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ABSTRACT Most cellular systems, from macromolecules to genetic networks, have more than one function. Examples involving
networks include the transcriptional regulation circuits formed by Hox genes and the Drosophila segmentation genes, which
function in both early and later developmental events. Does the need to carry out more than one function severely constrain
network architecture? Does it imply robustness trade-offs among functions? That is, if one function is highly robust to mutations,
are other functions highly sensitive, and vice versa? Little available evidence speaks to these questions. We address them with a
general model of transcriptional regulation networks. We show that requiring a regulatory network to carry out additional functions
constrains the number of permissible network architectures exponentially. However, robustness of one function to regulatory
mutations is uncorrelated or weakly positively correlated to robustness of other functions. This means that robustness trade-offs
generally do not arise in the systems we study. As long as there are many alternative network structures, each of which can fulfill
all required functions, multiple functions may acquire high robustness through gradual Darwinian evolution.

INTRODUCTION

Most quantitative models of cellular circuits are severely lim-

ited by many unknown biochemical parameters determining

circuit behavior. Not only that, these parameters change con-

stantly, because of nongenetic perturbations such as gene ex-

pression noise and environmental change, and because of

mutations. This means that the regulatory topology of circuits—

the who-interacts-with-whom—must become a focus of in-

vestigation, because much else about a circuit may be in

constant flux.

We focus here on one aspect of circuit organization that

receives ever-increasing attention: the robustness of cellular

circuits to mutations and nongenetic change (1–10). Many

cellular circuits are subject to constant perturbations, and

they need to keep performing their function in the face of

these perturbations. Studies of robustness in genetic circuits

typically focus on one specific function of a biological circuit

(1–4,11–13). For any one function, there may be many dif-

ferent network architectures or topologies that are equally

capable of performing this function; these topologies may

differ widely in their robustness (15,16), and high robustness

may be evolvable through gradual stepwise changes of in-

dividual topologies (16).

Any one cellular circuit and its genes typically have more

than one function in the organism. Prominent examples in-

clude the transcriptional regulation circuitry of Hox genes

in organisms as different as fruit flies and mammals. For

example, the mouse genome contains some 40 Hox genes,

which influence each other’s expression through transcrip-

tional cross-and autoregulation. This regulatory gene net-

work plays a key role in patterning the main anteroposterior

body axis. In addition, it is also centrally involved in a dis-

tinct developmental process, the patterning of the vertebrate

limb. The network experiences different regulatory inputs in

each of these two embryonic regions, and produces different

gene expression outputs in response. Another example in-

volves the Drosophila segment polarity genes, which include

wingless, engrailed, and hedgehog. These genes are central

to the segmentation of the Drosophila embryo, but they play

equally important roles in later developmental processes,

such as the development of the fly’s wing (17,18).

The requirement to perform more than one function con-

strains the architectures of such networks. It is not clear

whether the above observations about robustness of mono-

functional circuits would also apply to circuits with more than

one function. How strongly do additional functions con-

strain network topology? Do additional functions affect the

extent to which a network can be robust to noise and muta-

tions? Is a network topology that is robust with respect to one

function also robust with respect to another? And, finally, is

the gradual evolution of high robustness through stepwise

architectural changes possible for circuits with more than one

function?

We here make a small step toward answering these ques-

tions by studying a simple model of transcriptional regulation

networks (Fig. 1). Despite being quite abstract, variants of

this model have proved highly successful in explaining the

regulatory dynamics of early developmental genes in the fruit

fly Drosophila, as well as in predicting mutant phenotypes

(19–22). The model has also helped elucidate why mutants

often show a release of genetic variation that is cryptic in the

wild-type, and how adaptive evolution of robustness occurs

in genetic networks of a given topology (23–25). Most re-

cently, it has also proved useful in explaining how sexual
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reproduction can enhance robustness to recombination (12).

The model (23) is concerned with a regulatory network of

N transcriptional regulators, which are represented by their

expression patterns S(t) ¼ (S1(t), S2(t), . . . , SN(t)) at some

time t during a developmental or cell-biological process and

in one cell or domain of an embryo. These transcriptional

regulators can influence each other’s expression through

cross-regulatory and autoregulatory interactions, which are

FIGURE 1 (a) Transcriptional regulation net-

work (13). Solid black bars indicate genes that

encode transcriptional regulators in a hypothet-

ical five-gene network. Each gene is expressed

at a rate that is influenced by the transcriptional

regulators in the network. This influence is usu-

ally exerted by binding of a transcriptional

regulator to a gene’s regulatory region (horizon-

tal line). The model represents the regulatory

interactions between transcription factor j and

genes i through a matrix w¼ (wij). A regulator’s

effect can be activating (wij . 0, red rectangles)

or repressing (wij , 0, blue rectangles). Any

given gene’s expression may be unaffected by

most regulators in the network (wij ¼ 0, open

rectangles). The different hues of red and blue

correspond to different magnitudes of wij. The

highly regular correspondence of matrix entries

to binding sites serves the purpose of illustration

and is not normally found, because transcription

factor binding sites usually function regardless

of their position in a regulatory region. (b)

Gradual evolutionary changes and the meta-

graph. The middle panel shows a hypothetical

network of five genes (top) and its matrix of

regulatory interactions w (bottom), if genes are

numbered clockwise from the uppermost gene.

Red arrows indicate activating interactions and

blue lines terminating in a circle indicate repres-

sive interactions. The left-most network and the

middle network differ in one repressive interac-

tion from gene 4 to gene 3 (dashed gray line,

black cross, large open rectangle). The right-

most network and the middle network differ in

one activating interaction from gene 1 to gene 5

(dashed line, black cross, large open rectangle).

Each of the three network topologies corre-

sponds to one node in a metagraph of network

topologies, which is indicated by the large circle

around the networks. These circles are connected

because the respective networks are neighbors in

the metagraph, i.e., they differ by one regulatory

interaction. (c) Part of a metagraph for a network

of N ¼ 4 genes. Each node corresponds to a

network of a given topology (wij ¼ 61,0), and

two nodes are connected by an edge if they differ

at one regulatory interaction. (8 # M # 9 reg-

ulatory interactions, one input-target pair, and

Hamming distance of S(0) and SN of d ¼ 0.5).

The metagraph of this network is connected and

the number of edges incident on a node is highly

variable. The graph shown includes all viable

networks that differ at no more than four regu-

latory interactions from an arbitrary node in the

metagraph. Note that metagraphs typically have

a huge number of nodes. The number of net-

works in a metagraph can be counted, because

different nodes differ only in the signs of their

regulatory interactions.
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encapsulated in a matrix w ¼ (wij). The elements wij of this

matrix indicate the strength of the regulatory influence that

gene j has on gene i (Fig. 1 a). This influence can be either

activating (wij . 0), repressing (wij , 0), or absent. Put

differently, the matrix w represents the (regulatory) genotype

of this system, whereas the expression state is its phenotype.

We model the change in the expression state of the network S(t)
as time t progresses according to the difference equation

Siðt1tÞ ¼ s +N

j¼1
wijSjðtÞ

h i
; where t is a constant and s(.) is

a steep sigmoidal function whose values lie in the interval

(�1, 11). This equation reflects the regulation of gene i’s
expression by other genes. We are here concerned with net-

works whose expression dynamics starts from a prespecified

initial state S(0) at some time t ¼ 0 during development, and

arrives at a prespecified stable equilibrium or ‘‘target’’ ex-

pression state SN. We will call such networks viable net-

works. The initial state can be thought of as being determined

by regulatory factors upstream of the network, which may

represent signals from the cell’s environment or from other

domains of an embryo. Transcriptional regulators that are

expressed in the stable equilibrium state SN may affect the

expression of genes downstream of the network. We think of

their expression as critical for the course of development.

Thus, deviations from SN are highly deleterious. To address

the above questions about functional constraints, we will

examine networks w that have two or more pairs of pre-

specified initial-target expression states. In the context of this

model, we refer to these pairs as network functions. We de-

note these pairs as ðSð1Þð0Þ; Sð1ÞN Þ; ðSð2Þð0Þ; Sð2ÞN Þ; etc. We are

acutely aware of the limitations of using an abstract model

like ours. We are nonetheless compelled to use such a model,

because there is a complete lack of empirical information

about trade-offs in robustness, and because such information

cannot be obtained with currently available experimental

technologies.

RESULTS

Additional functions severely constrain
network architecture

We first asked how the fraction of viable networks among all

networks depends on the number of genes N and on the

number (one or two) of network functions. To enumerate

viable networks, we needed to focus on discrete genotypes

(wij ¼ 61,0), but we will show that our major conclusions

hold also for networks with continuous interactions.

In this analysis, we focus on networks that have a number

M of regulatory interactions within a given range.

Because there are 2N possible equilibrium states, the

probability that any network w arrives at any one single SN

should be of the order of 1/2N. In our numerical analysis (see

Methods in the Supplementary Material), we find indeed an

exponential scaling in N for this probability (13), which

should decrease even more strongly as a function of N if we

require the network to arrive at more than one prespecified

SN from different initial states. Fig. 2 a shows that this is the

case for networks with two input-target pairs. Open bars in

the figure indicate the fraction p of viable monofunctional

networks among all networks. Black bars indicate the frac-

tion of bifunctional networks among all networks, averaged

over random input-target pairs. Note the logarithmic scale on

the vertical axis, and that the fraction of viable bifunctional

FIGURE 2 (a) Fraction p of viable monofunctional networks (open bars)

and viable bifunctional networks (solid bars) for varying numbers of genes

(horizontal axis). Shaded bars indicate p2 and show that p2 can serve as an

approximation for the fraction of viable bifunctional networks. Values for

these fractions were obtained by random sampling, followed by averaging

.1000 randomly chosen pairs of ðSð1Þð0Þ;Sð1ÞN Þ and ðSð2Þð0Þ;Sð2ÞN Þ; as de-

scribed in Methods (Supplementary Material). Standard errors of the means

shown are 2.75 3 10�7, 6.98 3 10�9, and 6.32 3 10�10 for networks of

sizes N ¼ 4, 6, 8, respectively, and thus too small to be shown in the plot.

M � 0.5 N2 nonzero regulatory interactions. (b) Metagraph sizes for bifunc-

tional networks have a broad distribution. The horizontal axis indicates

metagraph size (in number of networks) and the vertical axis indicates the

number of metagraphs (out of 1000) with a size indicated on the horizontal

axis. Even the largest metagraphs correspond to very small fractions of the

set of all networks. For the networks analyzed here (N¼ 6 genes, M� 0.5 N2

nonzero regulatory interactions, 8.6 3 1013 total networks) a metagraph with

4.1 3 106 networks (left end of the horizontal axis) contains only a fraction

4.7 3 10�8 of all networks. The median of the distribution shown is 1.2 3

107 (compared to 5.9 3 1010 for monofunctional networks).
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networks is orders of magnitude smaller than that of viable

monofunctional networks. This means that it would be very

difficult to find a viable bifunctional network through a

random search in the space of all possible networks, even for

only moderately sized networks. The hatched bars indicate

p2, the square of the fraction of viable monofunctional net-

works, which we find to be an order-of-magnitude approxi-

mation for the mean fraction of bifunctional networks.

Finally, we also note that although the fraction of viable net-

works may be tiny, their absolute number is still very large.

For example, for networks with as few as six genes, on av-

erage there are 1.96 3 107 viable bifunctional networks, and

5.92 3 1010 viable monofunctional networks. These large

numbers stem from the very large total number of networks

(e.g., 8.59 3 1013 for the networks of N¼ 6 used in Fig. 2 a).

We now define a graph that will aid in answering the

questions we posed earlier. Each node in this graph corre-

sponds to a viable network. Two networks (nodes) in this

graph are connected if they differ in the value of only one

regulatory interaction (Fig. 1, b and c). We call this graph a

metagraph—a graph of graphs—because its nodes are net-

works, which could themselves be represented as graphs.

These nodes differ in their topology of regulatory interac-

tions. Neighboring networks in the metagraph can arise from

one another by genetic changes that affect only one regula-

tory interaction. In the biological evolution of network to-

pology, this graph could be traversed through a series of

small genetic changes, each of which affects only one regu-

latory interaction.

The above analysis regarding the fraction of viable net-

works makes a statement about the mean size of metagraphs.

For example, if we say that there are 3 3 107 viable bi-

functional networks, we mean that the metagraph of these

networks comprises 3 3 107 nodes. However, the size of a

metagraph can vary widely, depending on the actual gene

expression state pairs ðSð1Þð0Þ; Sð1ÞN Þ and ðSð2Þð0Þ; Sð2ÞN Þ: Fig. 2

b shows an example, based on an analysis, in which we

generated 1000 bifunctional phenotypes (two state pairs) at

random, as described in the Supplementary Material, and

estimated the metagraph sizes for each. The figure demon-

strates that there is a large dispersion in the sizes of the

metagraphs, but also that even for small networks (N ¼ 6),

metagraphs are typically very large. Specifically, the median

metagraph size for the networks shown in this figure is 1.2 3

107 (whereas the median metagraph size for monofunctional

networks of the same size is 5.9 3 1010).

A broad distribution of robustness

When studying robustness, the network features we focus

on are a network’s equilibrium gene expression pattern(s),

which we generically denote by SN. Robustness to mutations

corresponds to robustness of SN to changes in regulatory

interactions, that is, to changes in network topology. Spe-

cifically, we define mutational robustness Rm as the fraction

of a network’s neighbors that differ in only one regulatory

interaction, and that are still on the metagraph. Robustness to

noise corresponds to robustness of SN to changes in the

initial expression pattern S(0). Specifically, we use two

complementary measures of robustness to noise.

The first of them is the probability Rn,1 that a change in one

gene’s expression state in the initial expression pattern S(0)

leaves the network’s equilibrium expression pattern SN un-

changed. The second measure is the fraction Rn,* of genes

whose expression needs to change, such that the probability

of attaining the equilibrium state falls below 1/2. Because we

have shown previously that robustness to mutations and to

noise is correlated, we here focus on mutational robustness,

and show only selected results for robustness to noise (13).

For bifunctional phenotypes with sizeable metagraphs, we

asked whether the mutational robustness of viable networks

has a broad distribution (13). Fig. 3 a shows the distribution

of mutational robustness Rm for a sample of 1042 viable

bifunctional networks with N ¼ 12 genes. The distribution

of robustness is clearly broad, spanning a factor 25 (0.027 #

Rm # 0.69; Fig. 3 d). Similarly broad distribution are seen

for robustness to noise Rn,1 and Rn,*, as well as for different

numbers of genes and regulatory interactions (not shown).

The breadths of these distributions increase with increasing

network sizes. For example, for networks with N¼ 16 genes,

mutational robustness in a smaller sample of 586 networks

varies by more than two orders of magnitude (0.0067 # Rm #

0.81).

In assessing robustness thus far, we required that a network

maintains both equilibrium gene expression states upon mu-

tational change. In other words, we require that both network

functions are preserved. This is clearly a more stringent re-

quirement than asking for only one of the functions to be

preserved. The distributions of mutational robustness, if we

require that only function 1 or function 2 are preserved, are

shown in Fig. 3, b and c, respectively. As we have shown

previously (13), these distributions are also broad. Not un-

expectedly, the likelihood that a mutation preserves both

functions is substantially lower than the likelihood that it

preserves only one function (median values of Rm 0.25 rather

than 0.5, Fig. 3 d, which shows the medians; minima and

maxima of the distributions shown in a–c).

A design rule for robust multifunctional networks

The broad distribution of robustness among viable networks

raises the question whether there are some principles un-

derlying robust network design. We address this question by

extending a previous design rule for networks with only one

input-target pair (13). Briefly, this previous rule required that

for every nonzero regulatory interaction wij, wij ¼ Si;NSj;N

for any gene j whose expression is the same in the initial

and equilibrium state. For genes j that are not of this type, the

rule assigns the weights of nonzero interactions wij so that

the sum +
j;Sjð0Þ6¼Sj;N

wijSjð0Þ is zero or close to zero for every i.
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(For sufficiently large N, choosing random values for these

weights will achieve this goal.) This rule generally leads to

rapid attainment of the equilibrium state from the initial state,

and it is a sufficient criterion for high robustness.

For the case of multiple input-output pairs, we generalize

this rule as follows. First, we apply the rule separately to each

input output pair. Second, we average the matrices w thus

obtained. This may result in matrices with too many regu-

latory interactions compared to the desired number. In a third

step, we thus examine this list of interactions and keep only

the M interactions that are largest in absolute value. Finally,

for each regulatory interaction wij, we either take its sign to

obtain a matrix of discrete regulatory interactions ðwij ¼
61Þ; or we take a Gaussian random number of the same sign

as wij to arrive at a matrix of continuous-valued regulatory

interactions. Assuming that there exist viable networks for

any given set of initial-target state pairs, this procedure is

likely to produce the most robust of such networks. Our

design rule shares important elements with a Hebb rule for

storing information in artificial neural networks (26), an

important difference being that biological networks show

asymmetric regulatory interactions ðwij 6¼ wjiÞ; which our

rule can accommodate.

We next asked whether this prescription really produces

highly robust networks. To this end, we defined an indicator

(which we term Q, for network quality; see the Supplementary

Material) of the extent to which the structure of an arbitrary

network is similar to that prescribed by the design rule. Fig. 4

shows that mutational robustness is significantly correlated

with Q, thus validating the design rule (Spearman’s s ¼ 0.37;

P , 10�17; Fig. 4 a). Robustness to noise is also significantly

associated with Q; for instance, for the phenotype used in this

figure, we find for Rn,1 that Spearman’s s ¼ 0.48; P , 10�17;

for Rn,*: Spearman’s s ¼ 0.46; P , 10�17.

The metagraph of viable bifunctional networks is
usually dominated by a giant component

Is the metagraph a connected graph? We first iterate an ar-

gument detailed elsewhere (13), which demonstrates that

metagraph connectedness, if it is found, is not a trivial fea-

ture. Specifically, it does not hold for a ‘‘random’’ metagraph

FIGURE 3 Robustness to mutations shows a broad distribution. Panels a–c show a histogram for the distribution of three different indicators of mutational

robustness Rm. In a, Rm is defined as the fraction of a network’s neighbors that preserve both functions, i.e., that attain Sð1ÞN when presented with Sð1Þð0Þ and that

attain Sð2ÞN when presented with Sð2Þð0Þ: In b and c, respectively, Rm is defined as the fraction of a network’s neighbors that preserve function 1 and 2, respectively.

(d) The medians (bar), as well as the maxima and minima (whiskers) of the distributions in a–c. All data are based on one random realization of two expression

state pairs, and on a sample of 1042 viable bifunctional networks with N ¼ 12 genes and M � 0.25 N2 nonzero regulatory interactions (wij ¼ 61).
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comprising the same number nv of networks as the above

metagraph of viable networks, where neighboring nodes

(networks) differ in one regulatory interaction, but where the

nodes need not be viable. Such a random metagraph consists

mostly of isolated nodes, as we will now show. Let n be the

total number of networks for a given number of genes and

regulatory interactions. Consider an arbitrary node w of the

random metagraph. It is easy to determine a lower bound for

the probability that w is isolated in the random metagraph, i.e.,

that all the remaining nv � 1 nodes in the random metagraph

are distinct from w’s K neighbors. This lower bound is

1� K

n� nv 1 1

� �nv�1

� 1� ðnv � 1ÞK
n� nv 1 1

� 1:

The left approximation holds, because K is of order N2,

whereas the denominator is dominated by the total number of

networks n, which scales exponentially in N. In addition,

(nv� 1)K/(n� nv 1 1)�1, because nv is exponentially small

compared to n, whereas K is no greater than N2. Thus, the

product (nv � 1) K divided by n is exponentially small.

In sum, the probability that an arbitrary network w in the

random metagraph is isolated is very close to 1. It immedi-

ately follows that the average number of components of the

random metagraph, given by nv times the above probability,

is only slightly smaller than the total number of networks nv:

only a negligible fraction of the nodes of the random meta-

graph are not isolated.

With this observation in mind, we numerically analyzed

the connectivity of metagraphs comprising viable networks

with two input-output pairs. Briefly, we estimated for a ran-

dom sample of viable networks with two given input-output

pairs the fraction of networks that lie in the same component

FIGURE 4 Network quality Q is associated with muta-

tional robustness. (a) A scatter plot of Q (horizontal axis),

an indicator of robust network design described in Methods

(Supplementary Material), and mutational robustness Rm of

both functions of a bifunctional network (vertical axis)

(Spearman’s s ¼ 0.37; P , 10�17). (b) A scatter plot of Q

(horizontal axis) against robustness Rm to function 1 and 2,

considered separately (Function 1: Spearman’s s ¼ 0.28;

P , 10�17; Function 2: Spearman’s s ¼ 0.28; P , 10�17).

The data sets are very similar and thus one of them (solid

circles) is largely hidden behind the other. Two horizontal

lines corresponding to linear regression lines are drawn,

but because the lines are nearly identical, only one of them

is visible. Data is based on randomly generated input-target

pairs and a sample of 105 viable bifunctional networks with

N ¼ 20 genes and M � 0.25 N2 nonzero regulatory

interactions (wij ¼ 61). Significant positive associations

are also observed with networks of different size and

different numbers of regulatory interactions.

2932 Martin and Wagner

Biophysical Journal 94(8) 2927–2937



of the metagraph (see the Supplementary Material for de-

tails). As this fraction may depend on the input-output pairs,

we repeated this approach for 100 different input-output pairs,

which allowed us to collect statistics on the connectivity. We

find that for a given N and c, the metagraph of viable networks

is more often disconnected than when there is a single pair

(13), but nevertheless a giant component dominates it when

N increases. Table 1 shows statistical results of this procedure

for small networks. For instance, the mean percentage of

networks in the giant component increases from 63.3% to

82.9% as the number of genes increases from four to eight.

Although we cannot generate similar statistics for networks

much larger than these, the data suggest that for all but the

smallest values of N, the great majority of bifunctional net-

works is contained in a giant connected component, as in the

case of monofunctional networks.

Finally, we also asked whether networks near each other

on the metagraph have similar robustness. If they do, then

robustness changes smoothly on the metagraph and it could

readily increase in a biased random walk (or through natural

selection). If not, then the distribution of robustness on the

metagraph shares properties with ‘‘rugged fitness land-

scapes’’ (27), where finding the near-global maximum of

robustness would be very difficult. The question is best ad-

dressed by determining the autocorrelation function of ro-

bustness for a random walk of length L steps on a metagraph.

This walk starts at some randomly chosen network on the

metagraph. Denote by rk the value of some observable (such

as network robustness) at the kth step of the random walk.

Then, the autocorrelation function r(l) between two networks

that are l steps apart is defined as

rðlÞ ¼

1

L� l� 1
+
L

k¼l11

ðrk � �rÞðrk�l � �rÞ

1

L
+
L

k¼1

ðrk � �rÞ2
:

Fig. 5 shows the autocorrelation function r(l) of mutational

robustness Rm, as well as for robustness Rn,1 and Rn,* to noise,

both for bifunctional networks (upper panel) and for mono-

functional networks (lower panel). This function decays

exponentially in the lag l, but it is modestly large for small

l. For example, for Rm, r(l ¼ 1) ¼ 0.56 for bifunctional

networks, and r(l ¼ 1) ¼ 0.79 for monofunctional networks.

r(l) . 0.25 as long as l , 10 in the case of bifunctional

networks, and as long as l , 20 in the case of monofunctional

networks. These observations show that the metagraph is not

very rugged with respect to mutational robustness.

No strong trade-offs between robustness in
different functions

So far, we have shown that bifunctional networks have very

large metagraphs in which the distribution of robustness is

broad, and where most networks can be connected through

single mutational changes. We now turn to the question

whether there are trade-offs among different network func-

tions with respect to robustness. That is, if a network has one

function that is highly robust, does that mean that the other

function has low robustness, and vice versa?

To get at this question, it is useful to take the following

perspective. Consider only the first function (expression state

pair), and call the metagraph formed by all networks that

have this function M1. Define analogously the metagraph

M2 for the second function. Next define the metagraph M12¼
M1 \ M2. The networks in M12 are networks that have both

functions. Recall that the mutational robustness Rm of a

network with respect to one function is its degree k1 (k2) in M1

(M2) normalized to the interval (0,1) . Denote this indicator of

robustness as R1
mðR2

mÞ: The mutational robustness with re-

spect to both functions is its degree k12 in M12 normalized to

(0,1), which we will denote as R12
m : Fig. 6 a shows R12

m on the

horizontal axis and R1
mðR2

mÞ on the vertical axis. The upper-

triangular shape of the plot is easily understood if one recalls

that the fraction of a network’s neighbors that carry out both

functions cannot be greater than the fraction of neighbors that

carry out only one function. Networks on the diagonal are

networks whose degree in M1 (M2) is equal to their degree in

M12. There are few such networks, in line with our previous

observation that M1 and M2 are much larger than M12. The

figure also shows that for any network with a given robust-

ness with respect to both functions, there may be a broad

distribution of robustness with respect to one or the other

function, that is, there may be many networks at varying

distances from the diagonal line.

Fig. 6 b plots R1
m and R2

m against each other for two given

input-target pairs. Intriguingly, the figure shows no trade-off

between the two measures of robustness, but a modest pos-

itive association (Spearman’s s ¼ 0.19; P , 4.9 3 10�10).

This is not a fortuitous coincidence, resulting from the par-

ticular networks chosen for analysis. For example, among 10

identical analyses, using different randomly chosen gene

expression state pairs (see the Supplementary Material), six

analyses show a positive association that is significant at P ,

0.005 (1042 networks). Four analyses show a nonsignificant

positive association, and none shows a negative association.

TABLE 1 Most networks in a metagraph are connected in a

giant component

Network Size

Genes Mean Mode 90th Percentile Mean 6 SE q*

N ¼ 4 63.3% 67% 93% 3.3 63

N ¼ 6 69.1% 89% 94% 3.3 67

N ¼ 8 82.9% 93% 98% 2.6 80

Table shows various statistics for the estimated fraction of networks

contained in the giant component for bifunctional networks with M �
cN2 (c ¼ 0.5) nonzero regulatory interactions (wij ¼ 61).

*q is the number such that for q% of the samples (each sample has two

input-output pairs), the giant component of the metagraph contains at least

q% of all networks.
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If one pools data from 500 analyses with different input-

target pairs, one also sees an overall positive association

between R1
m and R2

m (s ¼ 0.17; P , 10�17). Networks with

different numbers of genes show the same preponderance of

positive associations.

This slightly positive association can be justified as fol-

lows. Consider a network that has both functions. Its muta-

tional robustness R1
m and R2

m is proportional to the degree d1

(d2) the network has in M1 (M2). These degrees can be written

as d1 ¼ d12 1 (d1 � d12) and d2 ¼ d12 1 (d2 � d12). In other

words, d12 contributes to both R1
m and R2

m: That this common

contribution explains the positive association is shown by

Fig. 6 c, which plots ðR1
m � R12

m Þ against ðR2
m � R12

m Þ: Using

this quantity, we eliminate the common contribution d12 from

the analysis. The resulting association is then not positive but

strongly negative (Spearman’s s ¼ �0.68; P , 10�17).

We also observe a negative association if we bin data ac-

cording to the value of R12
m and then determine the statistical

association between R1
m and R2

m within each bin (0 # R12
m ,

0:25: s ¼ �0.35; 0.25 # R12
m , 0:5: s ¼ �0.35; 0.5 #

R12
m , 0:75: s¼�0.34; 0.75 # R12

m # 1: s¼�0.26; P , 10�8

for each analysis.). Qualitatively, the same result is obtained

from a partial correlation analysis that estimates linear cor-

relation coefficients between R1
m and R2

m while controlling for

R12
m (r ¼ �0.77; P , 10�5).

Computational cost prevented us from carrying out much

of our analysis for more than two expression state pairs.

However, the qualitative finding that there is no trade-off in

mutational robustness also holds in the limited number of

analyses we have done for trifunctional networks, i.e., net-

works with three expression state pairs. For example, for net-

works with N ¼ 20 (c � 0.5), we find only a very small

association among R1
m � R2

m, R1
m � R3

m; and R2
m � R3

m (s .

�0.037; n ¼ 105). Partial correlation coefficients Ri
m � Rj

m;
holding Rk

m constant are even smaller (�0.02 , s ,0.01; i 6¼
j 6¼ k; n ¼ 105). However, there is still a positive association

between R123
m and Ri

m; for i ¼ 1,2,3 (s . 0.49), and a negative

association between ðRi
m � R123

m Þ and ðRj
m � R123

m Þ; where s ,

�0.24 for i 6¼ j. Thus, the main difference to the bifunctional

case is that the moderately positive association between the

robustness for each function disappears.

Although we reported most of our analysis above for

networks with discrete regulatory interactions, we emphasize

that qualitatively identical results hold for networks with

FIGURE 5 Autocorrelation functions indi-

cate that metagraphs are not rugged with re-

spect to robustness. Each panel shows the

autocorrelation function r(l) as defined in the

text (horizontal axes) for lag values up to l ¼
100 (vertical axes), and for various measures of

robustness to mutations Rm, as well as to noise

Rn,* and Rn,*. Results are shown for networks

of N ¼ 12 genes, M � 0.25 N2 nonzero

regulatory interactions (wij ¼ 61) and for

random walks of L ¼ 9 3 104 steps.
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continuous regulatory interactions. Fig. 7 a illustrates that R12
m

is smaller than R1
m and R2

m also for networks with continuous

regulatory interactions. Fig. 7 b shows that network quality,

as defined above, still shows a positive association with ro-

bustness. Fig. 7 c shows that R1
m and R2

m are positively as-

sociated also for such networks.

DISCUSSION

In sum, we find that for regulatory networks with more than

one function, the number of networks (topologies) that carry

out all functions declines sharply with the number of func-

tions. However, because the number of topologies carrying

out one function is very large, there are still many bi-and

trifunctional networks, even for the small network sizes we

consider here.

In contrast to the constraints multifunctionality imposes on

network architecture, we find no robustness trade-offs among

functions. That is, if a network has one highly robust func-

tion, then other functions are not necessarily less robust. In

our system, the maximally possible robustness in multi-

functional networks tends to be lower than in monofunctional

networks. Because most bifunctional networks are connected

via the giant component of a metagraph, and because the

autocorrelation function of random walks on this metagraph

does not decay very rapidly, networks whose functions are all

highly robust to mutations—within attainable limits—can

readily evolve through small regulatory changes and gradual

evolution. Although we focus for computational convenience

on networks with discrete regulatory interactions, our main

results also hold for continuously valued regulatory interactions

(Fig. 7).

We note that a lack of a significant robustness, trade-off

has recently also been reported for a completely different

model (15). The networks studied in that work have only one

function, but they contain highly conserved modules with

clear subfunctions. Importantly, the overall robustness of the

whole networks was positively correlated with the robustness

of individual modules, and no robustness trade-off among the

different subfunctions existed.

The concept of a metagraph is analogous to that of a

‘‘neutral set’’ or ‘‘neutral network’’ (28). In a neutral net-

work, multiple RNA sequences that form the same secondary

structure constitute the nodes of a graph. Two nodes are

connected if they differ by one nucleotide. In a metagraph,

multiple network topologies that have the same gene ex-

pression patterns ðSð0Þ; SNÞ form the nodes of the graph.

Two nodes are connected if they differ in the sign of one

regulatory interaction. We use the term metagraph (graph-of-

graphs) because it contains a reminder that each of its nodes

is itself a network that can be represented as a graph. For

monofunctional networks, the existence of alternative to-

pologies with different robustness that are connected in a

metagraph has been shown for other systems, such as circa-

dian oscillators (16).

FIGURE 6 No negative association (trade-off) between different mea-

sures of robustness. (a) Scatter plot of Rm with respect to both functions

(horizontal axis) and Rm with respect to only one function (vertical axis). See

text for details. The solid diagonal line is the identity line, dashed lines

indicate linear regressions. (b) Scatter plot of R1
m versus R2

m: (Spearman’s s¼
0.19; P , 4.9 3 10�10). (c) Scatter plot of ðR1

m � R12
m Þ against ðR2

m � R12
m Þ:

(Spearman’s s ¼ �0.68; P , 3 10�17). The solid lines in b and c indicate a

linear regression. The circle sizes indicate the number of networks with the

given robustness values, as indicated in the legend. (Circles of varying sizes

have been omitted from panel a for clarity.) Data are based on a sample of at

least 1000 viable bifunctional networks with N¼ 12 genes and M� 0.25 N2

nonzero regulatory interactions (wij ¼ 61).
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The analogy between metagraphs and neutral networks has

limitations. Whereas the structure of RNA sequence space is

intrinsically discrete, regulatory gene interactions, however

defined, can be continuously valued. To define a metagraph

thus requires a discretization of the space of possible inter-

actions by focusing on the signs of the interactions. We

motivated such discretization and our focus on network to-

pology in the introduction. Perhaps more important, how-

ever, is a second limitation of the analogy. Although some

RNAs may have multiple, equally stable secondary structures,

most biological RNA sequences adopt one well-defined

RNA secondary structure (which may be a prerequisite for

their biological function). In contrast, in the domain of net-

works, multiple stable gene expression states are the rule

rather than the exception. The networks we study thus lend

themselves ideally to the exploration of robustness trade-offs

that do not have natural counterparts in RNA molecules.

We note that other reports of robustness trade-offs in bi-

ological systems, such as genome-scale cellular networks or

physiological systems (29,30), use a fundamentally different

notion of a trade-off. There, a system may have one function,

but this function can experience common or random pertur-

bation, as well as rare or targeted perturbations. Systems

robust against common or random perturbations may be

sensitive to rare or targeted perturbations, a phenomenon that

could be viewed as a robustness trade-off. In contrast, we are

here concerned with multifunctional systems, where all

functions experience the same kinds of perturbations (mu-

tations). This definitional difference means that our findings

do not contradict earlier work. However, the relationship

between these two kinds of trade-offs are worth exploring

further.

We are acutely aware that the model we use is highly ab-

stract, even though it may explain a wide variety of qualita-

tive and quantitative information about transcriptional

regulation networks and their evolution. (12,19–25). We use

such a modeling approach because experimental observa-

tions that speak to the phenomenon of interest are sorely

lacking. Not only that, it is not clear how these observations

could be produced with available technology, as they would

require the experimental analysis of thousands of network

topologies, and systematic perturbations of each of them.

Until the time that such technology becomes available,

models such as this are needed to help shape our intuition. If

the intuition we obtained here is correct, then architectural

constraints are key features of multifunctional networks, but

robustness trade-offs are not.

SUPPLEMENTARY MATERIAL

To view all of the supplemental files associated with this
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on a sample of 1000 viable bifunctional networks with N ¼ 12 genes and

M � 0.25 N2 nonzero regulatory interactions with a continuous distribution.
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