). The null-hypothesis is rejected for all
four bins examined. This indicates that gain of transcriptional
regulation interactions plays a significant role in functional
divergence of duplicate target genes.
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by binding affinities and transcription factor
concentrations. It is with this qualificationF
which holds for all current analyses of molecular
interaction networksFthat our results should be
interpreted.
The hypothesis that connectivity relates to a

molecule’s importance has been mostly explored
with protein interaction networks, with conflicting
results (Jeong et al., 2001; Fraser et al., 2002;
Fraser et al., 2003; Jordan et al., 2003a; Jordan
et al., 2003b; Hahn et al., 2004). The disadvantage
of protein interaction data is that such data
contain an especially large amount of experimen-
tal noise (von Mering et al., 2002; Gilchrist et al.,
2004), and that the biological significance of two
proteins’ interaction is not always clear. In
contrast, transcriptional regulation interactions
have a clear interpretation: transcription factors
regulate genes whose expression is necessary for
biological processes. The notion that highly con-
nected regulators are functionally more con-
strained than other regulators, because they may
affect the expression of more target genes, is
therefore especially plausible for transcriptional
regulation networks.
To address this hypothesis, we first examined

whether deletion of highly connected regulators
causes more severe growth reduction in yeast. We
found a weak statistical association supporting
this notion on the rich medium YPD. The problem
with interpreting this kind of result is that the
growth reduction of a mutant may depend on the
growth medium used. So we also asked whether a
statistical association exists between a regulator’s
number of target genes, and the maximal growth
defect observed in five different growth media.
The statistical association observed in YPD dis-
appeared in this analysis.
A major problem with this type of analysis, in

addition to the environmental dependence of
mutational effects, is that growth rate reductions
much smaller than observable in the laboratory
may affect a microbe’s fitness, and that a
microbe’s fitness is not only determined by its
growth rate. A complementary analysis thus
asks whether highly connected regulators are
under more severe evolutionary constraints, in
that fewer amino acid changes are preserved in
their evolutionary record. To this end, we com-
pared S. cerevisiae transcriptional regulators to
their orthologues in the closely related yeast S.
mikatae. We found that regulators with many
target genes do not evolve more slowly than other
regulators.

Gene duplications are a third class of mutations
Faside from gene deletions and point mutations
Fthat may affect network function. A gene
duplication can cause an increase in expression
of a transcriptional regulator, which may affect
the expression of target genes, especially if these
target genes are regulated jointly with other
regulators. It may be the case that highly
connected regulators are less likely to undergo
duplications that have been preserved in the
evolutionary record. However, we did not observe
any such trend. In sum, three independent lines of
evidence suggest that the connection between a
transcriptional regulator’s high connectivity and
the network’s sensitivity to changes in it is
tenuous to nonexistent.

An analogous question can be asked for the
target genes of transcriptional regulators instead
of the regulators themselves. A highly connected
target gene is a target gene to whose regulatory
regions many regulators bind. Some such target
genes may be combinatorially regulated, whereas
others may function in different biological
processes, and different regulators may thus
regulate their expression at different times.
Because of their potential involvement in multiple
processes, some highly connected target genes
may also be more susceptible to mutations. We
find, however, that deletion of highly connected
target genes does not generally lead to slower
growth. In addition, and contrary to what one
might expect, highly connected target genes may
evolve slightly faster than other target genes. Only
gene duplications show a semblance of the
expected pattern: duplicate genes are slightly less
abundant among highly connected genes. Taken
together, these three lines of evidence show that
there is no strong and consistent support for an
association between gene connectivity and an
organism’s ability to tolerate genetic changes in
the gene.

Divergence after gene duplication

One question that an analysis of gene networks
can address is how gene duplicates diverge in
function. This question has two facets, the first of
which we already mentioned in the introduction:
how rapidly do two genes diverge in their func-
tions? Other studies suggest that indicators of
functional similarity among duplicate genes show
a highly significant but only weak statistical
association with sequence divergence or duplica-
tion age. This has been observed for similarity in
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gene expression (Wagner, 2000; Gu et al., 2002)
and similarity in protein interactions (Wagner,
2001). Our analysis of duplicate target genes of
transcriptional regulators confirms this observa-
tion. Specifically, the fraction of regulators shared
by two duplicate target genes, that is, the fraction
of regulators that bind to the regulatory regions of
both genes, decreases with the amino acid
sequence divergence of the duplicates, as has been
observed also by others (Maslov et al., 2004). It
also decreases with the divergence of the dupli-
cates at synonymous (silent) sites, an indicator of a
gene duplication’s age. These statistical associa-
tions, although highly significant, are weak. Part
of the reason is that even highly similar or
recently arisen gene duplicates can have diverged
considerably in the regulators bound to them. In
other words, divergence in gene regulation after
duplication is often rapid.
A second facet of the above question regards

the mode of functional divergence after gene
duplication. A prominent hypothesis emphasizes
the importance of losing some of a gene’s func-
tions after duplication, in order for both duplicates
to be preserved (Force et al., ’99b; Lynch and
Force, 2000). Many genes have multiple functions,
and when a multifunctional gene becomes dupli-
cated, either duplicate can lose one or more of
these functions, as long as they are preserved
in the other duplicate. Through selective loss of
functions, both duplicates are rendered essential
and can no longer be eliminated from the genome.
Supporting evidence for this mode of divergence
has come from studies of mutational effects in
duplicate genes, and from expression studies of
duplicate genes in higher organisms, (reviewed
in Prince and Pickett, 2002). In gene expression
studies, for example, duplicate genes sometimes
show a mode of expression restricted to a subset
of the expression domains of their ancestral single-
copy gene in a related organism. A second mode
of divergence that can render one or both
duplicates essential is neofunctionalization, the
acquisition of new functions. Because degenera-
tive mutations that eliminate transcription factor
binding and thus potentially gene expression may
be more abundant than mutations that lead to
new functions, subfunctionalization might be a
much more important mode of divergence than
neofunctionalization. However, our analysis here
indicates that both modes of divergence play a
role. On one hand, gene duplicates experience a
net loss in the number of transcription factors
binding to them. On the other hand, the number

of transcription factors that bind to completely
diverged duplicates is significantly greater than
expected if loss of binding is solely responsible for
the divergence of duplicate genes. With the benefit
of hindsight, the importance of neofunctionaliza-
tion may not be all that surprising. Recent work
has shown that new transcriptional regulation
interactions can evolve very rapidly in large
microbial populations (Stone and Wray, 2001).
Part of the reason is that binding sites for
transcriptional regulators are short, and that they
can often arise by chance alone (Stone and Wray,
2001). In addition, population genetic theory
shows that genetic drift, which is necessary for
the process of subfunctionalization, is weakest in
the large populations of typical microbes, which
would render neofunctionalization more promi-
nent in yeast (Force et al., ’99b; Lynch and Force,
2000).

Regulators of regulators

Despite the small numbers of transcriptional
regulators in this network, we were able to
make some intriguing although currently unex-
plained observations about these regulators. One
of them is that regulators which regulate the
expression of other regulators tend to have more
target genes overall. It would be tempting to call
such regulators master regulators. However, the
expression of such highly connected regulators is
also influenced by other, less highly connected
regulators. Thus, when faced with the full com-
plexity of regulatory gene networks, a naive
distinction between master regulators and other
regulators may be unhelpful in understanding
network structure.

A second observation is that regulators with
many target genes tend to regulate the expression
of a smaller fraction of other regulators than
regulators with fewer target genes. There is one
obvious candidate explanation for this finding:
Mutations in highly connected regulators may
have strong pleiotropic effects. A mutation in such
regulators may affect the expression of many
target genes, and is more likely to be deleterious
than a mutation in a less highly connected
regulator. If such a mutation affects the expres-
sion of another regulator, together with the
expression of this regulator’s target genes, the
likelihood that the mutation is deleterious may
be even greater. Highly connected regulators
may thus benefit from a reduction in the number
of other regulators they regulate. Despite the
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plausibility of this argument, our analysis of
the relation between connectivity of regulators
and their importance to the network does not
support it. There is at best a weak link between
a regulator’s number of target genes and the
effects of mutations in the regulator on the
organism. In sum, we currently do not have a
functional explanation for either of these regula-
tory patterns.

CONCLUSIONS

Answering questions about the evolutionary
forces that affect genetic networks might be
helpful in closing the gap between our under-
standing of biology at the molecular and organis-
mal level of organization. The study we present
here shows how much work remains to be done. So
far, only the most basic associations between a
gene’s connectivity and its evolution have been
explored. Our study is no exception. The available
work does not even allow us to exclude the
possibility that the large-scale structure of reg-
ulatory networks has little biological significance,
and that only small-scale scale network features
may be truly of biological importance (Milo et al.,
2002; Shen-Orr et al., 2002; Conant and Wagner,
2003). Even basic regulatory patterns, such as
those in the preceding two paragraphs, currently
do not have a place in a larger understanding of
network structure. Not only new data but also new
hypotheses will be necessary to assess whether the
large-scale structure of biological networks
really provides a bridge between molecules and
organisms.
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