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Abstract. Systems involving many interacting variables are at the heart of the natural and
social sciences. Causal language is pervasive in the analysis of such systems, especially when
insight into their behavior is translated into policy decisions. This is exemplified by economics,
but to an increasing extent also by biology, due to the advent of sophisticated tools to identify
the genetic basis of many diseases. It is argued here that a regularity notion of causality can
only be meaningfully defined for systems with linear interactions among their variables. For
the vastly more important class of nonlinear systems, no such notion is likely to exist. This
thesis is developed with examples of dynamical systems taken mostly from mathematical
biology. It is discussed with particular reference to the problem of causal inference in complex
genetic systems, systems for which often only statistical characterizations exist.
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When Russell (1913) argued that the notion of causation should be aban-
doned, he reasoned that it should be replaced by that of functional relations
among the state variables of a system. He also argued that the notion was
not really necessary, since the physical sciences were doing well without
it. Aside from the latter assertion, which is disputed by Suppes (1971), it
is clear that the solution can not be that simple. As Hume already noted,
causation is a notion fundamental to human cognition, so fundamental that
it is unlikely to ever be eradicated. This is obvious from its pervasiveness in
everyday language, but also from the prominence of debates centered around
the notion of causality in the philosophy of science in this century. Curiously,
however, the attention paid to this issue varies considerably across fields. In
economics, and in the social sciences in general, intense debates on the nature
of causality have been going on for decades. In these areas, the main issues
regard the possible inference of causal relations from statistical data. Biology,
on the other hand, seems virtually untouched by such debates. For example
in the ten year period from 1985 to 1995, merely one article pertaining
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to the issues considered here appeared in the journal “Biology and Philos-
ophy” (Francis 1990). Clearly, questions regarding the notion of causality
lurk behind most contemporary topics in biology, but rarely are they made
explicit. There is ample room for speculation regarding the possible reasons
for such differences. A prominent candidate is the relevance of the social
sciences and especially of economics to policy decisions. For policy issues
the use of causal language, such as “investment causes increased production
of capital goods”, is central. The debates then result from attempts to clarify
the terminology, and from the manifold ambiguities in identifying causes
and their effects. Examples for such ambiguities are abundant, and for the
purpose of illustration one shall be mentioned. It is described by Rossi et
al. (1980), and discussed further by Glymour et al. (1987). It concerns a
study of newly released felons in Georgia and Texas who received unem-
ployment benefits for six months after their release. They were prevented
from working during that period. It was found that the rearrest rates were
nearly the same between the study groups and control groups that did not
receive any payments. Two qualitatively different conclusions were made
based on the statistical data. One stated that payments reduced recidivism,
but that unemployment increased it, and that the effects canceled in the study
group. The other conclusion stated that payments had no effect on recidivism.
Clearly, any policy decisions based on these two conclusions would be very
different. Identifying “correct” causal relations among economic variables,
and eliminating “spurious” correlations from statistical data is therefore an
activity with potential impact on the lives of many individuals. The dire need
for some kind of factual support of economic policy is also obvious from
the nature of many economic theories. They combine reliance on plausibility
assumptions that are difficult to validate (e.g., “rational expectations”) with a
sparse data support to an extent that would place them in the realm of mere
speculation, say, in the physical sciences. Still, policy decisions have to be
made, and theories with poor explanatory or predictive power are better than
no theories. Debates centering around causation are far from academic in
these areas. They may affect the lives of people in obvious ways, which might
contribute to their continuing importance.

The situation in the life sciences has long been different, in that most
research may have been of less immediate practical applicability. However,
this is about to change, and the enormous success of biomedical research
is the reason for this change. Diseases with a hereditary component have
been known for a long time, and the influence of genetic factors on complex
traits such as “aggression” or “intelligence” was postulated and debated long
before the biochemical nature of genetic information was known. Since the
identification of DNA as the carrier of genetic information, powerful tools
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have been developed to analyze and manipulate this information. This has not
only lead to a new dimension of insight into the mechanistic basis of many
biological processes, it has also lead to a gold rush for applications of this
knowledge. Disease “causing” genes or disease susceptibility genes are found
at an ever increasing pace. Examples include genes for susceptibility to breast
cancer, muscular dystrophy, obesity, and many more (e.g., Lander and Schork
1994). Investigations in this area have not stopped short of trying to eluci-
date the genetic basis of fairly complex conditions, such as schizophrenia.
In these cases, the condition itself can often not be identified unambigu-
ously. The question to what extent complex genetic factors “cause” a disease
becomes a very practical one, if one considers its impact on the health care
system. Should carriers of susceptibility genes pay higher health insurance
premiums or not receive insurance at all? How about access to employment
of individuals who carry susceptibility markers for certain noxious environ-
mental influences? Such questions are becoming prominent social policy
issues (e.g., Wadman 1996). Whatever the outcome of ongoing debates in
this area, societal changes affecting the lives of large parts of the population
are likely. At the root of the issue is the notion of the disease causing gene,
and for certain “monogenic” diseases this notion may be unproblematic.
However, as technology advances it becomes clear that many diseases are
influenced by multiple genetic and non-genetic factors. Polygenic diseases
are the rule rather than the exception. This is not surprising if one considers
that most phenotypic traits emerge from the action of large numbers of genes,
embedded in metabolic pathways and regulatory networks of enormous
complexity. Embryonic development and “housekeeping” of multicellular
organisms involves the interaction of an immense number of individual gene
products. Many of these gene products and qualitative features of their inter-
actions are currently being identified. However, the state of the art in this area
is a far cry from a quantitative understanding of biochemical and regulatory
pathways. Clearly, any of the genes in such pathways, or many of the genes
acting together might bring about a given change. What does it mean then that
one gene becomes associated with a disease? How often are such associations
spurious or context-dependent, i.e., dependent on the genetic background?
And the central question, is it possible to speak of causality meaningfully in
systems involving that many factors?

The practical importance of these problems alone would be sufficient
reason to pay more attention to issues of causality. However, what has been
said so far is only one possible motivation for what is to follow. Various
complementary motivations for taking a fresh look at causality could be
given. Examples include ecology, where a major issue is the extent to which
human influence may cause ecosystem instability, or neurobiology, where
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the relation of neural activity to consciousness is now seemingly becoming
amenable to experimental analysis (Crick 1996). This much broader arena
justifies a decoupling of a discussion of causality from the above issues.
Here, the discussion will be cast in a general mathematical framework which
transcends even the broader biological arena.

One of the major developments in the history of biology has been a shift
from descriptions of natural history to an attempted “physicalistic” expla-
nation of biological processes, i.e., from properties of the constituents of
biological systems. An important aspect of this development has been the
increased usage of mathematical formalism, and the concurrent develop-
ment of mathematical methods suitable to address biological problems. This
has brought some areas of biology closer to the methodology of the phys-
ical sciences. Examples include evolutionary biology, where the “synthetic
theory” unified Darwinian concepts of evolution with Mendelian genetics.
The result is the sophisticated apparatus of mathematical population genetics
whose applications range from breeding programs to molecular phyroge-
netics. In developmental biology, the mathematical analysis of pattern forma-
tion has been enormously successful in explaining phenomena as dissimilar
as the morphogenesis of primitive algae, and the banding patterns of snail
shells. In neurobiology, mathematical models of neural networks have shown
that even networks of a few hundred neurons can display features that were
previously thought to be the exclusive domain of the human mind, such as
generalization and abstraction. The adaptation of economic game theory to
evolutionary problems has proven invaluable in explaining many features
of competition and cooperation in animals. In some instances, mathematical
biology has contributed to discoveries whose impact was felt far beyond the
life sciences. A prominent example is theoretical ecology, where a numerical
analysis of an equation describing logistic population growth has stimulated
the development of the theory of chaotic dynamical systems. These systems
are now known to be important on all levels of organization of both animate
and inanimate matter.

All these areas of biological investigation have one aspect in common:
they are concerned with biological processes, which implies that they have to
represent temporal and spatial changes in biological systems. Almost univer-
sally, they use a particular mathematical representation for such change. They
represent the state of a system at some timet by a set of state variables
Ex(t) = (x1(t), . . . , xn(t))whose interpretation strongly depends on the nature
of the problem. State variables may represent gene frequencies in population
genetics, concentrations of chemical reagents in a pattern formation process,
or electrical activities of neurons. The range of possible values ofEx defines
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the state spaceS of the system. Changes in the state variables are most often
represented by a differential equation, such as

d Ex(t)
dt
= f1[Ex(t), t,3]. (1)

This kind of equation describes the change of the state variables in terms of
some functionf1 of the system state,Ex(t), of timet , and of some set of system
parameters3. Such parameters may represent, for example, the fitness of
individuals with a given genotype in models of gene frequency change in a
population, or the strength of trophic interactions among species in an ecolog-
ical model whose state variablesxi stand for species abundance. A completely
analogous, alternative representation is that of a difference equation

Ex(t + 1) = f2[Ex(t), t, Eλ]. (2)

The choice of (1) or (2) depends on whether a discrete or continuous notion
of time is more appropriate for the problem at hand. The dynamics of either
system is completely determined by its parameters, and by a set of initial
conditionsEx(t0), i.e., by the state of the system at some timet0. For these
dynamical systems, an important basic distinction is that of linear and non-
linear equations. Illustrated for the example of an ordinary autonomous differ-
ential equation, linear equations are of the form

d Ex
dt
= 3Ex, (3a)

with components

dxi(t)

dt
= (3Ex)i =

n∑
j=1

λij xj (t) (3b)

where3 is a matrix of parameters3 = (λij ). Any equation that can not be
represented in this form is called non-linear. A cursory glance at any contem-
porary mathematical biology text, such as Murray’s (1989) “Mathematical
Biology”, shows that the vast majority of mathematical models in this area
are non-linear. Whether it is developmental biology, neurobiology, ecology,
or population genetics, nonlinear systems are pervasive. Unfortunately, the
large number of studies of non-linear systems available in many areas of
science have not resulted in an all-encompassing mathematical theory, but
in a sizable zoo of disparate techniques to analyze them. The result is a large
collection of case studies, more or less well understood equations, hopefully
representing important aspects of the modeled system. Therefore, most often
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the only way to illustrate important principles governing such equations is the
presentation of example cases.

Given the universal use of mathematical representations like (1), and
given also its enormous success, what would be more natural than to cast
the problem of causality in terms of such models? Well, one might argue,
it is necessary to understand the notion of causality in reality, and not in
a mathematical formalism that is at best a caricature of this reality. To this
one might respond that everything one can say about reality relies on mental
constructs which are models of the world. Even the most basic concepts
produced by our sensory systems are only models of the world. They rely
on many implicit assumptions, as evidenced by cognitive psychology, a field
that exposes these assumptions by finding conditions under which they fail.
Because they rely on implicit assumptions, such sensory models of the world
are easilyidentified with reality. They are our windows into reality, and
they can thus be distinguished from other, more abstract (e.g., mathematical)
models because they function as a link between the more abstract models and
the reality they represent. Assigning them priority over mathematical models
in discussing causality, however, would be fallacious. If anything, the mathe-
matical constructs used in science have an advantage over implicit perceptual
constructs. Many of them have much more predictive power than any other
mental construct. Their solutions often approximate a system’s behavior well
beyond the original intention and range of applicability of a model. This is
especially remarkable because the solutions sometimes have counterintuitive
properties that are not obvious from the structure of the equation, and that
may not have been foreseen by whoever first discovered or described the
equation. It is hard to escape the conclusion that such models capture some-
thing profound about a system’s nature. Moreover, because they are phrased
in a language with many fewer ambiguities than everyday language, one can
expect that definitions of cause and effect can be defined more clearly and
analyzed more easily for mathematical models. These observations suggests
that, if anything, mathematical models are a much more appropriate domain
of an investigation into the nature of causality than everyday language.

A scientist’s notion of causation is based on regularities in natural
phenomena. If the activity of an enzyme in a metabolic pathway is increased,
the rate at which substances are metabolized in this pathway is likely to
increase. Changes in enzyme activity cause changes in metabolic rates. This
notion of causation is not restricted to changes in a system’s states, but also
applies to the states itself, e.g., a mutant gene in the genome of an individual
is said to cause a disease. As the similar phrasing of these two examples
shows, the distinction between these two cases is somewhat blurry, and it
is conceivable that they could be lumped into one by a suitable definition.



89

However, a profound problem exists with this notion of causality, which was
first recognized by Hume. Simply stated, it is that causation as a neces-
sary connection between two events can not be inferred from correlation
or association, an issue that is also central to debates about causality in the
social sciences and in epidemiology. Partly driven by this problem, a number
of attempts have been made to render the notion of causality exact. They
include notions of probabilistic causality (Suppes 1971), analysis of causality
using counterfactuals (Mackie, 1985), and a representation of causes as
“INUS-conditions” (insufficient butnon-redundant parts ofunnecessary but
sufficient conditions; Mackie 1974). The latter example shows the consider-
able terminological sophistication that characterizes some of these attempts.
Unfortunately, such sophistication often seems to be negatively correlated
with operational usefulness. The notion of cause based on regularities, on
the other hand, is operationally useful, and it has historically been quite
successful. In addition, for the purpose of my argument, the “spurious corre-
lation” condition frequently cited as a problem of the regularity view is
irrelevant. This is because here mathematical representations of a system are
used to study the issue. In these representations, functional relations among
state variables of a system are provided, and the question becomes whether
the notion of cause and effect can be meaningfully usedgiventhese relations.

Before this question can be addressed, some conceptual issues have to
be clarified. They regard the kinds of entities that qualify as causes and
effects in a dynamical system’s representation of a process. The values of
individual state variablesxi(t) at some timet are the elementary states of
the system. Elementary events are changes in these state variables, which
may be continuous or discrete, depending on how time is represented. A
special case are changes in a component of the initial conditions,xi(t0). Of
the numerous conceivable notions of causation, a notion based on events will
be used here. Any change in a state variablexi(t) shall qualify as a cause.
In systems like (2), the corresponding effect is a change in one or more
state variables at timet + 1. In (1), effects are represented by changes in
derivativesdxi/dt . These notions of effect are more similar than they appear
at first glance, if one notes that (2) can be written in terms of the change
of state variables1Ex = Ex(t + 1) − Ex(t) as well. Also, the continuous time
system (1) can be viewed as a limiting case of the discrete system. If one
takes this view, the fact that cycles of causation (effects acting back on their
causes) may occur is unproblematic, since there is always a time lag (finite or
infinitesimal) between cause and effect (cf. also Malinvaud 1966, p. 59). The
important common feature is that changes in state variables cause changes
in the subsequent behavior, i.e., thetrajectory of the system. This highly
formalized notion of cause and effect is not new. Similar concepts are used in
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econometrics (Malinvaud 1966). It is useful to distinguish two different kinds
of effects in (1) and (2). A local (short-term) effect is a change in derivatives
or state variables at timet or t + 1, for (1) and (2), respectively. A global
(long-term) effect concerns the qualitative dynamics of these systems, i.e., the
dynamicsEx(t), ast →∞. The examples given below will serve to illustrate
the latter notion.

Thus far, there has been an emphasis on elementary events as causes.
However, one might argue that changes in the entire stateEx(t) of a system
should qualify as causes as well. This issue is related to a classical philosoph-
ical distinction, namely the distinction between regular causes and singular
causes (e.g., Koch 1990). Regular causes are best understood as regularities in
a systems behavior. In the statement, “if at leastx organisms in a population
are carriers for a disease, the disease will spread through the population” a
high number of disease carriers is a regular cause for an epidemic. Singular
causes are particular, unique, often historic events that change the behavior
of a system (e.g., the invention of the steam engine profoundly changed the
world economy). Although singular causes may be involved in a system’s
behavior, only regular causes will lead to prediction or explanation, which
is what scientists try to achieve. In the framework used here, changes in
the entire stateEx(t) of a system are a special kind of singular cause, and
only elementary events represent potential regular causes. The reason has to
do with how mathematical models are used in scientific practice, and with
the ceteris paribuscondition of identifying regular causes. When a natural
process is modeled, say the spreading of an epidemic in a population of
organisms, a choice is made by the investigator as to the factors important
in understanding the process. These factors, e.g., the number of individuals
carrying a disease, enter the model as state variablesxi or as parametersλ. All
other aspects of reality are excluded from the model. Loosely speaking, for
the purpose of modeling a particular process, the dynamical system is taken
as a model of the world. Theceteris paribusclause states that “everything else
being equal”, an event (cause) shall always be followed by the same effect.
It is at least implicitly used whenever regular causes are to be identified in a
scientific context. If the dynamical system is taken as a model of the world,
and if the cause already encompasses a change of the entire system stateEx,
then there is no notion ofceteris paribusthat can be meaningfully applied.
However, when considering elementary events, say the change in one state
variablexi , ceteris paribusapplies to all other state variablesxj unaffected
by the event. This restriction to elementary events can be relaxed somewhat
to allow changes in a number of state variables small compared to the sizen

of the system.
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While theceteris paribuscondition is necessary for an event to be consid-
ered a regular cause, a much stronger condition is often implicitly used by
scientists. It is a condition on theseparabilityof the action of variables rele-
vant to a system. I callxi(t) separable fromxj (t), if the effect of a change
in xi(t) is independent of the value ofxj (t). It is necessary to incorporate
this notion when identifying regular causes, because scientists are frequently
not in the position to control all the potentially relevant variables of a system.
What is more, they may not even know some of these variables. It is therefore
important that some aspects of a system can be ignored while other aspects
are investigated. Take the example of a biochemical investigation into some
metabolic pathway by analyzing mutants of genes acting in that pathway.
Often, geneticists have very limited means of controlling the “genetic back-
ground” of the organism they are working with, i.e., all the genes not of
immediate interest to the studied pathway. If, however, the effects of this
background on the pathway are sufficiently weak, they can be ignored. Thus,
whether one can make causal statements implying regularity, such as “a
change in the activity of enzyme E changes the metabolic flux by a factorx”
may depend critically on a notion of context independence or separability of
the action of state variables. If the actions of state variables are separable, then
it may not matter whether one knows all of them, or whether their values can
be held constant, i.e., whether theceteris paribuscondition can be applied.

Consider now the case of linear systems as given by (3). In all that follows,
phenomena will be neglected that occur only (i) in parts of the state spaceS

with measure (i.e., volume) zero, or (ii) in parts of the set of all possible para-
meters with measure zero (e.g., in the set where tr3 = λ11+λ22= 0). Albeit
important for mathematical analysis, such phenomena are largely irrelevant
for applications of the equations to the modeled process, since parameters
and state variables can in practice not be restricted to such sets. What is the
effect of an elementary event, i.e., the effect of changing the value of one state
variable, sayxk(t), to x′k(t)? The linear relatioṅxi = ∑j λij xj implies that,
whatever the value of the other state variables is, the effect on the trajectory
(as given by the derivativėxi) will always be proportional to the amount of
change, i.e., it is [x′k(t)− xk(t)]λik. Local effects are completely independent
of the context of the other variables, and they depend only on the constant
parameters3 of the system. A given cause will always have the same magni-
tude of effect. Similarly, global (long-term) effects on the behavior of the
system are largely independent of the context or “background” provided by
the other state variables. This is due to basic results from the theory of linear
dynamical systems which imply that a representation of the system exists that
makes the global effects of any elementary event independent of the context.
This shall be illustrated by only one example, that of a two-variable linear
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system with a (2× 2) matrix3 whose eigenvalues are real-valued and have
different signs. A phase diagram of this system, indicating sample trajectories
for a few different initial conditions, is shown in Figure 1a. Except along the
straight lines intersecting at the origin, each state variable approaches either
+∞ or to−∞. To which of these values it converges depends on the value
of the other state variable. However, there exists a simple representation of
the system that eliminates this dependency. Technically speaking, one has to
change the coordinate system via a linear transformation of the state vari-
ables. In graphical terms, one has to rotate thex − y axes in the figure by
different angles, such that each axis coincides with one of the invariant diag-
onal lines (arrows) shown in the figure. Then, the long term behavior of the
system for any one variable is independent of the value of the other variable.
A completely analogous line of reasoning holds for all possible cases of (2×
2) matrices3, and extends to higher dimensions as well.

In sum, it is always possible in a linear system to find a representation such
that local or global effects of elementary events become independent of the
context of the other state variables. Importantly, the appropriate coordinate
transformation (if necessary) is itself linear, such that the linear character of
the system is not changed. In this representation, effects will only depend on
the fixed set of parameters3. Comparable results hold for linear difference
equations. Thus, for linear systems, and based on the terminology used here,
the notions of cause and effect do not pose major problems.

The situation is quite different in nonlinear systems. Two examples will
be used to illustrate the main issue. Consider first the nonlinear differential
equations

ẋ1 = x1(1− r)(r − 2)− x2 (4a)

ẋ2 = x2(1− r)(r − 2)+ x1 (4b)

wherer2 = x2
1 + x2

2. This is a simple nonlinear oscillator with two state
variablesx1 and x2, and an angular velocity equal to one. Its dynamics
are illustrated in a phase diagram (Figure 1b), which depicts the qualitative
patterns of change in the state variables. Each arrow in the figure represents a
sample trajectory of the system. For initial conditionsx1(t0), x2(t0) such that
r(t0) > 2, the system ultimately (ast → ∞) approaches a limit cycle with
radiusr = 2, i.e., both state variables oscillate such that the resulting motion
is circular in a Cartesian representation of (x1, x2) coordinates. In this asymp-
totic state, both variables are characterized by sinusoid periodic behavior with
angular velocity one and amplitude two. Starting withr(t0) < 1, the system
approaches the origin, which is a stable fixed point, i.e., a point where no more
change in the system occurs. Starting close tor = 1, the system will either
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Figure 1. a) Phase diagram of the linear dynamical system (3) withn = 2 and real eigenvalues
of opposite sign. b) Phase diagram of the nonlinear oscillator (4). c) Phase diagram of equation
(5) depicting concentration dynamics of three autocatalytic molecules in a flow reactor. See
text for details.



94

approach the circle with radiusr = 2 or the origin, depending on whether
r(t0) is greater or less than one. The circle withr = 1 is an unstable limit
cycle. Small deviations fromr = 1 will move the system away fromr = 1.
What are the local effects of changes in a state variable of this system? Ifx1 is

changed tox′1, the resulting change inr is1r =
√
x
′2
1 + x ′22−

√
x2

1 + x2
2. Since

r enters into (4), and because of the general form of (4), it is clear that local
effects depend on bothx1 andx2, and not only onx1. Thus, the magnitude of
change inẋ1 is clearly dependent on the context, which in this case is simply
the state variablex2. Given the magnitude of the change inx1 (the cause), it
is the context that determines the effect. This holds also for the global effect
of a change inx1. If r is changed from a valuer > 1 to a valuer < 1,
the system will approach a fixed point where it previously approached a limit
cycle. Both the magnitude of the change inx1 and the context (x2) are impor-
tant in this regard. In fact, the effect of an elementary event depends on the
context to the extent that any notion of causality based on regularity becomes
meaningless.Ceteris paribusmeans thatx2 has to be known. But this knowl-
edge already completely specifies the state of the system. Thus, one can only
speak meaningfully of singular causes which are of little use. However, if one
restricts one’s view to a smaller range of values, sayx1 andx2 being such that
r < 1, then the behavior of the system becomestopologically equivalent to
a linear system.Topologicallyhere means that the trajectories of the system
(4) around the origin can be “straightened out” (i.e., smoothly transformed),
such that the dynamics is the same as that of some linear system around the
origin (e.g., Jordan and Smith 1987). This property is heavily exploited in
the analysis of nonlinear systems. Here it is important because it means that
problems with regular causes arise in those areas where the nonlinear system
behaves qualitatively different from the linear system. In nonlinear systems,
regular causes may be (but need not be) meaningful in small regions of the
state space. Wherever nonlinear systems behave “qualitatively” nonlinear, the
notion of regular causes may not be of much use.

Consider as a second example the system of equations

ẋi = xi(λixi −
n∑
j=1

λjx
2
j ) 1≤ i ≤ n. (5)

Each state variablexi represents the relative concentration of an auto-
catalytically self-reproducing (RNA) molecule in a flow reactor containingn

such molecules (Hofbauer and Sigmund 1988, p. 90). Theλi ’s are a measure
of the replication rate of molecule speciesi. (Structurally similar equations
describe the interactions of species in an ecosystem, in which casexi repre-
sents the abundance of organismic speciesi in the system.) The dynamics of
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(5) is illustrated for 3 molecule species by the phase diagram of Figure 1c.
In this figure, each point in the interior of the equilateral triangle (a simplex)
corresponds to a combination of relative concentrations, such that

∑
xi = 1

holds. On the edges of the simplex, only two of the three molecule species
have concentrations different from zero. The vertices of the simplex corre-
spond to a situation where only one species exists. Three unstable equilibria
are located on the edges, and one (denoted by M) in the interior. The vertices
of the simplex are the only stable equilibria, and their basins of attraction are
separated by the straight lines connecting them toM. The location ofM in
the simplex is determined by the parametersλi. Consider as an example for
the local effect of a change in a state variable the effect of a change inx1 on
xj , j 6= 1. It follows from (5) that1ẋj = xj (x2

1−x ′21 )λ1. Therefore, the local
effect of a change in one state variable on the trajectoryĖx does not exclusively
depend on that state variable, but on all other state variables as well. For
the global effects, it is clear that a small change in, say,x1 will not affect
the convergence of the system tox1 = 1 (where only molecule species 1 is
present) for trajectories well in the interior of its basin of attraction. However,
the same change at a point close to the boundary of this basin, and specially
close toM, may result in convergence of the system tox2 = 1 or x3 = 1.
Whether this happens, depends not only on the direction of change inx1,
but critically on the values of all the other state variables. Thus, the same
reasoning as for the above example applies to (5), including (topological)
equivalence to a linear system if one restricts the dynamics to any one basin
of attraction.

The examples given here are very simple, and one might argue that in most
practical cases it would be possible to identify the mathematical relations
among only two or three state variables. However, it would be easily possible
to illustrate the same point with much more complicated dynamical systems,
whose behavior is not nearly as intuitively clear as that of the examples given
here. One only has to bear in mind that dynamical systems of realistic dimen-
sions may be vastly more complex. For example, Lewontin (1974) gives an
example from population genetics in which a dynamical system is used to
model the change in frequencies of alleles at five gene loci in a population of
diploid organisms. The system has of the order of 109 alternative equilibria. In
such systems, knowledge of the local or global dynamics of the system may
depend on detailed knowledge of the values of all state variables, precluding
any meaningful definition of regular causes.

In systems with many variables and complex behavior, an additional factor
may become important, namely the “density” of interactions among state
variables. It may be crucial to know whether all state variables in the system
interact with each other or whether interactions among state variables involve
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only small groups of variables. This point is illustrated by the Ising spin
model, which originated in solid state physics, but has recently become of
great importance in the theory of neural networks (Amit 1989). Consider a
system with discrete state variablesxi assuming values of+1 and−1 only.
These state variables may represent the spins (magnetic moments) of indi-
vidual atoms in a magnetic material, or the activity states of neurons in a
neural network. The dynamics of the system is given by

xi(t + 1) = σ
 n∑
j=1

λij xj (t)+ h
 1≤ i ≤ n (6)

Hereσ is the sign function (σ(x) = 1 for x > 0, σ (x) = −1 for x < 0,
andσ(x) = 0 for x = 0), andh is some real constant corresponding to an
external magnetic field in the magnetic model, and a “firing” threshold in the
neural model.3 = (λij ) is a matrix of “connectivity” parameters specifying
the interactions among state variables. This is a nonlinear difference equation,
whose nonlinearity stems from the functionσ . The numbern of spins may be
quite large. In fact many of the mathematical results for this class of models
are derived for the thermodynamical limitn→∞.

Consider first a simple special case, that of a circular chain of spins, in
which each spin interacts only with its nearest neighbor. Then, one has

xi(t + 1) = σ [xi−1(t)+ xi+1(t)+ h]
Herei − 1 is identified withn if i = 1, andi + 1 is identified with 1 ifi = n.
Consider the elementary event of a change in a state variable, sayx1. Its effect
on another state variablex2 is completely determined if one knows the state
of x3 at timet . A cause will have the same effectceteris paribusmeans that
only x3 has to be kept constant. One need not know the state of the entire
system. Because interactions among spins are only local, regular local causes
can be meaningfully defined.

A far more important case, for example for neural network modeling,
is that of a fully connected Ising spin model, in which all parametersλij
are different from zero. In this case, (6) implies that the effect of a change
in a state variable may depend on the values of all other state variables.
The context in which such a change happens is therefore essential, and the
ceteris paribuscondition is not useful for the identification of regularities.
There is clearly a continuum of systems between the local interactions of the
linear Ising chain, and the global interactions of the fully connected model.
As one moves from local to global interactions,ceteris paribusimplies that
an increasing number of state variables has to be kept constant. Conversely,
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changes in individual state variables become less and less separable from the
state of the entire system in the sense introduced above. This illustrates that
the cut-off point between regular and singular causes is quite arbitrary for
these systems.

In sum, a notion of causation based on regularities can only be mean-
ingful for areas of the state space, in which the behavior of a nonlinear
system is topologically equivalent to that of a linear system. Local inter-
actions among state variables may sometimes render the notion of regular
causes meaningful, but as these interactions become global, its usefulness
evaporates.

When discussing nonlinear dynamical systems it is tempting to include
systems with chaotic dynamics. In this area examples of almost arbitrarily
pathological behavior can be constructed (e.g., Sommerer and Ott 1993). The
sensitivity of such systems to changes in state variables may allow one to
illustrate how profoundly problematic a regularity theory of causality is in
nonlinear systems. However, the above examples show that one does not have
to resort to the rather peculiar features of chaotic systems, although systems
similar to (6) may show chaotic behavior.

In light of what has been said about causality in nonlinear systems, it
is instructive to return to the example of the social sciences for a moment.
Because the mathematical terminology in these areas is somewhat different
from that used here, I will briefly clarify how the two are related. Often,
in the social sciences the mathematical framework is not one of differen-
tial equations, but of simultaneous (linear) equations in some state variables
which have to be solved. However, such equations can often be viewed as
representing some assumed equilibrium of a dynamical system. A dynam-
ical system representation would then prescribe the trajectory of the system
towards that equilibrium (e.g., Malinvaud 1966, p. 52). Further terms that
are not usually found in models of the life sciences and social sciences are
those of endogenous and exogenous variables (Malinvaud 1966). Exogenous
variables are variables that can influence the state of the system, as repre-
sented by all endogenous variables, but not vice versa. In the dynamical
systems framework used here, endogenous variables correspond to state vari-
ables, and exogenous variables correspond to system parameters. The kinds
of causes studied in these systems are of a somewhat different nature as
well. Typically, it is asked how changes in system parameters (exogenous
variables) affect the system’s equilibria. An important task of causal models
is to determine the relation among state variables such that one can predict
how a change in a system parameter will affect the state of the system in
equilibrium. While the mathematical examples given above all concerned
changes in state variables, it would be straightforward to conceive of similar
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examples involving parameter changes (e.g., the general class of dynamical
systems involving Hopf bifurcations; Murray 1989). Thus, while superficially
distinct, it is straightforward to cast issues regarding causal relations in the
social sciences in the terminology used here. Characteristically, discussions
regarding the identification of causal relations in the social sciences mostly
restrict themselves to linear interactions among variables (e.g., Glymour et al.
1980; Simon 1971). It is tempting to speculate that this basic commitment to
linear models is another important reason why discussions of causality have
continued to be important in this area. In linear causal models, the assump-
tion is made that parameter changes translate linearly into changes of the
state variables in equilibrium. If this is the case, path analysis (e.g., Sokal
and Rohlf 1981) provides a powerful and widely used tool to analyze and
quantify these interactions. However, in nonlinear systems no comparable
tool is likely to exist. Taking again the dynamical systems viewpoint, it is
well known that changes in system parameters (exogenous variables) need not
smoothly change individual state variables as they do in linear systems. They
may change the stability of equilibria, they may cause discontinuous shifts
in equilibria from one position to another in the state space, they may turn
stable equilibria into limit cycles, or even induce chaotic dynamics (Murray
1989; Jordan and Smith 1987). As in the examples shown here, it may be
necessary to know the value of all state variables and parameters to determine
the systems behavior. Again, a regularity notion of causation is not likely to be
meaningful, except in areas of the (state or parameter) space where a linear
approximation is appropriate. Such an approximation can again be under-
stood in the sense of a topological equivalence between linear and nonlinear
dynamics. It is interesting to note that nonlinear or curvilinear regression in
statistical theory exploits this very ability of moderately nonlinear systems.
Variable transformations or presumed functional relations among variables
which are then fit to data are usually smooth, e.g., logarithmic or polynomial.

Why is this digression into causal models in the social sciences relevant
to biological models? The reason is that there is an instructive commonality
between the two areas. In the social sciences, it seems that the linearity of
causal models is often due to a lack of insight into functional relations among
the variables of a model. This lack of insight probably exists for good reasons,
such as the inability to do experiments, and methodological difficulties in
collecting even observational data. Given this lack of insight, the most parsi-
monious assumption about a system is that it is in equilibrium, and that the
interactions among its state variables and parameters in equilibrium are linear.
An additional incentive to using these assumption is that they render a regu-
larity notion of causation meaningful, either in terms of everyday language, or
in the more sophisticated language of path analysis. In some areas of biology,
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notably those that may become of great political importance in the near
future, a similar situation holds, insofar as assumptions of linearity substitute
for insight. This is often the case for population genetics, on which medical
genetics relies heavily. Little is known about the precise functional interac-
tions among gene products that lead to most phenotypic traits. In light of this
fact, and considering that many phenotypic characters show a considerable
amount of additive genetic variation (a statement aboutstatistical relations
among variables; Falconer 1981), the parsimonious assumption is regularly
made that thefunctional relations among genetic variables are also linear.
Of course, this assumption neglects many qualitative results from molecular
biology which suggest that interactions among gene products usually have
highly nonlinear features (e.g., cooperativity in transcriptional regulation of
gene expression). It also neglects the importance of epistatic variance, which
is often found experimentally, and caused by nonlinear interactions among
genes. However, given the little available quantitative information about gene
interactions, population genetic models often do not have viable alternatives
to assumptions of linearity. These assumptions only become deeply problem-
atic if causal roles are to be attributed to individual genetic factors, e.g., in
genetic diseases. If, as one has every reason to assume, nonlinear phenomena
are important, the association of a particular genetic marker with a disease
may crucially depend on the context, i.e., on the genetic background of the
population in which the association was established. It need not hold then,
that background effects “average out” over the individuals in a population, as
they may in the linear case. Associations found between genetic markers and
a disease in one population may not exist in a different population, and loci
explaining (in a statistical sense) phenotypic variation in one population, may
not do so for other populations. This is because the value of all relevant state
variables, corresponding to alleles at all relevant loci, can be so important in
nonlinear systems. As in the nonlinear dynamics examples given here, one
may need to know the state of the entire system with all its state variables
to make predictions. The importance of such nonlinear interaction effects
may be an important reason why the analysis of complex genetic diseases
is hampered by numerous problems. Sometimes even apparently “simple”
genetic diseases reveal complex patterns of inheritance. Lander and Schork
(1994) quote the example of sickle cell anemia, a textbook case of a “simple”
genetic disease caused by a particular mutation at theβ-globin locus. As it
turns out, individuals with the same genotype at that locus may be affected to
quite different extents. Part of the reason are influences exerted by the genetic
background, in this case at least two other loci. A similar example involves
schizophrenia, a disease with an undoubtedly complex genetic component
(Baron et al. 1990). Here linkage between the disease and genetic markers on
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the human chromosome 5 were found in one study, but could not be replicated
in a different pedigree. Numerous other examples of the importance of back-
ground effects could be given (Baron et al. 1990; Lander and Schork 1994),
and they are not surprising for nonlinear systems. At the very least, indepen-
dent studies in unrelated populations are necessary to assess the importance
of the genetic background, but statistical reasoning can not replace insight
into functional relations among relevant variables in these cases.

In sum, there are good reasons not to abandon the notion of causality,
as suggested by Russell (1913), because it is useful in systems that behave
qualitatively linear in the sense used here. For such systems, powerful statis-
tical tools exist to delineate causal interactions. Because these tools in general
rely on measures of linear associations, they are likely to fail for qualita-
tively nonlinear systems. In these systems statistical reasoning can not replace
insight into functional relations among variables, as given by a mathematical
formalism describing their interactions. To argue that the notion of regular
causes has severe limitations in nonlinear systems may seem like an academic
problem. It is not in those areas where important decisions are likely to be
made on the basis of statistical criteria alone.
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