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Rapid bacterial growth depends on the speed at which ribosomes can translate mRNA into proteins. mRNAs that encode successive
stretches of proline can cause ribosomes to stall, substantially reducing translation speed. Such stalling is especially detrimental for
species that must grow and divide rapidly. Here, we focus on di-prolyl motifs (XXPPX) and ask whether their prevalence varies with
growth rate. To find out we conducted a broad survey of such motifs in >3000 bacterial genomes across 35 phyla. Indeed, fast-
growing species encode fewer motifs than slow-growing species, especially in highly expressed proteins. We also found many di-
prolyl motifs within thermophiles, where prolines can help maintain proteome stability. Moreover, bacteria with complex,
multicellular lifecycles also encode many di-prolyl motifs. This is especially evident in the slow-growing phylum Myxococcota.
Bacteria in this phylum encode many serine-threonine kinases, and many di-prolyl motifs at potential phosphorylation sites within
these kinases. Serine-threonine kinases are involved in cell signaling and help regulate developmental processes linked to
multicellularity in the Myxococcota. Altogether, our observations suggest that weakened selection on translational rate, whether
due to slow or thermophilic growth, may allow di-prolyl motifs to take on new roles in biological processes that are unrelated to
translational rate.
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INTRODUCTION
Translation is a fundamental process common to all known forms
of life. Cells invest huge amounts of resources into translation. For
example, in fast-growing bacterial species like E. coli protein
synthesis can account for over 50% of a cell’s total energy budget
[1]. What is more, rapid bacterial growth depends on the speed of
translation. Specifically, fast-growing bacteria maintain high
concentrations of ribosomes, and these ribosomes elongate
proteins rapidly during protein synthesis [2]. In addition, bacterial
genome characteristics that are correlated with growth rate (rRNA
and tRNA gene copy number, as well as codon usage bias) all
influence the rate of translation [3–6].
Multiple factors can negatively impact translation rate and

cause ribosomes to pause or “stall” during elongation. These
factors include the presence of uncharged tRNAs, rare codons in a
translated mRNA, and even specific amino acids encoded by
mRNA [7]. Among these amino acids proline stands out. Proline is
slow to form peptide bonds due to its structural rigidity and
unique status as an N-alkylamino acid [8, 9]. This structural rigidity
can contribute to the formation of special secondary structures,
like the poly-proline II helix [10, 11], which is associated with
the binding domains of signaling proteins [12, 13]. Successive
stretches of prolines cause ribosomes to pause translation. The
length of this pause—the “strength” of the ribosome stall—
depends on the amino acids surrounding the proline stretch [14],

the location of the sequence causing the stall within a protein [15],
and the translation initiation rate [16].
A special translation factor exists to resolve proline-induced

ribosomal stalls. In bacteria this protein is called translation
elongation factor P (EFP). EFP is a tRNA mimic that binds to the
ribosome between the peptidyl and exit sites [17]. When bound to
the ribosome, EFP uses a conserved amino acid residue to interact
with the peptidyl-transferase center and accelerate the formation
of proline-proline peptide bonds [17]. In many species, this
conserved amino acid must be post-translationally modified for
EFP to efficiently alleviate stalling [18–20]. The importance of EFP
and its mitigation of ribosome stalling is underscored by the
strong phenotypes caused by its loss. These include diminished
growth rate [20–24], loss of motility [25], loss of virulence
[20, 22, 24], reduced antibiotic resistance [24, 26], and in some
cases, cell death [27].
Although EFP reduces the impact of proline-induced ribosomal

stalling, EFP cannot completely eliminate these stalls. Ribosomal
profiling shows that E. coli ribosomes still pause at proline
residues, albeit much more briefly than in EFP knockout mutants
[15]. Indeed, recent work has directly shown that proline motifs
lead to ribosomal pausing in wild-type E. coli [28]. Protein
evolution may have exploited such unavoidable stalling. For
example, in E. coli di-prolyl motifs often occur at the beginning of
complex protein domains, and may provide additional time for
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translational regulation, protein folding, or membrane insertion
[29]. Indeed, E. coli appears to prefer rare proline codons for such
motifs, effectively lengthening the stall phenotype in these
regions [28].
Because EFP cannot fully alleviate proline-induced stalling

[15, 28], one would expect that stalling motifs are subject to
natural selection, and especially so in fast-growing species under
high pressure to maximize their translation rate [2, 4]. Indeed,
di-prolyl sequences occur less frequently than expected by chance
in the fast-growing E. coli, where highly expressed proteins are
especially depleted in these motifs [29]. EFP itself is optimized for
high expression in fast-growing bacteria [30], reflecting its
importance in maintaining high growth rates.
Slow-growing bacteria are under reduced selection for transla-

tional speed [31]. Their genomes have reduced codon usage bias
and encode fewer tRNA and rRNA gene copies than their fast-
growing counterparts [5, 32]. Therefore, we wondered whether
the di-prolyl motifs that can cause ribosome-stalling would be
more widespread in slow-growing bacteria. The prevalence of
such motifs is unknown outside few well-studied bacterial species,
including E. coli [29], S. enterica [33], Bacillus subtilis [23], and
several Actinobacteria species [34].
We quantified the occurrence of di-prolyl motifs across more

than 3000 bacterial genomes from 35 phyla and found that these
motifs are more abundant in genomes with high GC content. This
is not surprising, because proline codons are cytosine rich. More
importantly, we found that these motifs were more abundant in
species with slow predicted growth rates when we controlled for
GC content. Di-prolyl motifs are also more abundant in thermo-
philes, and in species with complex life cycles that involve a
multicellular life stage. They are especially abundant in the serine-
threonine protein kinases of multicellular species, which are
involved in signaling and developmental programs.

MATERIALS AND METHODS
Analysis of bacterial genomes
We downloaded 3265 bacterial genomes from the Integrated Microbial
Genomes (IMG) database [35], selecting only one genome per Average
Nucleotide Identity (ANI) cluster to reduce bias towards highly studied
species while maximizing the phylogenetic diversity of our dataset. This
procedure yielded approximately one representative genome from each
species in the database, although we included multiple genomes from a
species if the ANI between genomes was below the typical cutoff for
species level (less than 96.5, 11 species). We used CheckM [36] to evaluate
the quality of these genomes, retaining those which were estimated to be
at least 90% complete and contained less than 5% contamination. We also
re-assigned taxonomy to the whole dataset using the Genome Taxonomy
Database and GTDB-Tool kit (GTDB-Tk) version 0.2.2 [37], and removed any
genomes that could not be assigned to a phylum (three genomes). We
counted the occurrence of di-prolyl motifs (XXPPX, where X designates any
amino acid) in every protein encoded in each genome, using custom
python scripts. We count polyproline motifs (XPPPX) as multiple di-prolyl
motifs, as such motifs represent independent proline-proline bond
formation reactions. The identity of the amino acids surrounding
successive prolines (Xs) impacts the severity of the resulting ribosomal
stall [14, 29]. We classified each di-prolyl motif according to its predicted
stall severity, from weak to medium to strong, using a key derived from a
mixture of in vitro and in vivo data [29].
We verified the presence of at least one EFP homolog in nearly every

genome using the hmmscan function of HMMER version 3.3.2 [38] to
search for the EFP Pfam PF01132. Only the genome of Aquaspirillum
serpens did not contain a known EFP homolog. However, because this
genome is not fully complete (estimated completeness 98.27% by
CheckM), and because it encodes the EFP modification protein earP [20],
it likely does encode EFP. Next, we estimated the doubling time associated
with each genome using the codon usage bias (CUB) based R package
gRodon version 1.8.0 [32]. This package calculates estimated doubling
times by comparing the CUB from a set of genes expected to be highly
expressed in fast-growing species (ribosomal proteins) to the background
codon usage of the genome, with the expectation that fast-growing

species use codons corresponding to the most abundant tRNAs to
maximize translational rate. This metric provides a good approximation for
a species’ doubling time in both whole genomes and metagenomic
samples [32].
For a subset of our genomes, we retrieved experimentally measured

doubling times from the literature (see Supplementary Dataset S1 for all
corresponding citations), with a large proportion of this data coming from
a recently compiled database on bacterial phenotypes [39]. We found
good agreement between doubling times predicted by gRodon and
measured doubling times, especially when only mesophilic species were
considered (species with measured doubling times: n= 301, Pearson’s rho
= 0.33, p value < 0.0001; mesophiles only: n= 202, Pearson’s rho= 0.44,
p value < 0.0001, Fig. S1). In addition, regardless of how accurately CUB
reflects measured doubling times, CUB still reflects a species’ investment in
optimizing its translation rate.
In order to calculate the median expected expression level of genes, we

first used ENCprime [40] to calculate CUB for each individual gene
(represented as KEGG KOs) within our genome dataset. Next, we ranked
each gene based on its overall CUB, where the highest rank of one
corresponds to the gene with the strongest bias and highest predicted
expression in each genome. We then took the median of this rank for each
gene across all genomes and used these values to approximate its median
expression level. Based on this calculation, the five genes with the highest
predicted expression level encoded elongation factor Tu, chaperonin
GroEL, large subunit ribosomal protein L7/L12, small subunit ribosomal
protein S1, and elongation factor Ts. These results are consistent with the
expectation that genes related to translation and cell growth should be
highly expressed across most genomes. All KEGG annotations were
provided by IMG using their annotation pipelines [35].
To identify intrinsically disordered regions (IDRs) within proteins of

interest, we used IUPred2A [41] with the “long” option. IUPred computes a
“disorder score”, and when this score exceeds a value of 0.5 in a protein
region, the region is predicted to be disordered. We calculated an average
disorder score for each di-prolyl motif by averaging scores across all five
amino acids comprising each motif. We identified serine-threonine kinases
by extracting all proteins which fell within KEGG orthology group K08884.
Supplementary Datasets S1 and S2 contain additional information on all
genomes and all proteins we analyzed, respectively.

Statistical methods
One potentially confounding factor in our analysis is that proline codons
are cytosine rich (CCU, CCC, CCA, and CCG), which implies that di-prolyl
motifs are inherently more likely to occur in genomes with high GC
content. Indeed, the number of coding GC base pairs and the number of
di-prolyl motifs are very strongly correlated for genomes in our dataset
(Pearson’s rho= 0.94, p value < 0.0001). Because of this correlation, when
examining individual proteins and their di-prolyl content, we controlled for
the GC content of their encoding gene. We also controlled for protein
length. We controlled for both quantities by dividing the total number of
nucleotides encoding the di-prolyl motifs (each motif is five amino acids
long and thus encoded by 15 base pairs) by the ratio of the total number
of base pairs in the gene to the number of GC base pairs in the gene. That
is, we preformed all analyses of di-prolyl motifs within genes with the
quantity

15 ´ number of encoded diprolyl motifs per gene
total gene length ½bps�

total GC content of gene ½bps�

Another potential confounding factor in our analyses is that GC content
and other genomic characteristics are correlated across bacterial
phylogenies. In other words, closely related bacteria are more likely to
have similar GC content—and thus di-prolyl content—than those that are
distantly related. To account for such phylogenetic dependence, we
created a phylogenetic tree using 43 concatenated conserved marker
genes generated by CheckM [36]. We aligned these sequences using
MUSCLE version 3.8.31 [42], and built the phylogenetic tree with FastTree
version 2.1.10 [43], using the archaeon Haloquadratum walsbyi as an
outgroup (NCBI accession number: GCA_000009185). We used this tree for
all subsequent phylogeny-dependent statistical methods.
We calculated Pagel’s λ [44] using the phylosig function from the

phytools R package, version 0.6.99 [45]. Pagel’s λ is a measure of the
phylogenetic dependence of a trait. A value of λ = 0 indicates that the trait
evolved independently of phylogeny, while λ = 1 indicates strong
phylogenetic dependency. This calculation confirmed that GC content
shows strong phylogenetic dependency (λ = 0.99, p value < 0.0001).
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Therefore, we controlled for phylogeny in all our genome-based analyses.
To this end, we used phylogenetic generalized least squares (PGLS) to
measure the contribution of individual genomic characteristics to the
prevalence of di-prolyl motifs within our genomes. We also used
phylogenetic ANOVA to analyze differences between groups in our
dataset. For the PGLS, we used the PGLS function in the R package caper,
version 1.0.1 [46] and for the phylogenetic ANOVA we used the
phylANOVA function from the R package phytools version 0.7-70 [45].
We performed all statistical analyses and plotting in R version 3.6.2 and
created all plots using ggplot2 version 3.3.3 [47]. Quantile-quantile plots
(Q-Q plots) of standardized phylogenetic residuals for all plotted PGLS
models are presented in Supplementary Materials, demonstrating roughly
normal distributions.

RESULTS
Species with large, high GC genomes have many di-prolyl
motifs
We quantified the frequency of di-prolyl motifs (XXPPX, where X
designates any amino acid) in all proteins within a set of >3000
bacterial genomes from 35 different phyla. Although all di-prolyl
motifs (PP) can cause ribosomal stalling, the surrounding amino
acids (X) influence the severity of the stall [14]. To assign a stall
“strength” to each di-prolyl motif, ranging from strong to medium
to weak, we used a published key that has been compiled from
in vivo and in vitro proteomic experiments [29]. We found that the
number of di-prolyl motifs in each genome varied broadly
throughout our dataset. They range from a maximum of 17,841
(1.95 motifs per protein) in Nannocystis exedens (a Myxobacterium
with a complex lifecycle) to a minimum of 86 (0.15 motifs per
protein) in Mycoplasma cloacale, a poultry-associated pathogen
from the family Mycoplasmataceae. The genome of N. exedens also
contained the most “strong” di-prolyl motifs at 9665 (1.05 strong
motifs per protein), whereas Mesoplasma coleopterae, another
pathogen from the Mycoplasmataceae, had the fewest strong
motifs at just 17 (0.02 strong motifs per protein).
In general, we found that phyla with large, high GC genomes had

the highest number of motifs (Actinobacteria, Planctomycetota, and
Myxococcota), whereas those with small, low GC genomes had the
fewest motifs (Fusobacteria, Campylobacterota, and Thermotogota,

Fig. 1). This is not surprising because proline codons are cytosine rich
(CCU, CCC, CCA, and CCG), making di-prolyl motifs inherently more
likely to occur in large genomes with high GC content. Next, we
asked whether any genome-derived characteristics besides GC
content and genome size influence the frequency of di-prolyl motifs.
When quantifying the influence of these characteristics, we
controlled for the shared evolutionary history of our study taxa.
Closely related genomes are much more likely to have similar GC
content, and therefore similar numbers of di-prolyl motifs, than
expected by chance (Pagel’s λ = 0.99, see Methods). In addition, we
needed a method that could account for the highly correlated
relationship between the frequency of di-prolyl motifs and GC
content. To disentangle the contributions of these and other
characteristics, while also controlling for phylogeny, we used
phylogenetic generalized linear models (PGLS). This statistical
method uses a phylogenetic tree to control for phylogenetic
relatedness, essentially down-weighting similar observations that
originate from closely related species [48], while also accounting for
co-correlated variables.

Thermophiles and microbes with complex life cycles have
high levels of di-prolyl motifs
The structural rigidity of proline can also reduce the conforma-
tional freedom of polypeptide chains, leading to increased
thermo-stabilization [49]. In addition, like slow-growing species,
thermophiles are thought to experience weaker selection on
growth-associated-traits than mesophiles. This is because high
temperatures cause naturally higher rates of catalysis and tRNA
diffusion [5], so that thermophiles need to invest less in optimizing
growth-associated traits to achieve rapid growth. For these
reasons, we hypothesized that di-prolyl motifs may be more
abundant in thermophilic bacteria. Testing this hypothesis is
complicated by the fact that thermophiles have smaller genomes
and shorter proteins than mesophiles [50]. With this in mind, we
first performed a phylogenetic ANOVA which confirmed that
thermophiles encode more di-prolyl motifs per Mbp of GC coding
content than mesophiles (Phylogenetic ANOVA, p value < 0.05,
Fig. 2A). Next, we performed a PGLS to verify that thermophiles
encoded more di-prolyl motifs when total GC coding sequence

Fig. 1 Di-prolyl motifs occur frequently in bacteria with large, high GC genomes. Phyla whose genomes have a low average GC coding
content (Fusobacteriota 0.8 Mbp, Campylobacterota 0.7 Mbp, Thermotogota 0.8 Mbp) encode fewer di-prolyl motifs than phyla with high
average GC coding content (Actinobacteria 3.2 Mbp, Planctomycetota 3.2 Mbp, Myxococcota 6.3 Mbp). Only phyla represented by at least five
genomes in our dataset are shown. Each circle represents one genome. Taxonomy was assigned using GTDB (Genome Database Taxonomy;
see Methods). The phylum Proteobacteria was broken down into its corresponding classes and all Firmicutes-adjacent phyla were combined.
The top and bottom boundaries of each box represent the 1st and 3rd quartiles, the thick black lines represent the median, and the whiskers
indicate values 1.5 times the inter-quartile range.
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size was controlled. We again found that thermophiles encode
significantly more di-prolyl motifs than mesophiles (PGLS A, p
value < 0.0001, Supplementary Table 1). Psychrophiles did not
differ from mesophiles in this respect (PGLS A, p value= 0.53),
although this could be due to their comparatively poor
representation in our dataset (psychrophiles n= 56).
Anecdotal evidence from our initial data exploration showed

that the Myxococcota, which are well-known for their ability to
form multicellular fruiting bodies, have the most di-prolyl motifs
among all taxonomic groups we examined (Fig. 1), despite not
having the highest overall GC content. Myxococcota and other
bacteria with complex life cycles rely on cell-cell signaling to
orchestrate their developmental programs [51]. Proline-rich
regions often occur in the binding domains of signaling proteins,
where they mediate protein-protein binding in a highly specific
yet reversible manner [13]. Therefore, we wondered whether the
genomes of bacteria with complex lifecycles are generally more
likely to harbor many di-prolyl motifs.
We performed a phylogenetic ANOVA and found that bacteria

known for multicellular behavior did encode more di-prolyl motifs
per GC coding Mbp (Phylogenetic ANOVA, p value ≤ 0.001, Fig. 2B).
Next, we modified our PGLS model to include multicellularity as an
added variable. We also included growth temperature in the
model, because some multicellular bacteria are thermophilic, for
example the filamentous thermophile Ardenticatena maritima. We
again found that multicellular bacteria have significantly more di-
prolyl motifs than unicellular bacteria, independent of total GC
coding content and growth temperature (PGLS B, p value < 0.01).
This effect was also not driven solely by the Myxococcota—when
we removed Myxococcota genomes from our dataset and
repeated this analysis, multicellular bacteria still encoded more
di-prolyl motifs (see Supplementary Results).

Slow-growing species encode more di-prolyl motifs than fast-
growing species
Because di-prolyl motifs can negatively impact translation rate
[15, 28], we were curious whether selection for translational speed
would influence the number of di-prolyl motifs in a genome.
Ideally, we would answer this question using experimentally
measured growth rates. Unfortunately, this information is not
widely available. As an alternative, we calculated the predicted
growth rate of each species in our dataset using a codon usage
bias (CUB) centered method, gRodon [32]. CUB refers to the
tendency of species to use codons that correspond to the most

abundant tRNAs in highly expressed genes. In doing so, these
species can increase their translational rate by accelerating tRNA
turnover at the ribosome [5]. The degree of CUB in genes
encoding ribosomal proteins is well correlated with experimen-
tally measured growth rates in mesophilic species [5, 32, 52] (see
Methods, Fig. S1).
Along with predicted growth rates, we also included two other

growth-associated traits in this PGLS model: tRNA and rRNA gene
copy numbers. One strategy that fast-growing bacteria use to
translate proteins rapidly is to ensure that their pool of charged
tRNA does not become limiting. Fast-growing species thus often
encode multiple copies of the most common tRNA genes [53].
Similarly, fast-growing species tend to encode multiple rRNA gene
copies to boost the rate at which rRNA molecules—and
consequently ribosomes—are synthesized [54]. When included
in our PGLS model, all three growth-associated traits had a
significant impact on the number of di-prolyl motifs in a genome,
although the significance of rRNA gene copies was weak (PGLS C;
predicted doubling time p value < 0.0001, tRNA gene copies p
value < 0.005, rRNA gene copies p value < 0.1). Characteristics
linked to slow-growth (slower predicted doubling times, fewer
tRNA gene copies, and fewer rRNA gene copies) were all
associated with more di-proly motifs (Supplementary Table 1).
Using the growth-associated traits of a representative slow

(Methylomagnum ishizawai; predicted doubling time= 124 h,
tRNA gene copies= 51, rRNA gene copies= 2) and fast growing
species (Propionigenium maris; predicted doubling time= 0.11 h,
tRNA gene copies= 103, rRNA gene copies= 5) in the equation
supplied by the PGLS C model, we found that slow-growth traits
resulted in a 14% increase in the number of di-prolyl motifs within
a genome, irrespective of GC content (Fig. 3). This can yield a
substantial total increase at a high GC content. For example, at a
protein-coding GC content of 8 Mbp, slow-growth associated traits
yielded an additional 1283 di-prolyl motifs (Fig. 3C).
Although CUB based growth rate metrics predict experimentally

measured doubling times well [5, 32] (Fig. S1), we wondered
whether the statistical associations we detected would persist if
we used experimentally measured doubling times instead. We
found such data for 301 (9.2%) species in our dataset (see
Supplementary Dataset 1 for details). When we repeated our PGLS
analysis on this reduced dataset, we found that species with faster
experimentally measured growth rates still encoded fewer di-
prolyl motifs than slow-growing species, although rRNA gene
copies was no longer a significant predictor (PGLS D, measured

Fig. 2 Thermophilic and multicellular bacteria encode many di-prolyl motifs per GC coding Mbp. A Thermophile genomes encode
significantly more di-prolyl motifs per GC coding Mbp than mesophiles (Phylogenetic ANOVA, p value < 0.05). Thermophiles are represented
by 304 genomes, mesophiles by 2892 genomes: thermophilic mean= 1389 di-prolyl motifs per GC coding Mbp, mesophilic mean= 1150 di-
prolyl motifs per GC coding Mbp, thermophilic variance= 202050, mesophilic variance = 153004. B The genomes of species with a complex,
multicellular lifecycle encode significantly more di-prolyl motifs per GC coding Mbp than their unicellular counterparts (Phylogenetic ANOVA,
p value ≤ 0.001). Multicellular and unicellular species are represented by 61 and 3191 genomes, respectively: multicellular mean= 1902 motifs
per GC coding Mbp, unicellular mean= 1157 motifs per GC coding Mbp, multicellular variance= 102622, unicellular variance= 152744.
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doubling times p value < 0.05, tRNA gene copies p value ≤ 0.005,
rRNA gene copies p value = 0.440). Removing thermophiles from
this analysis significantly improved this relationship (PGLS E,
measured doubling times p value ≤ 0.001, tRNA gene copies
p value < 0.05, rRNA gene copies p value= 0.315), perhaps
because rapid thermophilic growth rates do not necessarily reflect
enhanced investment in maximizing translational speed [5]. Using
the equation supplied by PGLS E, the growth-associated traits of
our representative slow-growing species, Methylomagnum ishiza-
wai (experimentally measured doubling time = 24 h), yielded a
25% increase in di-prolyl motifs over the fast-growing representa-
tive Propionigenium maris (experimentally measured doubling
time = 0.3 h) (Fig. S2). In sum, both CUB-predicted and
experimentally measured growth rates support the notion that
fast-growing species encode fewer di-prolyl motifs than slow-
growing species.

Proteins optimized for translational speed contain few di-
prolyl motifs, especially in fast-growing species
Our analysis thus far focused on the incidence of di-prolyl motifs
in entire genomes, but this incidence may also vary among
proteins within a genome. For example, in E. coli, highly expressed
proteins contain fewer di-prolyl motifs than lowly expressed
proteins [29]. We wondered whether this link between expression
level and di-prolyl motifs exists more generally in the >3000
bacterial genomes we analyzed. To address this question, we used
gene annotations from the KEGG (Kyoto Encyclopedia of Genes
and Genomes) Orthology database [55], which assigns genes
with a common function to a KEGG Orthology (KO) group. This

classification provides single-source functional annotations within
a hierarchical classification scheme that ranges from coarse-
grained, e.g., “genetic information processing”, to fine-grained,
e.g., “ribosomal protein-coding”.
Because gene expression data does not exist for the vast

majority of our genomes, we used the CUB of individual genes as
a proxy for their expression level. Within each genome, we ranked
each gene based on its overall CUB, where the highest rank of one
corresponds to the gene with the strongest bias and highest
predicted expression. We then took the median of this rank for
each gene across all genomes (see Methods for details). We found
that highly expressed proteins (low median CUB rank) contained
significantly fewer di-prolyl motifs, an observation that holds both
for all motifs (Spearman’s rho = 0.52, p value < 0.0001, Fig. 4), and
for motifs predicted to cause a strong stall (Spearman’s rho = 0.54,
p value < 0.0001, Fig. S3). Proteins whose median CUB rank was in
the top percentile harbored an order of magnitude fewer di-prolyl
motifs per 100 amino acids (AA) than proteins within the bottom
CUB percentile (0.002 vs. 0.014 motifs per 100 AA, GC-controlled).
These findings place similar observations from E. coli [29] into a
broad phylogenetic context.
Although highly expressed proteins were generally depleted in

di-prolyl motifs, we wondered whether this association would be
especially pronounced in fast-growing species. Though we
previously showed that fast-growing bacteria encode fewer di-
prolyl motifs than slow-growing bacteria in general (Fig. 3), this
analysis did not distinguish proteins based on their expected
expression level. We hypothesized that fast-growing species
would have fewer di-prolyl motifs in proteins expected to be

Fig. 3 Predicted doubling time and other growth-associated traits significantly affect the abundance of di-prolyl motifs encoded by
genomes. A Although GC content is the primary determinant of the number of di-prolyl motifs in a genome (PGLS C p value < 0.0001,
regression slope b= 1.056), predicted doubling time, tRNA gene copies, and rRNA gene copies also have a significant impact (PGLS C;
predicted doubling time p value < 0.0001 b= 0.016, tRNA gene copies p value < 0.005 b=−0.030, rRNA gene copies p value < 0.1, b=−0.003).
The two diagonal lines represent the PGLS-predicted relationship between di-prolyl motifs and the GC content of a genome, as calculated
using the growth-associated traits of a representative slow and fast-growing species from our dataset. Specifically, the upper blue line
represents a prediction based on the growth traits of one of the slowest growing species (Methylomagnum ishizawai; predicted doubling
time = 124 h, tRNA gene copies = 51, rRNA gene copies = 2) and the lower red line represents a prediction based on the growth traits of one
of the fastest growing species (Propionigenium maris; predicted doubling time = 0.11 h, tRNA gene copies = 103, rRNA gene copies = 5). The
slow-growth related traits of Methylomagnum ishizawai result in a 14% predicted increase in di-prolyl motifs. At low GC content (B: enlarged
view of the lower left box in (A)), the total impact of growth-associated traits is low (calculated net increase of only 47 di-prolyl motifs per
genome at 0.35 Mbp GC content), while at high GC content (C: enlarged view of the upper right box in (A)) the total net increase is substantial
(calculated net increase of 1283 di-prolyl motifs at 8 Mbp GC content). The horizontal and vertical axes are plotted on a logarithmic scale.
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highly expressed, as expression levels generally scale with growth
rate [2], and ribosomal stalling is exacerbated by high translation
initiation rates [16]. To validate this hypothesis, we identified for
each genome those genes expected to be most highly expressed,
i.e., genes whose CUB lies within the top percentile. We then
calculated the average amount of di-prolyl motifs in the proteins
these genes encode. On average, fewer di-prolyl motifs were
encoded by genes predicted to be highly expressed in fast-
growing species than in slow-growing species, independent of GC
content and growth temperature (PGLS F, predicted doubling
time p value < 0.0001).

Di-prolyl motifs are enriched in disordered domains of serine-
threonine kinases and other signaling proteins
Previous analyses revealed that bacteria capable of multicellular
behavior encoded many di-prolyl motifs independent of growth
traits and growth temperature (PGLS C, p value ≤ 0.01), with
genomes from the Myxococcota containing by far the most
di-prolyl motifs in our dataset (Fig. 1). Although we found that
di-prolyl motifs located in KEGG-annotated signaling proteins
were not responsible for the elevated numbers of these motifs in
multicellular bacteria (see Supplementary Results), signaling
proteins did contain significantly more di-prolyl motifs in multi-
cellular bacteria (phylogenetic ANOVA, p value ≤ 0.001). A large
proportion of these motifs were in protein kinases, and specifically
in serine-threonine kinases. Serine-threonine kinases are involved
in signal transduction, and work by phosphorylating specific sites
on target proteins [56, 57]. Extensive cross-phosphorylation can
occur between kinases, modulating their downstream activity in
signaling cascades [57]. Multicellular bacteria contain significantly
more serine-threonine kinases than unicellular bacteria (Fig. S4,
phylogenetic ANOVA p value ≤ 0.001), and these kinases contain
many di-prolyl motifs, especially within the Myxococcota. For
example, Stigmatella erecta contains 530 di-prolyl motifs spread
across the 67 serine-threonine kinases encoded within its genome.
Di-prolyl motifs in this species are enriched 45-fold in serine-
threonine kinases, such that 3.66% of di-prolyl motifs occur in a set
of proteins that make up just 0.08% of its proteome.

The phosphorylation sites of protein kinases are predominately
located within intrinsically disordered regions (regions without
stable three-dimensional structure—IDRs) [58]. Notably, proline
rich sites with high propensity towards forming polyproline II
helices (PPII) are evolutionarily conserved at intrinsically disor-
dered phosphorylation sites, where phosphorylation may tune a
protein’s propensity to adopt PPII structure [12]. These connec-
tions between proline rich PPII sites, phosphorylation, and IDRs led
us to ask whether the di-prolyl motifs within serine-threonine
kinases were preferentially located within IDRs of these proteins.
We used the disorder prediction software IUPred2A [41] to

identify disordered regions in all serine-threonine kinases within
our dataset. Although on average only 27% of residues within the
6552 serine-threonine kinases in our dataset were disordered, 72%
of di-prolyl motifs were located within these disordered regions, a
significant enrichment (χ2 test p value < 0.0001, Fig. S5). In one
extreme case, a single serine-threonine kinase from the myx-
obacterium Stigmatella erecta contained 41 di-prolyl motifs, of
which 95% were located within disordered regions (Fig. 5).
Though multicellular species contained more serine-threonine
kinases than unicellular (Fig. S4), and more di-prolyl motifs within
these proteins (phylogenetic ANOVA p value < 0.05), the di-prolyl
motifs of both unicellular and multicellular serine-threonine
kinases were equally enriched among disordered regions (71%
of multicellular motifs occur in IDRs vs 72% of unicellular motifs).
Expanding on these findings, we identified four additional
common signaling proteins (encoded by at least 25% of genomes
in our dataset) whose di-prolyl motifs were significantly enriched
within disordered regions (χ2 test Bonferroni corrected p value <
0.001, Fig. S5). These findings indicate that the enrichment of
di-prolyl motifs within IDRs may be a general feature of kinases
and signaling proteins.

DISCUSSION
Research involving EFP and di-prolyl motifs has largely focused on
individual species [24, 25, 27, 29] or proteins [59]. In contrast, we
surveyed these motifs in a broad range of genotypically and
phenotypically diverse bacteria. Though the exact effect of di-
prolyl motifs on translational rate has not been experimentally
tested in every species we studied, di-prolyl motifs cause
ribosomal stalling in all three domains of life, consistent with
the near universal distribution of EFP and EFP homologs [17].
Likewise, every genome in our dataset encoded EFP, with one
exception (see Methods). Because proline codons are cytosine rich
(CCU, CCC, CCA, and CCG), it is not surprising that the occurrence
of di-prolyl motifs is strongly associated with a genome’s GC
content (Fig. 1). We thus focused on patterns of di-prolyl motif
occurrence that cannot be explained by GC content alone. We
found such patterns in three groups of bacteria: slow-growing,
thermophilic, and multicellular species.
We were especially interested in potential associations

between di-prolyl content and growth rates. Indeed, we found
that fast-growing species encode significantly fewer di-prolyl
motifs than slow-growing species (PGLS C, Fig. 3). This relation-
ship holds whether we estimate growth rate indirectly from CUB
(PGLS C, Fig. 3), or directly from experimental measurements
(PGLS E, Fig. S2). In addition, while proteins expected to be highly
expressed generally encode fewer di-prolyl motifs (Fig. 4 and S3),
this trend is exacerbated in fast-growing species (PGLS F). These
findings are based on analyses of variance that correct for
phylogenetic relatedness and allow the impact of co-correlated
traits to be quantified independently (PGLS, Supplementary
Table 1).
Several highly expressed proteins critical to cell function contain

di-prolyl motifs that cannot be removed without a resulting loss of
function. For example, the valine tRNA synthetase ValS contains a
poly-proline motif that is highly conserved, critical to charge

Fig. 4 Highly expressed proteins contain fewer di-prolyl motifs.
Proteins expected to be highly expressed (based on CUB, see
Methods) contain fewer di-prolyl motifs when protein length and
gene GC content are controlled for (Spearman’s rho = 0.52, p value
< 0.0001). Each circle represents the average incidence of di-prolyl
motifs within a protein (KEGG KO) across all genomes it was
identified in. The colors represent the coarse-level function of the
KEGG Orthology (KO) group to which each protein belongs. We
only included common proteins (present in at least 25% of
genomes) in this analysis to reduce bias towards rare proteins. The
purple line is a linear regression line, and the shaded area
represents the 95% confidence area. The horizontal axis is plotted
on a logarithmic scale.
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tRNAVal efficiently, and important to prevent its mischarging with
threonine [59]. This implies that some di-prolyl motifs are
maintained in the face of negative selection pressure because
the benefit of their specific biochemical activity outweighs any
impact they may have on translational rate. If the genomes of
some species can encode more di-prolyl motifs because of weaker
selection on translational rate, these motifs may also acquire new
and useful roles unrelated to their effect on protein translation.
One candidate for such a role is to stabilize proteins in the high

temperature environments experienced by thermophilic bacteria.
Proline residues can increase the thermostability of proteins by at
least two mechanisms. First, their rigid structure reduces the
degrees of freedom available to a protein [49]. Second, increasing
the proportion of prolines and other hydrophobic residues
enhances thermostability by reducing accessibility to the protein
core [49]. Thermophiles have smaller genomes and shorter
proteins than mesophiles [50]. However, when we controlled for
the proportion of their genome that encodes proteins, we found
that thermophiles encoded more di-prolyl motifs than mesophiles
(PGLS A, Fig. 2A). Thermophiles are thought to experience relaxed
selection on translation rate because catalysis naturally proceeds
more rapidly at higher temperatures [5]. Relaxed selection on
translational speed in thermophiles may allow prolines to exist
where they would otherwise be detrimental for translational rate,
and thus help stabilize a thermophilic proteome.
Another potential role for di-prolyl motifs exists in bacteria

with complex, multicellular lifecycles, most notably the Myx-
ococcota (Fig. 1). We found that multicellular bacteria contained
significantly more di-prolyl motifs than unicellular bacteria (PGLS
B, Fig. 2B). These organisms rely on signaling proteins to
orchestrate their complex lifecycles [60, 61], which often contain
proline-rich regions with their binding domains [12, 13]. Though
we found signaling proteins were not exclusively responsible for
this effect (Supplementary Results), multicellular species do
encode more of the di-prolyl rich signaling proteins serine-
threonine kinases compared to unicellular bacteria (Fig. S4).
These kinases contain an outsized proportion of di-prolyl motifs,
which can be enriched up to 45-fold in some Myxococcota
compared to their background occurrence within the proteome.

Serine-threonine kinases play central roles in signaling between
cells by modulating the activity of their target proteins through
phosphorylation [57] and have been linked to cellular complexity
in multicellular bacteria [56].
Bacterial kinases are known to cross and auto-phosphorylate,

creating extensive signaling networks [57]. The phosphorylation
sites of kinases are enriched in intrinsically disordered regions
(IDRs), where phosphorylation can trigger changes in 3D-structure
that alter downstream activity [58]. Interestingly, proline rich
regions with high propensity towards forming polyproline II
helices (PPII) also occur primarily within IDRs [62], and are
evolutionarily conserved at phosphorylation sites [12]. Following
these connections, we found that di-prolyl motifs within serine-
threonine kinases are enriched among IDRs, as illustrated by a
specific example in Fig. 5. Furthermore, we found that the di-prolyl
motifs of four other common signaling proteins (present in >25%
of our genomes) were significantly enriched among IDRs (Fig. S5).
Three of these signaling proteins are known to be phosphorylated
(response regulator RegA [63], sensor kinase CheA [64], and an
OmpR family sensor kinase [65]). Phosphorylation can have a
dramatic effect on local bias towards PPII structures, in effect
tuning a protein’s propensity towards adopting a PPII structure
[12, 66]. As PPII structures commonly form the binding domains of
signaling proteins [12, 13], a connection between phosphoryla-
tion, PPII formation (or collapse), and the modulation of signaling
protein activity is appealing. However, verifying these connections
and determining their biological significance remains a task for
future work.
Our observations are consistent with previously drawn connec-

tions between cellular complexity and polyproline motifs, with
more complex organisms containing higher numbers of such
motifs [10]. The multicellular bacteria in our dataset are generally
slow-growing, with an average predicted doubling time of 8.4
hours. As a result, selection on translational rate is weaker in these
species, which may allow prolines to accumulate where they
would otherwise be discouraged. Indeed, it could be informative
to interrogate possible regulatory functions of EFP in multicellular
species, as EFP likely influences the expression of signaling
proteins highly enriched in di-prolyl motifs.
In conclusion, our observations suggest active selection

against di-prolyl motifs in a broad range of fast-growing species,
and in highly expressed proteins of such species. Such selection
is likely driven by high pressure on optimizing translational rate.
Wherever such selection is relaxed, di-prolyl motifs may be free
to proliferate and take up new roles. One of these roles may be
to ensure proteome stability in thermophiles. Another may be to
help cells in simple multicellular prokaryotes communicate.
However, the causal role of di-prolyl motifs in any of these
processes is unclear. For example, did multicellular bacteria
emerge from slow-growing unicellular bacteria, where a high
incidence of di-prolyl motifs facilitated kinase-based cell
signaling and helped establish multicellularity? Or did multi-
cellular bacteria emerge from fast-growing unicellular bacteria,
such that their reduced growth rate, kinase-based signaling, and
the importance of di-prolyl motifs emerged only secondarily?
These and other questions about the biological functions and
evolutionary origins of di-prolyl motifs provide exciting direc-
tions for future work.

DATA AVAILABILITY
All genomes used in this study are publicly available from JGI’s IMG database [35].
Taxon IDs corresponding to every genome are listed in Supplementary Dataset 1,
along with the genomic characteristics calculated for this study. Results from
analyses of individual proteins are presented in Supplementary Dataset 2 and
results of all PGLS models are listed in Supplementary Table 1. R scripts and all files
needed to reproduce these analyses are available at https://github.com/
tessbrewer/proline_project.

Fig. 5 95% of di-prolyl motifs (39/41) within a single serine-
threonine kinase from the myxobacterium Stigmatella erecta fall
within intrinsically disordered regions. Each circle represents a
single di-prolyl motif within the protein, with color indicating the
predicted severity of the resulting stall, from strong to medium to
weak. A region is predicted to be intrinsically disordered if the
IUPred2A disorder score is greater than or equal to 0.5, as indicated
by the dashed purple line. The green rectangle at the bottom of the
figure indicates the PFAM protein kinase domain (PF00069) which is
congruent with the set of ordered residues in this protein, as
expected. This protein is encoded by IMG gene 2695004422 in IMG
taxon oid 2693429888. The figure design is inspired by default
IUPred2A plots [41].
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