
BIOINFORMATICS Vol. 17 no. 12 2001
Pages 1183–1197

How to reconstruct a large genetic network from
n gene perturbations in fewer than n2 easy steps
Andreas Wagner

University of New Mexico and The Santa Fe Institute, University of New Mexico,
Department of Biology, 167A Castetter Hall, Albuquerque, NM 817131-1091, USA

Received on February 2, 2001; revised on April 30, 2001; accepted on May 28, 2001

ABSTRACT
Motivation: The reconstruction of genetic networks is the
holy grail of functional genomics. Its core task is to iden-
tify the causal structure of a gene network, that is, to dis-
tinguish direct from indirect regulatory interactions among
gene products. In other words, to reconstruct a genetic
network is to identify, for each network gene, which other
genes and their activity the gene influences directly. Cru-
cial to this task are perturbations of gene activity. Genomic
technology permits large-scale experiments perturbing the
activity of many genes and assessing the effect of each
perturbation on all other genes in a genome. However,
such experiments cannot distinguish between direct and
indirect effects of a genetic perturbation.
Results: I present an algorithm to reconstruct direct
regulatory interactions in gene networks from the results
of gene perturbation experiments. The algorithm is based
on a graph representation of genetic networks and applies
to networks of arbitrary size and complexity. Algorithmic
complexity in both storage and time is low, less than
O(n2). In practice, the algorithm can reconstruct networks
of several thousand genes in mere CPU seconds on a
desktop workstation.
Availability: A perl implementation of the algorithm is
given in the Appendix.
Contact: wagnera@unm.edu

INTRODUCTION
Most techniques to analyze genetic networks monitor
changes in the expression of many genes under changing
environmental conditions, in different physiological
stages, or in different genetic backgrounds. They then
identify genes with similar expression in these different
situations, and cluster them according to this similarity
(DeRisi et al., 1997; Eisen et al., 1998; Tavazoie et al.,
1999). The underlying assumption is that genes with
similar expression patterns participate in similar biolog-
ical processes. While not unreasonable, this approach
suffers from the problem that correlated expression can
only point to regulatory interactions between genes. It

cannot be used to infer such interactions. By a regulatory
interaction between two genes I mean that one gene
directly influences the expression level of the other gene.
And if we are to understand the structure and function of
genetic networks, this is perhaps the most fundamental
question to answer: which genes in a network influence
the activity of which other genes directly. I here present
an algorithm that can answer this question for arbitrarily
large networks. Not surprisingly, its ability to resolve
regulatory gene interactions, and thus to resolve the
causal structure of a genetic network, comes at a price.
It requires different kinds of data—and more of it—than
correlative methods. Specifically, it requires perturbation
of many genes in the network. Large-scale perturbation
data of this sort is now becoming available (Bouche and
Bouchez, 2001; Fraser et al., 2000; Gonczy et al., 2000;
Hughes et al., 2000; Spradling et al., 1999).

Concepts
To begin with, a few definitions are in order. First, what is
a genetic network? For the purpose of this paper, I define a
genetic network as a group of genes in which individual
genes can influence the activity of other genes. What,
then, is gene activity? For my purpose, gene activity can
include many different things. Most definitions revolve
around gene expression, whether a gene is expressed or
not, as mRNA or as protein. At a higher level of resolution,
the amount of mRNA or protein expressed might be
important as well. However, there is more to gene activity
than just expression. For instance, one might consider
differences in post-transcriptional regulation, such as
differential splicing, or post-translational modification,
such as phosphorylation. It is well known that the activity
of many gene products is regulated by phosphorylation,
and gene products that phosphorylate or dephosphorylate
other gene products are key regulators inside any living
cell. Another aspect of gene activity is the methylation
state of genes, which is related to gene silencing. And
there are gene products that are involved in changing the
methylation state of other genes. These few examples
show that there are endlessly many possible ways of

c© Oxford University Press 2001 1183

A.Wagner

defining gene activity. In principal the approach proposed
here applies to all notions of gene activity, as long as
they are used consistently and defined clearly within an
experimental context.

Next, what is a genetic perturbation? For my purpose,
it is an experimental manipulation of gene activity by
manipulating either a gene itself or its product. Such
perturbations include point mutations, gene deletions,
overexpression, inhibition of translation, for example by
using antisense RNA, or any other interference with the
activity of the product. While mutations are not usually
thought of as manipulations of gene activity, I choose to
view them as such. Clearly, if I mutate a gene so that the
cell cannot produce the gene product, I have affected the
activity state of the gene.

Network reconstruction: direct and indirect effects
When manipulating a gene and finding that this manipu-
lation affects the activity of other genes, the question of-
ten arises as to whether this is caused by a direct or indi-
rect interaction. For example, when overexpressing a tran-
scription factor X, I might find that the expression level
of genes A and B changes. Upon further investigation, I
may find that X binds the upstream regulatory region of A
and up-regulates its expression. This is what I call a direct
effect of X on A. However, in the case of B I might find
that X induces the expression of a protein phosphatase,
which dephosphorylates and thus inactivates a transcrip-
tional repressor of B. This is what I call an indirect effect
of X on B. For the purpose of this paper, I will define the
task of network reconstruction as follows. To reconstruct
a genetic network is to identify all direct effects of net-
work genes on one another’s activity within the limits of
experimental resolution.

The important issue of experimental resolution is best
illustrated by an example. Consider the hypothetical
example of a biochemical pathway shown in Figure 1a.
A constitutively expressed transcription factor produced
by gene 1 induces expression of gene 2, whose product
is a protein kinase. This protein kinase phosphorylates
a protein phosphatase, the product of gene 3, an event
that activates the phosphatase. The phosphatase in turn
dephosphorylates a transcription factor, the product of
gene 4. Dephosphorylation activates the transcription
factor, which binds to and induces expression of gene 5,
whose function is unspecified.

Now consider a hypothetical series of five different
experiments, deleting each of the five genes involved
in this pathway. For each of these five perturbations,
we measure changes in gene activity. The notion of
gene activity I choose to use here is that of the mRNA
expression level. The results of these five hypothetical
experiments are shown in Figure 1b in a format that I
will use throughout. Each line contains the results of

one genetic perturbation. The leftmost symbol stands for
the gene whose activity was manipulated, followed by
a colon. To the right-hand side of the colon, the names
of genes appear whose activity was influenced by that
particular manipulation. In the experiment whose result is
shown in the first line of Figure 1b, the activities (mRNA
level) of genes 2 and 5 were affected by deleting gene 1.
Gene 2 was affected because the product of gene 1 is
required for transcription of gene 2. Gene 5 was affected,
because, indirectly, the expression of gene 2 influences the
phosphorylation state and the activity of the transcription
factor produced by gene 4. When the product of gene 2 is
absent, then the product of gene 4 will be inactive, and
gene 5 will not be expressed. As opposed to its effect
on the activities of genes 2 and 5, deletion of gene 1
does not affect the activity of genes 3 and 4. Deletion of
gene 1 will only affect the phosphorylation state of genes 3
and 4, but not their mRNA expression, because they are
constitutively expressed.

Figure 1c shows a situation where the genetic perturba-
tion is the same, but where the phosphorylation state is
used as a measure of gene activity. Manipulation of gene 1
now does not affect the measured activity of genes 2 and 5,
but it does affect the activities of genes 3 and 4.

What can we expect a network reconstruction algo-
rithm to achieve? Clearly, for the result of the thought
experiment shown in Figure 1b, we would expect that the
algorithm identifies the order in which the genes influence
each others expression state as G1 → G2 → G5. For
Figure 1c, we would expect that the algorithm identifies
the order in which the genes influence each other’s
phosphorylation states as G1 → G3 → G4.

No algorithm can be expected to say anything beyond
that. This is a limitation of the data itself and not of
any algorithm. Thus, one has to be very clear about the
measure of gene activity and the genetic perturbation used,
and what interpretations one can extract from them. It is
possible to superimpose results such as those shown in
Figure 1b and c, but this will not be my focus here. My
focus will be to reconstruct networks vastly more complex
and reticulate than the pathway shown in Figure 1a, from
data like that shown in Figure 1b or c.

In sum, an algorithm to reconstruct a genetic network
from perturbation data should be able to distinguish direct
from indirect regulatory effects. This is by no means a
weak statement, although it may seem so at first glance.
Consider a series of experiments in which the activity of
every single gene in an organism is manipulated. (For
instance, non-essential genes can be deleted, and for
essential genes one might construct conditional mutants.)
The effect on mRNA expression of all other genes is
measured separately for each mutant. The result is a list
similar to that shown in Figure1b, but for thousands of
genes. An algorithm reconstructing this network would

1184

Reconstructing large genetic networks from n gene

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5DNA

protein

transcription
factor

P

protein
kinase

protein
phosphatase

transcription
factor

inactive

active
P

inactive

active

Aspect of gene activity: mRNA expression
Genetic perturbation: gene deletion

G1: G2, G5
G2: G5
G3: G5
G4: G5
G5:

(a)

Aspect of gene activity: phosphorylation state
Genetic perturbation: gene deletion

G1: G3, G4
G2: G3, G4
G3: G4
G4:
G5:

(b) (c)

Fig. 1. The importance of specifiying gene activity when reconstructing genetic networks. (a) A hypothetical biochemical pathway involving
two transcription factors, a protein kinase, and a protein phosphatase, as well as the genes encoding them. See text for details. (b) Shown
is a list of perturbation effects for each of the five genes in (a), when perturbing individual genes by deleting them, and when using mRNA
expression level as an indicator of gene activity. The left-most symbol in each line stands for the perturbed gene. To the right of each colon is
a list of genes whose activity is affected by the perturbation. (c) Analogous to (b) but for a different notion of gene activity (phosphorylation
state).

be able to identify all genes regulated directly by any
transcription factor encoded in this organism’s genome.
The significance of extracting such information cannot
be overestimated, given the importance of transcriptional
regulation in any biological process.

RESULTS
Graph theoretical framework
As the previous examples indicated, I will be largely con-
cerned with qualitative information on gene interaction.
That is, when I manipulate the activity of one gene, what
other genes are influenced in their activity? Quantitative
information, such as whether an interaction is activating or
repressing, or the strength of the interaction, can be incor-
porated into this approach, but I will leave that to a future
contribution.

The qualitative information I am considering here lends
itself ideally to a graph representation of genetic networks.
A directed graph or digraph is a mathematical object
consisting of nodes and directed edges. In the graph
representation of a genetic network that I will use here, the
nodes of the graph correspond to genes, and two genes, say
genes 1 and 2, are connected by a directed edge (an arrow,

1 → 2) if gene 1 influences the activity of gene 2 directly.
Figure 2a shows a graph representation of a hypothetical
genetic network of 21 genes. For brevity, I will simply
label genes by numbers throughout the paper, as in this
figure. Figure 2b shows an alternative representation of the
network shown in Figure 2a. For each gene i , it simply
shows which genes’ activity state the gene influences
directly. In graph theory, a list like that shown in Figure 2b
is called the adjacency list of the graph. I will denote it as
Adj(G), and will refer to Adj(i) as the set of nodes (genes)
adjacent to (directly influenced by) node i . One might also
call it the list of nearest neighbors in the gene network, or
the list of direct regulatory interactions. Importantly, the
adjacency list completely defines the structure of a gene
network.

When perturbing each gene in the network shown in
Figure 2a, one would get the list of influences on the
activities of other genes shown in Figure 2c. For example,
gene 0 influences, directly or indirectly, the activity of
genes 2 and 16. Gene 1 does not influence the activity of
any other gene, but its activity is influenced by genes 9
and 10. Gene 4 is an isolated node in this network. Its
activity is neither influenced by any gene in the network,
nor does it influence the activity of any gene. Starting from

1185

A.Wagner

0: 2 16
1:
2:
3: 0 2 5 8 12 14 16
4:
5: 0 2 12 14 16
6: 0 2 5 12 14 16
7: 2 8 17
8:
9: 0 1 2 5 6 10 12 14 15 16 18 20
10: 0 1 2 5 6 12 14 16 18 20
11: 0 2 5 6 12 14 16 18 20
12: 0 2 14 16
13: 8 17
14: 0 2 16
15: 0 2 16
16: 2
17: 8
18:
19: 8
20: 0 2 5 6 12 14 16 18

(b)

(a)

0: 16
1:
2:
3: 2 5 8
4:
5: 12
6: 5 12
7: 2 17
8:
9: 10 15
10: 1 20
11: 20
12: 14
13: 8 17
14: 0
15: 0
16: 2
17: 8
18:
19: 8
20: 6 18

(c)

Fig. 2. Reconstructing a network from a list of direct and indirect
perturbation effects. (a) shows a genetic network represented as
a graph whose nodes correspond to genes numbered from 0
through 19. Two genes are connected by an arrow if they influence
each other’s activity directly. (b) shows the adjacency list of this
network. It completely defines the network. For each gene i (to
the left of the colon), it is the list of all genes directly influenced
by i . (c) Shows the list of direct and indirect perturbation effects
for the network in (a). When perturbing the activity of a gene i
in the network, all genes whose activities are directly or indirectly
influenced by this gene will change their activity. For each perturbed
gene, one gets the list shown in (c) by following all paths leaving
a gene along the arrows. In this context, the task of network
reconstruction is to generate a list such as that shown in (a) from
a list of perturbation effects shown in (c).

a graph representation of the network in Figure 2a, one
arrives at the list of direct and indirect causal interactions
in Figure 2c by following all paths leaving a gene. That
is, one follows all arrows emanating from the gene until
one can go no further. In graph theory, the resulting list
Acc(G) is called the accessibility list of the graph G,

because it shows all nodes (genes) that can be accessed
(influenced in their activity state) from a given gene
by following paths of direct interactions. In the context
of a genetic network one might also call it the list of
perturbation effects or the list of regulatory effects. I define
Acc(i) as the set of nodes that can be reached from node i
by following all paths of directed edges leaving i . Acc(G)

then simply consists of the accessibility list for all nodes i ,
as shown in Figure 2c. (Notice that not every list like that
shown in Figure 2c is the accessibility list of a graph. For
example, there is no graph with the accessibility list 1 : 2;
2 : 1; 3 : 2.)

Generating Figure 2c from Figure 2a or b is straightfor-
ward, although time consuming for a large network. The
subject of this paper is the more difficult problem of re-
constructing the network in Figure 2a from nothing but
the list given in Figure 2c, and to do that automatically for
very large networks of perhaps thousands of genes.

I will be using two additional mathematical representa-
tions of gene networks. The first of these is the adjacency
matrix of a graph G, A(G) = (ai j). A(G) is an n × n
square matrix, where n is the number of nodes (genes) in
the graph. An element ai j of this matrix is equal to one if
and only if a directed edge exists from node i to node j .
All other elements of the adjacency matrix are zero. Sec-
ond, the accessibility matrix P(G) = pi j is also an n × n
square matrix. An element pi j is equal to one if and only
if a path following directed edges exists from node i to
node j . pi j equals zero otherwise. Adjacency and accessi-
bility matrices are the matrix equivalents of adjacency and
accessibility lists.

Most real world graphs are sparse. That is, they have few
outgoing edges per node. For such graphs, it is often more
efficient to use lists rather than matrices for numerical
operations. However, to state or prove theorems, matrix
representations are sometimes more convenient.

In the following sections I will develop in two steps an
algorithm to reconstruct a network from its accessibility
list, as well as its mathematical foundation. First, I will
restrict myself to graphs without cycles, where cycles are
paths starting at a node and leading back to the same
node. Graphs without cycles are called acyclic graphs. In
the second step I will generalize to graphs with cycles.
Before beginning, however, I have to address a problem
germane to analyzing any kind of experimental data. It
is the problem that there are usually many possible and
internally consistent reconstructions of a study system
from experimental data. The preferred one is usually a
simple or parsimonious one, by some suitable definition.
Genetic network reconstruction is no exception to this
rule.

1186

Reconstructing large genetic networks from n gene

0: 1 2 3 4 5
1: 2 3 4 5
2: 3 4 5
3:
4: 5
5:

(a) (b)

(c) (d)

Fig. 3. The most parsimonious graph is the graph with the fewest
edges consistent with a given accessibility list. (a) Shows the
accessibility Acc of an acyclic graph. (b)–(d) Show graphs that
have this accessibility list. The graph shown in (d) is the most
parsimonious graph of Acc.

Occam’s razor in network reconstruction
An acyclic directed graph defines its accessibility list,
but the converse is not true. In general, if Acc is the
accessibility list of a graph, there is more than one graph
G with the same accessibility list. Figure 3 illustrates this
with an example of three graphs (Figures 3b–d) with the
same accessibility list Acc (Figure 3a). For an example
that simple it is obvious that there is one graph (Figure 3d)
that has Acc as its accessibility list and is simpler than
all other graphs, in the sense that it has fewer edges. For
more complicated graphs, it may not be so clear that there
is always such a graph. In this section, I will thus prove
that there exists always exactly one such graph. In terms of
reconstructing a genetic network, this means that for any
list of perturbation effects there exists exactly one genetic
network G with fewer edges than any other network with
the same list of perturbation effects.

THEOREM 1. Let Acc be the accessibility list of an
acyclic digraph. Then there exists exactly one graph Gpars
that has Acc as its accessibility list and that has fewer
edges than any other graph G with Acc as its accessibility
list.

I will call Gpars the most parsimonious network compati-
ble with Acc. Before starting the proof, I need to introduce
some terminology.

i

zk-2

zk

zk-1

z1

z2

j
e

r(e)=k+1

Fig. 4. A shortcut is an edge e connecting two nodes, i and j , that
are also connected via a longer path of edges. The shortcut e shown
here is a shortcut of range k + 1. That is, when eliminating e, i and
j are still connected by a path of length k + 1.

DEFINITION. An accessibility list Acc and a digraph G
are compatible if G has Acc as its accessibility list. Acc is
the accessibility list induced by G.

DEFINITION. Consider two nodes i and j of a digraph
that are connected by an edge e. The range r of the edge
e is the length of the shortest path between i and j in the
absence of e. If there is no other path connecting i and j ,
then r : = ∞.

DEFINITION. An edge e with range r � 2 but r �= ∞
is called a shortcut.

The last two definitions, in slightly different form and for
undirected graphs, are due to Watts (1997). A shortcut
of range k + 1 is illustrated in Figure 4. A shortcut
provides a shortest route between two nodes which are
also connected by a longer path. Equipped with these
definitions, I am now ready to prove Theorem 1.

LEMMA 1. For any accessibility list Acc of a digraph,
there exists a compatible graph Gpars that is free of
shortcuts.

PROOF. Assume there is no such graph Gpars. Without
loss of generality, let G be a digraph inducing Acc.
By assumption, G has a finite number of node pairs,
(x1, y1), . . . , (xn, yn), each of which has the following
property: There exists a directed edge ei from xi to yi ,
as well as a path Pi from xi to yi of length greater
than 1. Take, without loss of generality, the first pair of
such nodes, (x1, y1), and generate from G a graph G∗

1187

A.Wagner

from which the edge e1 is deleted. This graph has the
same accessibility list as G, because x1 and y1 are still
connected via P1. By repeating this procedure with the
remaining (n − 1) node pairs, you arrive at a graph G(n∗)

with the same accessibility list as G but without shortcuts.
This is a contradiction to the assumption made in the
beginning of the proof.

LEMMA 2. Assume that Acc is the accessibility list of a
digraph G. For each node x, the adjacency list Adj(x) of a
shortcut-free graph Gpars compatible with Acc is a subset
of the adjacency list Adj(x) of any graph compatible with
Acc.

PROOF. Assume that Lemma 2 is false. Consider then,
without loss of generality, a shortcut-free graph Gpars that
induces Acc, and some other graph G that also induces
Acc. By assumption, Gpars contains at least one node x
for which the following holds. Adj(x) of Gpars contains at
least one node y that is not in the adjacency list Adj(x) of
G. But because G and Gpars have the same accessibility
list Acc, there must exist some path x → z1 → z2 →
z3 → · · · → zk → y from x to y in G. Furthermore,
because G and Gpars have the same accessibility list, z1
must be accessible from x in Gpars, z2 from z1 in Gpars . . .

and zk from zk−1 in Gpars. That means that we can find a
path in Gpars, however indirect, that runs from x to z1,
from z1 to z2, from z2 to z3, . . . from zk−1 to zk , and
from zk to y. But now we have two paths in Gpars, one of
length one, the edge e between x and y, and one involving
the nodes z1 through zk . Thus, the edge e(x → y) is a
shortcut, in contradiction to the assumption that Gpars is
shortcut-free.

COROLLARY 1. The shortcut-free graph Gpars compat-
ible with Acc is a unique graph with the fewest edges
among all graphs G compatible with Acc.

The corollary follows immediately from Lemma 2. A
complementary way of showing that Gpars is a minimal
graph is to examine, first, the consequences of adding a
node y to the adjacency list Adj(x) of some node x in
Gpars. If y /∈ Acc(x) before the addition, now y ∈ Acc(x),
the accessibility list has changed, and the altered graph is
no longer compatible with the original accessibility list. If,
on the other hand, y ∈ Acc(x) before the addition, then the
addition has created a shortcut, so the graph is no longer
shortcut-free. Second, what happens if you eliminate a
node y from the adjacency list of any node x in Gpars?
Then, y is no longer accessible from x , you have altered
the accessibility list, and the resulting graph is no longer
compatible with Acc. Assume that this was not so, that
is, that y was still accessible from x . Then a path from
x to y must have existed before the elimination of y from
Adj(x). In that case, the edge from x to y was a shortcut, in
contradiction to the assumption that Gpars is shortcut-free.

The algorithm
The network reconstruction algorithm takes the accessi-
bility list Acc of an acyclic directed graph, and generates
from it the adjacency list of the most parsimonious graph
of Acc. It relies on two basic relations between accessibil-
ity and adjacency lists. The first is that for all nodes i of a
graph, Adj(i) ⊆ Acc(i). The second is formulated in the
following theorem.

THEOREM 2. Let Acc(G) be the accessibility list of
an acyclic directed graph, Gpars its most parsimonious
graph, and V(Gpars) the set of all nodes of Gpars. Then
the following identity holds

∀i ∈ V (Gpars) Adj (i) = Acc (i) \
⋃

j∈Acc (i)

Acc (j). (1)

In words, for each node i the adjacency list Adj(i) of
the most parsimonious genetic network is equal to the
accessibility list Acc(i) after removal of all nodes that are
accessible from any node in Acc(i).

PROOF. I will first prove that every node in Adj(i) is
also contained in the set defined by the right-hand side
of equation (1). Let x be a node in Adj(i). This node is
also in Acc(i). Now take, without loss of generality any
node j ∈ Acc(i). Could x be in Acc(j)? If x could be in
Acc(j) then we could construct a path from i to j to x .
But because x is also in Adj(i), there is also an edge from
i to x . This is a contradiction to Gpars being shortcut-free.
Thus, for no j ∈ Acc(i) can x be in Acc(j). x is therefore
also not an element of the union of all Acc(j) shown
on the right-hand side of equation (1). Thus, subtracting
this union from Acc(i) will not lead to the difference
operator in equation (1) eliminating x from Acc(i). Thus
x is contained in the set defined by the right-hand side of
equation (1).

Next I will prove that every node in the set of the right-
hand side of equation (1) is also in Adj(i). Let x be a node
in the set of the right-hand side of equation (1). Because x
is in the right-hand side of equation (1), x must a fortiori
also be in Acc(i). That is, x is accessible from i . But x
can not be accessible from any j that is accessible from i .
For if it were, then x would also be in the union of all
Acc(j). Then taking the complement of Acc(i) and this
union would eliminate x from the set in the right-hand side
of equation (1). In sum, x is accessible from i but not from
any j accessible from i . Thus x must be adjacent to i .

The algorithm itself will use the following corollary to
Theorem 2.

COROLLARY 2. Let i , j , and k be any three pairwise
different nodes of an acyclic directed shortcut-free graph
G. If j is accessible from i, then no node k accessible from
j is adjacent to i .

1188

Reconstructing large genetic networks from n gene

1 for all nodes i of G
2 Adj(i)=Acc(i)

3 for all nodes i of G
4 if node i has not been visited
5 call PRUNE_ACC(i)
6 end if

7 PRUNE_ACC(i)
8 for all nodes j ∈Acc(i)

f Acc(j)=∅
10 declare j as visited.
11 else
12 call PRUNE_ACC(j)
13 end if

14 for all nodes j ∈ Acc(i)
15 for all nodes k ∈ Adj(j)
16 if k ∈Acc(i)
17 delete k from Adj(i)
18 end if
19 declare node i as visited
20 end PRUNE_ACC(i)

Fig. 5. A recursive pruning algorithm to reconstruct the most
parsimonious graph from an accessibility list. See text for details.

PROOF. Let j be a node accessible from node i . Assume
that there is a node k accessible from j , such that k is
adjacent to i . That is, j ∈ Acc(i), k ∈ Acc(j) and k ∈
Adj(i). That k is accessible from j implies that there is a
path of length at least one from j to k. For the same reason,
there exists a path of length at least one connecting i to
j . In sum, there must exist a path of length at least two
from i to k. However, by assumption, there also exists a
directed edge from i to k. Thus, the graph G can not be
short-cut-free.

The algorithm itself takes the accessibility list of a graph
and eliminates entries inconsistent with Theorem 2 and
Corollary 2. It does so recursively until only the adjacency
list of the shortcut-free graph is left. The algorithm is
shown as pseudocode in Figure 5. Because it operates
on lists, programming languages such as perl or library
extensions of other languages permitting list operations
will facilitate its implementation. (Appendix A shows a
perl implementation of the algorithm, where accessibility
and adjacency list are represented by a two-dimensional
hashing array.)

The algorithm (Figure 5) needs an accessibility list for
each node i, Acc(i), which would be obtained from gene
perturbation data and subsequent gene activity measure-
ments for a genetic network. In lines one and two (Fig-
ure 5), for each node i the adjacency list Adj(i) is initial-
ized as equal to the accessibility list. The algorithm will
delete elements from this Adj(i) until the adjacency list of
the most parsimonious network of Acc(G) is obtained.

The master loop in lines 3–6 cycles over all nodes of
G, and calls the routine PRUNE ACC for each node i . In
the last statement of this routine (line 19) the calling node
is declared as visited. I define a visited node as a node
whose adjacency list Adj(i) needs not be modified any
further. This is the purpose of the conditional statement
in the master loop (line 4), which skips over nodes that
have already been visited.

Aside from storing Acc and Adj, the algorithm thus
also needs to keep track of all visited nodes. In an actual
implementation, Acc, Adj, and any data structure that
keeps track of visited nodes would need to be either
global variables or passed into the routine PRUNE ACC,
preferably by reference. In contrast, the calling node i
needs to be a local variable because of the recursivity of
PRUNE ACC.

I will now explain the function PRUNE ACC itself,
which is the algorithm’s core. It contains two loops. The
first loop (lines 8–13) cycles over all nodes j accessible
from the calling node i . If there exists a node accessible
from j , then PRUNE ACC is called from j . If no node
is accessible from j , that is, if Acc(j) = ∅, then j is
declared as visited. Because its accessibility list is empty,
its adjacency list must be empty as well (Adj(i) ⊆ Acc(i)),
and needs no further modification. Thus, through the first
loop PRUNE ACC calls itself recursively until a node is
reached whose accessibility list is empty. There always
exists such a node, otherwise the graph would not be
acyclic. This also means that infinite recursion is not
possible for an acyclic graph. Thus, the algorithm always
terminates. More precisely, the longest possible chain of
nested calls of PRUNE ACC is (n − 1) if G has n nodes.
For any node i calling PRUNE ACC, the number of nested
calls is at most equal to the length of the longest path
starting at i .

The second loop of PRUNE ACC (lines 14–18) only
starts once the algorithm has explored all nodes accessible
from the calling node i , that is, as the function calls made
during the first loop return. In the second loop the principle
of Corollary 2 is applied. Specifically, the second loop
cycles over all nodes j accessible from i in line 14. In
a slight deviation from what Corollary 2 suggests, line
15 cycles not over all nodes k ∈ Acc(j), but only over
k ∈ Adj(j). All nodes k ∈ Adj(j) are deleted from Adj(i)
in lines 16–18. Cycling only over k ∈ Adj(j) saves time,
but does not compromise the requirement that all nodes
k /∈ Adj(i) be removed, because line 14 covers all nodes
j accessible from i . Because of the equality proven in
Theorem 2, once this has been done, the adjacency list
need not be modified further. This is why upon leaving
this routine, the calling node is declared as visited. Notice
also that if a node j with Acc(j) = ∅ is encountered, the
loop in line 15 is not executed.

1189

A.Wagner

Computational and storage complexity
Both measures of algorithmic complexity are influenced
by the average number of entries in a node’s accessibility
list. Let k < n − 1 be that number. For all practical
purposes, there will be many fewer entries than that, not
only because accessibility lists with nearly n entries are
not accessibility lists of acyclic digraphs, but also because
most real-world graphs are sparse (Fell and Wagner, 2000;
Jeong et al., 2000; Wagner, 2001b).

During execution, each node accessible from a node j
induces one recursive call of PRUNE ACC, after which
the node accessed from j is declared as visited. Thus, each
entry of the accessibility list of a node is explored no more
than once. However, line 15 of the algorithm (Figure 3)
loops over all nodes adjacent to j . If a = | Adj(j)|, on
average, then overall computational complexity becomes
O(nka).

For practical matters, large scale experimental gene
perturbations in the yeast Saccharomyces cerevisiae
(n ≈ 6300) suggests that k < 50 (Hughes et al., 2000),
a � 1 (Wagner, 2001a), and thus that nka � n2 in
that case. In practice, a network of 6300 nodes (the
approximate number of genes in the genome of the yeast
S.cerevisiae) and the same number of edges was recon-
structed in approximately 15s on a desktop workstation
(450 MHz Pentium II; RedHat Linux 6.2), using the perl
implementation of the algorithm shown in the Appendix.
Even for the much larger human genome (n ≈ 30 000),
network reconstruction would thus be feasible on a
desktop computer.

The algorithm stores two copies of the accessibility list,
as well as a list of the nodes that have been visited. The
recursion stack requires additional storage. However, the
recursion depth can be no greater than n − 1 because
otherwise the graph would not be acyclic. Thus, overall
storage requirements are O(nk).

Cycles in genetic networks
One might think that acyclic graphs must be rather simple
objects. This is not so. Consider the two networks of
20 genes shown in Figures 6a and b. They differ by
only one edge: the network in Figure 6b has a directed
edge from gene 13 to gene 4, an edge that is missing
in Figure 6a. The network in Figure 6b is cyclic (e.g. it
contains the cycle 4 → 6 → 9 → 19 → 13 → 4).
The network in Figure 6a is acyclic. Thus, the distinction
between cyclic and acyclic networks need not be obvious.

There are two different kinds of cycles. First, an edge
leaving a node might be directed onto the node itself.
In graph theory such edges are called loops. In genetic
networks they correspond to genes autoregulating their
activity. Only certain perturbation techniques can detect
such loops. For example, perturbing gene activity by
gene deletion can not detect autoregulation, in contrast

0: 1 2 3 4
1: 0 2 3 4
2: 0 1 3 4
3: 0 1 2 4
4: 0 1 2 3

(d)

(a) (b)

(c)

0: 3
1: 4
2: 1
3: 2
4: 0

0: 1
1: 2
2: 3
3: 4
4: 0

Fig. 6. Single gene perturbations can not resolve the order of genes
in a cycle. (a) and (b) show a cyclic and an acyclic network,
respectively, that differ by only one edge, the edge between nodes
13 and 4. (c) shows two cycles with their respective adjacency list.
The order of genes in these cycles is different, yet they generate the
same accessibility list, which is shown in (d).

to overexpression of an extrachromosomal gene copy,
while the activity of a chromosomal copy is measured.
Autoregulation is immediately detected from a suitable
perturbation experiment as an entry of the gene itself in
its accessibility list. Because autoregulation does not pose
any algorithmic problems, I will here discuss only loopfree
graphs, corresponding to networks without autoregulated
genes.

The second type of cycles involves more than one gene.
What is the problem with these cycles? Consider the two
simple cyclic networks shown in Figure 6c. Notice that
the order of direct regulatory interactions in these two
networks is different, as reflected in the adjacency lists
written underneath each network. However, both net-
works, when perturbed, would generate the accessibility
list shown in Figure 6c. Characteristically, perturbation of
any gene influences the activity of all other genes in the
network. Thus, from single gene perturbations one can not
uniquely reconstruct the structure of a cycle such as that
in Figure 6c. In fact, all possible orders of the five genes
in the network are consistent with the list of Figure 6d.

Notice that this is not an algorithmic but an experimental
limitation. Elsewhere I will introduce an algorithm able
to reconstruct the structure of any cyclic network with
suitable experimental data. In this contribution, however, I
will stay within the limits of single-gene perturbations. As
is illustrated in Figure 6, the order of genes that are part of
a cycle can not be resolved. They are thus collapsed into

1190

Reconstructing large genetic networks from n gene

a single group of nodes with indistinguishable order of
regulatory interactions. The general idea of what follows
is to identify all cycles in a network and for each cycle,
collapse all nodes that are part of it. The remaining
network is acyclic and can be reconstructed with the
algorithm for acyclic graphs.

I state some definitions and, without proof, some
theorems from the theory of directed graphs. All of them
can be found in Harary (1969). A strongly connected
component or strong component of a directed graph G
is a maximal subset of nodes of G in which every two
nodes are mutually accessible. That means, for any two
nodes i and j , there is a path from i to j , and vice
versa. This implies that there is a cycle through any two
nodes of a strong component. Conversely, any two nodes
through which there is a cycle are part of the same strong
component. Strictly speaking, I will thus not only be
concerned with all cycles but with all strong components
of a digraph. A generalization of the principle above is that
single gene perturbations can not resolve the adjacency list
for any node in a strong component.

Each node of a directed graph lies in exactly one strong
component. This holds also for acyclic graphs, if one
defines that a graph (or the subgraph of G) with only
one node is a strong component of G. The condensation
G∗ of a directed graph G has the strong components
of the graph G as its nodes. Denote the components
of G (nodes of G∗) as S1, . . . , Sk . There is an edge
from any Si to any S j in G∗ if there is an edge in
G from at least one node in the component Si to at
least one node in the component S j . The relationship of
a graph and its condensation is illustrated in Figure 7.
Panel A shows a cyclic graph of 16 nodes. Upon close
examination one finds one component with 5 genes (1, 3,
4, 5, 15; diamond-shaped nodes), another component with
three genes (3, 6, 9; square nodes), and eight remaining
single-gene components (round nodes). Panel B shows the
condensation of the graph in A, where the two non-trivial
components are now collapsed into single nodes. The
condensation is an acyclic graph and can be reconstructed
from the accessibility list.

To reconstruct a genetic network from single-gene
perturbation experiments, one thus needs to identify all
the strong components from experimental results, that is,
from the accessibility list. The following theorem, due to
Harary, is very useful for doing that.

THEOREM 3 (HARARY, 1969). Let P be the accessi-
bility matrix of a digraph G with n nodes, x1, . . . , xn. The
strong component containing xi is determined by the unit
entries of the i th row in the matrix P × PT. (The super-
scripted ‘T’ denotes the matrix transpose of P, and the
product ‘×’ is the elementwise or Hadamard product of
the two matrices.)

12

1,3,4,5,15

9

6
0

5

1
(a)

(b)

15

10

2

0
8

7

14 13

11
10

6,9,12

8

4
2

7

14 13

11

3

Fig. 7. Graphs and condensations. The graph shown in (a) contains
two nontrivial strong components, comprising nodes 1, 3, 4, 5, 15
(diamonds), and comprising nodes 6, 9 and 12 (squares). In the
condensation of this graph, shown in (b), the strong components are
collapsed onto a single node.

Because I will be working with accessibility lists, not
matrices, I will use the following corollary.

COROLLARY 3. Let i and j (i �= j) be two nodes of
a digraph G. i and j are in the same component iff
i ∈ Acc(j) and j ∈ Acc(i).

An algorithm applying this corollary to identify the strong
components of a graph from the accessibility list is shown
in Figure 8 as pseudocode. Not only does it identify
the strong components, it also generates a new graph
G∗, the condensation of G. To this end, it uses a data
structure component[i] which is an array indexed by
the nodes i of G and pointing to a node of G∗ which
corresponds to the component in which i resides. (In
an actual implementation of the algorithm, a hashing
array might be a convenient representation of such a data
structure).

Before the algorithm starts, component[i] is undefined
for all nodes i of G. The algorithm itself has two parts. In
the first part (lines 1–9 in Figure 8), it cycles through all
nodes of G. If a node i is found that has not been mapped
onto a component (line 2), that is, the component which i
belongs to has not yet been defined, then a new node of G∗
is created (line 3), and i is mapped onto that node (line 4).
Then, a loop (line 5) cycles over all nodes in Acc(i) and
applies the above corollary to identify nodes in the same
component as i . These nodes are then also mapped onto

1191

A.Wagner

1 for all nodes i of G
2 if component[i] has not been defined
3 create new node x of G*
4 component[i]=x
5 for all nodes j∈Acc(i)

f i∈Acc(j)
7 component[j]=x

nd if
9 end if

10 for all nodes i of G*
11 AccG*(i)=∅
12 for all nodes i of G
13 for all nodes j ∈ Acc(i)
14 if component[i] ≠ component[j]
15 if component[j]∉AccG*(component[i])
16 add component[j] to AccG*(component[i])
17 end if
18 end if

Fig. 8. An algorithm to calculate the condensation of a cyclic
network from perturbation data. The first part of the algorithm (lines
1–9) generates the nodes of the condensation, as well as a map from
the nodes of the graph into the condensation. The second part (lines
10–18) generates edges between the nodes of the condensation.

component[i] (lines 6–8). Notice that the conditional
statement in line 2 saves potentially much execution time
if the graph has few components. This is because it
prevents scanning the accessibility list of i (lines 5–8)
if component[i] has been defined previously during the
master loop (line 1). For instance, in the extreme case of
a graph with only one component, the statements in the
interior of the loop would only be executed for the first
node i of the graph.

The second part of the algorithm then generates the ac-
cessibility list of G∗ from that of G. It first initializes this
list to the empty list for each node i of G∗ (lines 10, 11).
It then cycles through all nodes i of G (line 12), and
through each node accessible from i , that is, through
all j ∈ Acc(i). If i and j are in different components,
that is, if they map to different nodes of G∗, the node
in G∗ represented by component[j] must also be in
the accessibility list of component[i]. If it has not been
added to that list (line 15), it is added in line 16.

Because the graph G∗ has at most the same number of
nodes and accessibilities as G, and because the algorithm
generates only one copy of G∗ and its accessibility list,
both storage and time complexity scale as O(k) where k
is the number of entries of the accessibility list (k < n2).

Missing genes and messy data
The algorithm presented here can be used to reconstruct
both large and small genetic circuits. It can be used to
reconstruct a genetic network for an entire organism from
perturbation data of all genes. At the time of this writing,
the availability of such data is not utopian. For instance,

more than 90% of all genes of the yeast S.cerevisiae have
been perturbed by targeted gene deletion (Winzeler et al.,
1999). Similarly large-scale genetic perturbation projects
are under way in the fruit fly Drosophila melanogaster,
the nematode Caenorhabditis elegans, as well as in plants
(Bouche and Bouchez, 2001; Fraser et al., 2000; Gonczy
et al., 2000; Spradling et al., 1999). In such experiments
some genes are difficult to perturb, because they are
essential to the organism. It is then also difficult to
assess how their activity affects the activity of other
genes. Sometimes a different kind of perturbation provides
a solution to this problem, such as overexpression or
conditional expression instead of gene deletion. Even
so, it is likely that some genes remain impossible to
perturb, or that one can not measure their perturbation
effect. In the reconstruction of smaller genetic networks
one encounters similar problems. For example, one might
be interested in the regulatory interactions of all genes
required for sporulation, or for chromosome segregation,
or for the repair of radiation damage. Through earlier
experiments, one might have an idea about what these
genes are. For instance, one might have carried out a
saturation mutagenesis experiment, or a large-scale gene
expression study monitoring all genes whose expression
changed during the process in question. However, some
genes involved in the process of interest may not have been
detected by this approach.

Thus, for one reason or another, when reconstructing
a genetic network one is faced with the problem of
missing information, genes for which no perturbation data
is available. How does the algorithm perform in the face
of such missing information? I will restrict myself here to
the case of acyclic networks. The reason is that eliminating
expression information from a cyclic network may change
the number of cycles observed, and thus the number of
nodes in the network’s condensation. How condensations
with different numbers of nodes are best compared to the
original condensation is nontrivial and beyond the scope
of this contribution.

To assess robustness of the algorithm from Figure 5 to
missing genes, I first use methods described in Mehlhorn
and Naher (1999) to generate a random graph of a pre-
specified number of nodes and edges, which is then
rendered acyclic by removal of suitably chosen edges. I
use random networks purely for reasons of computational
convenience. However, notice that recent analyses of the
structure of large-scale metabolic and genetic networks
suggest that they share important features with random
networks (Jeong et al., 2000; Wagner, 2000; Wagner and
Fell, 2001). For a network thus generated, I then eliminate
information on a pre-specified fraction of its nodes from
its accessibility list in the following way. For each of the
nodes X , I eliminate all entries of Acc(X) as well as
all entries of X found in the accessibility lists of other

1192

Reconstructing large genetic networks from n gene

1

0.2

fraction of remaining accessibilities

fr
ac

tio
n

of
 c

or
re

ct
 e

dg
es

fr
ac

tio
n

of
 c

or
re

ct
 e

dg
es

0.2 1.00.80.60.4

0.4

0.6

0.8

1

(a)

0.2

0.4

0.6

0.8

Fig. 9. Quality of network reconstruction with missing genes. Results are shown for three random graphs of 500 nodes and 250 edges
(diamonds), 500 edges (stars), or 750 edges (squares), from which edges are removed until each network is rendered acyclic (Mehlhorn
and Naher, 1999). After removal of these edges, the resulting three acyclic graphs have 250, 492, and 646 edges, respectively. The pruning
algorithm from Figure 5 is then applied to the accessibility list of each of these networks, as well as to the same accessibility list after
information on a pre-specified number of nodes is removed, as explained in the main text. This reduced accessibility list emulates a situation
where a number of genes have not been perturbed. (a) Shows on the abscissa a measure of the number of these genes, that is, the fraction
of genes on which information is missing. Plotted against it is the fraction of correctly reconstructed edges. More precisely, it is the fraction
of edges that the network reconstructed with missing perturbation information has in common with the network with complete information.
(b) Shows the same measure of reconstruction quality. The only difference to (a) is that the abscissa shows the fraction of remaining entries of
the accessibility list, and not the fraction of missing genes. The value of one on the abscissa refers to the number of entries of the accessibility
list for a network where all genes were perturbed. As the fraction of missing genes increases from 0 to 0.5 (as shown in (a)), the fraction of
remaining entries of the accessibility list decreases from one to approximately 0.25 for all three networks shown. Both panels show that the
quality of network reconstruction is not very sensitive to the number of edges in the network. The most direct predictor of this quality is the
number of remaining entries of the accessibility list. This is indicated by the slope of the regression line shown in (b) through the data points
pooled for all three networks. It is nearly identical to one (y = 1.01x − 0.002; Pearson r2 = 0.994).

genes. I then reconstruct a network from this modified
accessibility list using the algorithm of Figure 5, and
determine what fraction of edges between the remaining
nodes the algorithm has identified correctly. The results
are shown in Figure 9 for three random networks of 500
nodes and 250, 500 and 750 edges.

Quality of network reconstruction is not sensitive to the

number of edges, but decays linearly with the number
of genes on which information is missing (Figure 9a).
The best predictor of network reconstruction quality is
the fraction of entries of the accessibility list remaining
after removal of a certain fraction of nodes. Its relation to
the fraction of correctly reconstructed direct interactions
is practically one to one, as indicated by the slope of the

1193

A.Wagner

regression line in Figure 9b. This is not surprising, as one
can think of each accessibility as a bit of information used
in reconstructing the network. It would in fact be very
surprising if the reconstruction algorithm could do any
better than shown in Figure 9b, that is, if the slope of the
regression line could be much less than one. This would
mean that for any entry removed from an accessibility
list, one would lose less than one accurately reconstructed
direct interaction. Conversely, a slope much greater than
one would indicate poor performance, in the sense that
the algorithm does not use all information contained in an
accessibility list.

Another problem is flawed data. By flawed data I mean
spurious or missing entries of an accessibility list. Such
data is the result of errors in measuring gene activities.
The reason why flawed data is a problem is that not
just any list of the form shown in Figure 2c is the
accessibility list of a graph. Take the accessibility of the
simple network 1 → 2 → 3. Eliminate only one entry,
indicated in parentheses

1: 2 (3)

2: 3

3:

and the resulting list is not the accessibility list of a
graph anymore. You can convince yourself that even for
simple graphs, removal or addition of entries can lead
to arbitrarily pathological situations, such as structures
that look like cycles in the accessibility list but that do
not correspond to any possible cycle in a graph. Such
pathologies may pose challenges for any reconstruction
algorithm.

There are two ways to address this problem. One
way is to use only the most reliable data. For example,
in a microarray experiment assessing the effect of a
gene deletion on the mRNA expression state of other
genes, some genes change expression to a greater extent
than others. One could only use those genes whose
expression state has changed beyond a pre-specified
threshold, according to some suitable statistical criterion.
However, being excessively conservative would lead to
failure to identify some important interactions.

The second way regards heuristic modifications to the
algorithm. For example, because no cycle in a graph
of n nodes can be longer than n edges, one might
set a limit to the recursion depth of the algorithm
to prevent infinite recursion in case an accessibility
list contains spurious cycles. If that recursion depth is
exceeded for at least one node, the algorithm (Figure 8)
generating the condensation is applied repeatedly, until the
pruning algorithm (Figure 5) yields an adjacency list. Even
with such heuristic modifications, however, it is almost

certain that one can construct arbitrarily pathological
‘accessibility’ lists for which any algorithmic modification
would yield little or no useful information on the network.
If and how the algorithm should be modified depends
on the error structure of the empirical data. This error
structure, in turn, may depend on the notion of gene
activity and also on the kind of perturbation used. As
large-scale genetic perturbation data is accumulating, the
statistical nature of these errors will become clear. I will
thus postpone a more rigorous treatment of this problem.

To provide at least a crude assessment of algorithmic
robustness to defects in the accessibility list, I will
focus on one aspect of robustness, robustness to missing
entries of the accessibility list. Current techniques to
measure the effects of gene perturbations on gene activity,
such as transcriptional activity measurements provided by
microarrays, are very noisy. It has thus become common
practice to call only those genes affected by a perturbation
whose expression level changes by more than some pre-
specified factor. This factor is chosen in a statistically
conservative way in order to avoid false positive results.
Statistical conservatism leads to the usual problem that
some genes actually affected by the perturbation are not
identified as such. With this in mind I will address the
question of how the network reconstruction algorithm
behaves when a fraction of perturbation effects (entries of
the accessibility list) are not identified in an experiment.

I restrict myself to acyclic networks, for reasons
discussed above. I generate a random network of a
pre-specified number of nodes and edges along with
its accessibility list, and eliminate a fraction of the
entries of its accessibility list at random. I then apply the
algorithm from Figure 5 to the list thus generated, and
assess the fraction of edges that the algorithm identifies
correctly, that is, the fraction of edges that are in both
the actual network and the network reconstructed from
the changed accessibility list. Figure 10 shows the results
of this analysis. Very similar to what has been shown in
Figure 9, and for the same reasons, the quality of network
reconstruction shows a statistical one-to-one relationship
with the number of remaining entries of the accessibility
list.

DISCUSSION
The algorithm presented here proceeds in two steps. First,
it renders a genetic network acyclic by collapsing all
cycles onto single nodes, and it then reconstructs the
regulatory interactions in the remaining acyclic network.

Limitations
The inability to resolve cycles may seem like a limitation
of the algorithm but it really is a limitation of the data. No
single gene perturbation experiment can resolve cycles,
as illustrated in Figure 6. The question then arises how

1194

Reconstructing large genetic networks from n gene

0.95 0.96 0.97 0.98 0.99
fraction of remaining accessibilities

0.92

0.94

0.96

0.98

1

fr
ac

ti
on

of
co

rr
ec

te
dg

es

Fig. 10. Quality of network reconstruction with unidentified per-
turbation effects. Results are shown for three random graphs
of 500 nodes and 250 edges (diamonds), 500 edges (stars), or
750 edges (squares), from which edges are removed until each net-
work is rendered acyclic (Mehlhorn and Naher, 1999). After re-
moval of these edges, the resulting three acyclic graphs have 250,
492, and 646 edges left, respectively. For each of these networks, a
pre-specified fraction of entries is then eliminated at random from
the accessibility list. The fraction of remaining entries is shown on
the abscissa. The pruning algorithm from Figure 5 is applied to the
changed accessibility list, and the network it reconstructs is then
compared to the actual graph. More precisely, the fraction of cor-
rectly identified edges in the reconstructed network with missing
accessibilities is determined. This fraction is shown on the ordinate
axis. There is a statistical one-to-one relation between the number
of remaining entries and the fraction of correctly reconstructed in-
teractions (y = 1.006x − 0.006; Pearson r2 = 0.75).

important this limitation is in network reconstruction.
While it is safe to assume that any genetic circuit
contains feedback controls, and thus cycles, it is much
less clear how frequent cyclic interactions are when
measuring only one aspect of gene activity. In other words,
how many transcription factor genes indirectly influence
their own transcriptional state, and how many protein
kinases indirectly influence their own phosphorylation
state? There are examples of such control loops, but they
may be less frequent than the more general feedback
controls involving two or more different kinds of gene
activity. (I am emphasizing indirectness in feedback,
because direct self-regulation by a gene product can be
immediately inferred from a suitably designed experiment
without requiring any sophisticated algorithm.)

A second limitation is that the notion of gene activity
limits the information one can obtain on network structure
(Figure 1). This is again an experimental limitation
that can only be overcome if multiple aspects of gene
activity, such as transcription, phosphorylation state, or
methylation state can be measured at the scale required

here. Currently, only mRNA expression can be measured
at that scale. However, because most eukaryotic genes
are regulated transcriptionally, the reconstruction of tran-
scriptional regulation networks will provide a backbone
into which other measurements of gene activity can be
easily integrated, once they are available.

A third shortcoming is that the algorithm requires more
data than conventional methods using gene expression
correlations. This is the price to pay for resolving causal
interactions. It illustrates an informational trade-off
involved in reconstructing genetic networks. Fortunately,
genome-scale experiments are in the process of providing
the required genetic perturbations for several model
organisms (Bouche and Bouchez, 2001; Fraser et al.,
2000; Gonczy et al., 2000; Hughes et al., 2000; Spradling
et al., 1999). The most effective strategy to reconstruct
genetic networks may in fact be a combination of the
correlative and perturbative approaches. Available corre-
lation methods can be used to identify groups of genes
likely to participate in a particular process of interest.
These genes can then be systematically perturbed, and the
resulting data can then be used to reconstruct regulatory
interactions. Conventional biochemical methods can then
be applied to study subnets of interest in greater detail.

Fourth, there are many networks consistent with any
given list of perturbation effects. The algorithm only re-
constructs one of them, the simplest or most parsimonious
network, the network that contains the fewest regulatory
interactions. There can be no guarantee that this most
parsimonious network reflects the actual structure of a
genetic network, which might have vastly more inter-
actions. However, it is not likely that a genetic network
would maintain vastly more regulatory interactions than
necessary to exert its function. The reason is that such
unnecessary interactions are likely to disappear rapidly
through degenerative mutations. In a related vein, gene
perturbation data may resolve the influence of redundant
genes on other genes to a limited extent. Gene redundancy
has often been postulated when knockout mutations of
a gene show weak or no detectable phenotypic effect.
However, on a genome-wide scale such redundancy
may be less abundant than commonly assumed (Wagner,
2000). For example, a recent large scale analysis of the
effect of several hundred knockout mutations on growth
phenotypes and mRNA expression patterns in the yeast
S.cerevisiae reported that the vast majority of muta-
tions with weak phenotypic effects showed detectable
alterations in gene expression patterns (Hughes et al.,
2000).

The next steps
Computational complexity of the algorithm is low, and it
is sufficiently fast that a genetic network with as many
genes as the human genome could be reconstructed on a

1195

A.Wagner

desktop workstation. While efforts to improve algorithmic
efficiency may thus lead to marginal returns, significant
improvement in other areas is possible.

Because the data currently available to apply the
algorithm is notoriously noisy (DeRisi et al., 1997), I
have restricted myself to assessing regulatory interactions
qualitatively. That is, I do not ask to what extent a
gene infuences another gene’s activity, or whether this
influence is activating or repressing. However, once
the network is reconstructed, this information is easily
read from the experimental data and superimposed onto
the network’s edges. Doing that poses no algorithmic
problem. Second, although I crudely assessed robustness
of reconstruction quality to missing genes and flawed
data, a more rigorous evaluation is clearly possible. It is,
however, best postponed until we know more about the
statistical structure of errors in large-scale gene activity
measurements. Third, integrating different kinds of
genomic data may provide additional useful information.
For instance, superimposing functional annotation for
network genes onto the structure of a reconstructed
network may help distinguish between direct and indirect
interactions beyond the resolution of the perturbation
experiment itself.

Conclusions
Genetics is concerned with identifying gene interactions
and their biological significance. Functional genomics
takes this concern to the next level, that of identifying gene
interactions among thousands of genes in a genome. Thus,
a tool to identify such interactions, and to distinguish
direct from indirect interactions, applies to virtually any
area in these two fields.

The algorithm may help answer a multitude of questions
about the genetic architecture of organisms. What is the
structure of genetic networks? How do patterns of gene
interactions change in different developmental stages, in
different physiological states, in different environmental
conditions, or in different cell types? Are there few or
many genes that do not affect the activity of other genes.
What about so-called master regulators, genes that drive
large parts of a physiological or developmental program?
Do they have a characteristic profile of regulatory interac-
tions? These are all coarse-scale questions about genetic
networks. In addition, by distinguishing a gene’s direct
and indirect regulation targets, the algorithm can help sift
through a large amount of genomic information to identify
candidate genes for targeted biochemical investigation.

Insofar as our understanding of intact organisms helps
us understand the nature of disease, a tool to identify di-
rect gene interactions has broad applications in basic and
applied biomedical research. To give but two examples, it
may be useful to identify targets for conventional thera-
peutic agents or for gene therapy. Second, there may be

variation in genetic network structure within human pop-
ulations. If so, the tool can be used to identify the nature
of this variation, and thus provide information useful to
pharmacogeneticists. There are also countless applications
to organisms other than humans. One example is agricul-
tural biotechnology, where the design of effective pesti-
cides may depend on our understanding of gene interac-
tions involved in host defense, pest survival, reproduction,
or virulence. In sum, a tool to reconstruct genetic network
structure from gene perturbation data is useful wherever
regulatory gene interactions are important for our under-
standing of how organisms—be they humans, animals or
plants—function, or how disease comes about.

ACKNOWLEDGEMENTS
I would like to thank the Santa Fe Institute for its
continued support of my research program, and two
reviewers for their constructive comments.

APPENDIX
Below is a perl implementation of the algorithm to recon-
struct acyclic genetic networks by pruning accessibility
lists. Its structure follows exactly that of the pseudocode
shown in Figure 5 and explained in the main text, with
one difference. Only one data structure is used to repre-
sent both accessibility list and adjacency list. This struc-
ture is a two-dimensional hashing array acc. The accessi-
bility list needs to be read into this array (input and out-
put are not shown here) such that after input but before
the algorithm is run $acc{$i}{$j} = 1 if gene $j is ac-
cessible from gene $i. This implies that $acc{$i}{$j}
is also defined. If gene $j is not accessible from gene
$i, then $acc{$i}{$j} must be undefined. The algorithm
tests whether $j is accessible from $i by testing whether
the corresponding entry of acc is defined, but it prunes
acc by setting an entry to zero. After execution, all en-
tries of acc that are still equal to one are entries of adj
and can be read out that way. Visited nodes are kept track
of by a one-dimensional hashing array %visited which
needs to be initialized as ‘%visited=();’ before exe-
cution. I do not claim that this is the most efficient or most
elegant implementation.

master loop

foreach $i(sort keys %acc) {

if($visited{$i}!=1) {

PRUNE_ACC($i);

}

}

sub PRUNE_ACC {

declare calling variable as local

my $i=@_[0];

loop one of PRUNE_ACC

foreach $j (keys %{$acc{$i}}) {

1196

Reconstructing large genetic networks from n gene

if($visited{$j}!=1) {

if (scalar(keys %{$acc{$j}})==0) {

$visited{$j}=1;

}

else {

PRUNE_ACC($j);

}

}

}

#loop two of PRUNE_ACC

foreach $j (keys %{$acc{$i}}) {

foreach $k (keys %{$acc{$j}}) {

if($acc{$j} {$k}==1) {

if ($acc{$i} {$k}==1) {

$acc{$i} {$k}=0;

}

}

}

}

$visited{$i}=1;

}

REFERENCES
Bouche,N. and Bouchez,D. (2001) Arabidopsis gene knockout:

phenotypes wanted. Curr. Opin. Plant Biol., 4, 111–117.
DeRisi,J.L., Iyer,V.R. and Brown,P.O. (1997) Exploring the

metabolic and genetic control of gene expression on a genomic
scale. Science, 278, 680–686.

Eisen,M.B., Spellman,P.T., Brown,P.O. and Botstein,D. (1998)
Cluster analysis and display of genome-wide expression patterns.
Proc. Natl Acad. Sci. USA, 95, 14 863–14 868.

Fell,D. and Wagner,A. (2000) The small world of metabolism.
Nature Biotechnol., 18, 1121–1122.

Fraser,A.G., Kamath,R.S., Zipperlen,P., MartinezCampos,M.,
Sohrmann,M. et al. (2000) Functional genomic analysis of
C.elegans chromosome I by systematic RNA interference.

Nature, 408, 325–330.
Gonczy,P., Echeverri,C., Oegema,K., Coulson,A., Jones,S.J.M. et

al. (2000) Functional genomic analysis of cell division
in C.elegans using RNAi of genes on chromosome III. Nature,
408, 331–336.

Harary,F. (1969) Graph Theory. Addison-Wesley, Reading, MA.
Hughes,T.R., Marton,M.J., Jones,A.R., Roberts,C.J.,

Stoughton,R. et al. (2000) Functional discovery via a com-
pendium of expression profiles. Cell, 102, 109–126.

Jeong,H., Tombor,B., Albert,R., Oltvai,Z.N. and Barabasi,A.L.
(2000) The large-scale organization of metabolic networks.
Nature, 407, 651–654.

Mehlhorn,K. and Naher,S. (1999) LEDA: a Platform for Combina-
torial and Geometric Computing. Cambridge University Press,
Cambridge.

Spradling,A.C., Stern,D., Beaton,A., Rhem,E.J., Laverty,T. et al.
(1999) The Berkeley Drosophila genome project gene disrup-
tion project: single P-element insertions mutating 25% of vi-
tal Drosophila genes. Genetics, 153, 135–177.

Tavazoie,S., Hughes,J.D., Campbell,M.J., Cho,R.J. and
Church,G.M. (1999) Systematic determination of genetic
network architecture. Nature Genet., 22, 281–285.

Wagner,A. (2000) Mutational robustness in genetic networks of
yeast. Nature Genet., 24, 355–361.

Wagner,A. (2001a) Genetic networks are sparse: estimates based on
a large-scale genetic perturbation experiment, submitted.

Wagner,A. (2001b) The yeast protein interaction network evolves
rapidly and contains few redundant duplicate genes. Mol. Bio.
Evol., 18, 1283–1292.

Wagner,A. and Fell,D. (2001) The small world inside large
metabolic networks. Proceedings of the Royal Society of London
Series B, 268, 1803–1810.

Watts,D.J. (1997) The Structure and Dynamics of Small World
Networks, PhD Dissertation, Cornell University.

Winzeler,E.A., Shoemaker,D.D., Astromoff,A., Liang,H., An-
derson,K. et al. (1999) Functional characterization of the
S.cerevisiae genome by gene deletion and parallel analysis. Sci-
ence, 285, 901–906.

1197

