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Abstract

Alternative pathways through a gene regulation network connect a regulatory molecule to its (indirect) regulatory target via
different intermediate regulators. We here show for two large transcriptional regulation networks, and for 15 different signal
transduction networks, that multiple alternative pathways between regulator and target pairs are the rule rather than the exception.
We find that in the yeast transcriptional regulation network intermediate regulators that are part of many alternative pathways
between a regulator and target pair evolve at faster rates. This variation is not solely explicable by higher expression levels of such
regulators, nor is it solely explicable by their variable usage in different physiological or environmental conditions, as indicated by
their variable expression. This suggests that such pathways can continue to function despite amino acid changes that may impair
one intermediate regulator. Our results underscore the importance of systems biology approaches to understand functional and

evolutionary constraints on genes and proteins.
© 2006 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

Genetic changes in the smallest parts of molecular
networks — genes and proteins — can affect the structure
of these networks. Conversely, this structure may itself
constrain properties of genes and proteins, and the kinds
of mutations they can tolerate. To ask how biological
networks constrain their parts has become possible with
the availability of experimental data on genome-scale
metabolic, transcriptional regulation, and protein inter-
action networks (Forster et al., 2003; Ito et al., 2001; Lee
et al., 2002; Uetz et al., 2000; von Mering et al., 2002).
If network structure constrains network parts, then an
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understanding of the evolution of genes and proteins will
require an understanding of molecular networks. We here
focus on one aspect of network organization, alternative
pathways through a genetic network, and how such path-
ways affect genes in a transcriptional regulation network.
The importance of alternative pathways is hinted at by
systematic studies on metabolic networks, where alter-
native pathways of metabolite flow can make a network
robust against loss-of-function mutations in enzymes
(Edwards and Palsson, 2000; Segre et al., 2002). How-
ever, no comparable information exists for any regula-
tory network.

The evidence for alternative or ‘redundant’ pathways
through regulatory gene networks is mostly anecdotal
or circumstantial (Bi et al., 2000; Ho and Satoh, 2003;
Kolodner et al., 2002; Lefers et al., 2001; LeRoith,
2000; Morris et al., 1995; Passalaris et al., 1999; Vance
and Wilson, 2002; Wang et al,, 2002a). This evi-
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dence typically comes from molecular biological studies
where different regulatory pathways, sometimes involv-
ing overlapping sets of regulators, can influence the same
genes or biological processes. For example, the RAD17
gene product of the yeast Saccharomyces cerevisiae
is involved in detecting DNA damage during different
stages of the yeast cell cycle. This protein interacts with
different sets of other regulatory proteins, which are part
of several redundant regulatory pathways that ensure
genome stability (Kolodner et al., 2002). Another such
example comes from the degradation of cholesterol in
mice. Bile acids, the degradation products of cholesterol,
indirectly repress the genes necessary for cholesterol
degradation. They do so through several incompletely
characterized alternative pathways that involve different
transcription factors (Wang et al., 2002a).

Available data on genome-scale biological networks
elucidated by currently available functional genomic
techniques is by necessity incomplete. It may incorpo-
rate only one mode of regulation, such as transcriptional
regulation; it may not contain information about all rele-
vant regulatory molecules; and it may contain substantial
experimental noise. Even with these caveats, however,
such data allows a more systematic exploration of impor-
tant systems — biological questions than small-scale data
on individual pathways. Is the existence of alternative
pathways between a regulator and its (indirect) regula-
tory target the exception or the rule? What are the con-
sequences of such alternative pathways for the function
and evolution of intermediate regulators, the regulatory
molecules that stand between the regulator and its target?
These are some of the questions we will address here.

2. Results and discussion
2.1. Alternative regulatory pathways are not rare

We find that in regulatory networks of even moder-
ate complexity, many pairs of regulatory molecules and
their targets are connected by more than one regulatory
pathway. Fig. 1a illustrates this notion with data from the
transcriptional regulation network of the yeast S. cere-
visiae (Lee et al., 2002). In this network, a directed edge
(link) connects two genes A and B if A encodes a tran-
scriptional regulator that can regulate the expression of
B, as indicated by its binding to the regulatory region
of B. Regulatory interactions can also be more indirect.
That is, a transcriptional regulator can affect the expres-
sion of a downstream, regulatory target gene through one
or more intermediate regulators. Source and target gene
may be connected through one or more alternative path-
ways involving these intermediate regulators. In the yeast

transcriptional regulatory network, the number of such
pathways between any origin—target pair varies widely
from 1 to over 20 (Fig. 1). There are fewer gene pairs
which are connected by many pathways than gene pairs
connected by few alternative pathways. The mean num-
ber of pathways between any source and target pair is
2.01(S.D. 2.13). A similar abundance of alternative path-
ways between genes exists in other regulatory networks,
including the transcriptional regulation network of the
bacterium Escherichia coli and 15 manually curated sig-
nal transduction networks (see supplementary methods)
with highly diverse functions in processes ranging from
cell proliferation and cell death, to the homeostasis of
metabolic functions, embryonic development and the
vertebrate immune system (Fig. 1b). The mean number
of alternative pathways between any two network nodes
ranges from 1.12 to 79.6 in these networks. The major-
ity (13/17) of examined networks have a mean number
of alternative paths greater than two, and in all of the
remaining networks, the coefficient of variation in the
number of alternative paths is greater than 1.3 (Fig. 1b).

2.2. Alternative pathways and evolutionary rate

We next examine one candidate possibility for the
biological significance of having alternative regulatory
pathways between pairs of genes in a cellular network: by
providing multiple alternative regulatory routes through
a network, such pathways may endow a network with
robustness to some mutations (Wagner, 2000). A prece-
dent for this possibility comes from metabolic networks,
where some loss-of-function mutations in individual
enzymes may have small phenotypic effects because
alternative routes around a blocked pathway may exist
(Edwards and Palsson, 2000; Papp et al., 2004; Stelling et
al.,2002). Similar principles may hold for regulatory net-
works. Consider a transcriptional regulator whose action
on a target gene is mediated by one or more intermedi-
ate regulators. If this transcriptional regulator is linked
to the target gene through only one regulatory pathway
(Fig. 1a, left inset), then mutations that impair the inter-
mediate regulators will abolish proper regulation of the
target gene. If this target gene’s proper expression is
important, then such mutations are likely to reduce fit-
ness. Conversely, if the regulator is linked to the target
gene through many alternative pathways, then mutations
in intermediate regulators that impair one of these path-
ways may be less harmful, because proper regulation of
the target gene may still be achieved through alternate
pathways. The following evidence shows that this link
between alternative pathways and mutational robustness
indeed exists.



A. Wagner, J. Wright / BioSystems 88 (2007) 163—172 165

O
\
®
770000
440000
y
gt ¢ \
44000 Regulator
O F =
11000 F ——
2 7700 e |\ A%
§ 4400 .
2 7 + Intermediate \{
@
T 1100 ® Regulators
770 I m—
440 / r'd
1;? \ '
A Target
11
8
4
1
1 3 5 7 9 1 13 15 1T 19 >20
2 4 6 8 10 12 14 16 18 20
(a) Total Number of Paths
a D ]
4 16T
55
a3 14 [}
§§ 12+
Ea qof
=8 sl [ ]
(S
c g 6 L r' L [
§5 .|® <
©
2t []
S 1f E E E { E
5 » » 2 5 3 3 2 2 2 3533 8 5 5
o ¢ 3 2 8§ =2 2 =2 @ 8 = 2z =2 =z =z B =
@ 2 E E S5 £ £ £ 85 4 &£ £ £ £ 28
s 55 §E3 8§83 88 EEE 33
i = — —
§ =25 P8 S EBSELEFEEELR2E S 3
o 50 = = 57 § 2 E £ &£ €« T 5 £ €
= O T 5 o £ o E T ®
c c o @ c o £ = = = c c 2o o
© 2 5 © 9 & @ O D © 8 B
= w5 S & 5§ 2 F ¥ X B v ow & £
& £z £ g2 825 ceaqgc 3 3
M Z 6 = =2 2 g L P & &
2 - © O £ 5 =
= = o & L = =
(=] 8 F]
]
(b) w o>

Fig. 1. Many regulator—target pairs in a regulatory network are connected by multiple pathways. (a) Data from the yeast transcriptional regulation
network (Lee et al., 2002). The vertical axis shows the number of regulator—target gene pairs connected via the number of alternative pathways
indicated on the horizontal axis. The three insets illustrate three hypothetical scenarios of increasing numbers of alternative pathways between a
regulator—target gene pair. We refer to the proteins mediating the interaction between a regulator and its target as intermediate regulators. (b) Mean
and coefficient of variation of the number of alternative pathways between any two network nodes for two transcriptional regulation networks (Lee
et al., 2002; Shen-Orr et al., 2002) and 15 signal transduction networks, as described in greater detail in the supplementary online methods.

The best available indicator of mutational robustness synonymous nucleotide changes, changes that lead to
takes into account the mutations that occurred in the amino acid changes in a gene’s product, to the fraction
evolutionary past of a gene, and that have been tol- S of silent nucleotide changes, changes that did not lead
erated and thus preserved in the evolutionary record. to amino acid changes. For the vast majority of genes,

This indicator is the ratio N/S of the fraction N of non- N/S < 1. The smaller this ratio is, the fewer amino acid
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changing substitutions a gene can tolerate, and the more
evolutionary constrained and less mutationally robust its
protein product is (Li, 1997). If mutational robustness is
linked to the number of alternate paths between any two-
network genes, then intermediate regulators that connect
two genes should tolerate more amino acid substitutions,
if there are many alternate paths between the two genes.
Fig. 2a shows the average evolutionary constraint N/S
among all intermediate regulators connecting two gene
pairs as a function of the number of paths between the
gene pairs. It clearly shows that intermediate regulators
evolve faster, and are thus more robust to mutations,
if more alternative pathways exist (Kendall’s t=0.58,
P=4x107). For this analysis, we used data on the
ratio N/S of S. cerevisiae genes to their unambiguous
orthologs in three other, closely related Saccharomyces
species (Kellis et al., 2003). Fig. 2b shows a comple-
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mentary analysis that separates gene pairs according to
the shortest path connecting them. It shows the average
evolutionary constraint N/S for all intermediate regu-
lators connecting two gene pairs with a given shortest
path length, as a function of the total number of paths
between the two genes. (The length of a regulatory path
between a regulator and target gene pair is one if the reg-
ulator regulates the target directly, two if the interaction
is indirect and involves one intermediate regulator, three
if it involves two intermediate regulators, etc.) Again, we
observe a highly significant positive association between
evolutionary constraint N/S of intermediate regulators
and the number of alternate pathways for the data shown
in the figure (Kendall’s 7=0.29, P=5 x 107%). This pos-
itive association is also statistically significant if shortest
distance-categories are considered separately, as long as
more than 10 data points are available, that is, for shortest

Number of alternative paths

Fig. 2. Alternative pathways and evolutionary rate. The total number of paths between regulator and target gene pairs plotted against (a) the ratio
N/S of amino acid to silent divergence as an indicator of mutational robustness, (b) the same ratio N/S, but now regulator—target pairs separated by
shortest paths of different lengths are shown separately. That is, the numbered symbols to the right of the panel indicate the shortest path length
that separates a regulator—target pair. (c) like (a) but for the number of amino acid substitutions N instead of N/S; (d) like (b) but for the number of
amino acid substitutions N instead of N/S. Data on the rates N and S of amino acid and silent divergence represent the average divergence of yeast
genes and their unambiguous orthologues in the three closely related Saccharomyces species S. mikatae, S. paradoxus, and S. bayanus, as reported
in (Kellis et al., 2003).
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distances 1 (t=0.49, P=0.008), 2 (r=0.5, P=0.0006),
3(r=0.74,P=2 x 107%), 4 (t=0.43, P=0.008), and 5
(r=0.49, P=0.04). If we use non-synonymous (amino
acid divergence) N instead of the ratio N/S as an indica-
tor of evolutionary constraint, we obtain the same results
(Fig.2candd; t=0.33 (P=0.075), 7=0.54 (P =0.0002),
=075 (P=1x107°%), £=0.49 (P=0.002), T=0.49
(P=0.037) for shortest distances 1-5, respectively).

Aside from rates of molecular evolution, one can also
use the effects of gene deletions (synthetic null muta-
tions) on cell growth as an indicator of mutational robust-
ness. This indicator has multiple disadvantages, because
the effect of a gene deletion can usually only be assessed
in a small number of environments, and because factors
difficult to assess in the laboratory may also influence fit-
ness. We nonetheless carried out a complementary analy-
sis, using the results of a large-scale gene deletion exper-
iment that eliminated more than 4000 yeast genes and
tested the growth rate effect of each deletion in five dif-
ferent media (Steinmetz et al., 2002). We asked whether
the deletion of intermediate regulators had, on average, a
lower maximal effect on cell growth in the five media, if
there were many detours around the regulators. If we pool
all data on alternative pathways into categories corre-
sponding to the number of alternative pathways between
a regulator and target pair, then we find that the deletion
of intermediate regulators embedded into 10 or more
paths had significantly lower effects on cell growth than
the elimination of regulators with fewer than 10 paths
(n1 =16, ny=9, Mann—Whitney U=140, P<1073).
However, the result is no longer significant if we analyze
each regulator target—pair separately (n] =248, np, =209,
Mann-Whitney U=2.7 x 1074, =0.99, P>0.10). This
weak statistical support may not be surprising if one con-
siders the inherent problems of using gene deletion data
to measure fitness effects.

We next address three potentially confounding fac-
tors in this analysis. In some cellular networks, such
as protein interaction and metabolic networks, evidence
exists that highly connected proteins evolve at rates dif-
ferent from lowly connected proteins (Dunn and Fraser,
1958; Fraser et al., 2003; Hahn et al., 2004; Jordan et
al., 2003). This observation raises the possibility that
the evolutionary pattern we observe results from a sys-
tematic association between evolutionary rate, regulator
connectivity, and alternate pathway number. Specifi-
cally, we might see an association between path number
and evolutionary constraint, if two genes connected by
many alternate pathways preferentially involve interme-
diate regulators that have many regulatory targets, and
if such highly connected regulators show fewer evolu-
tionary constraints (higher N/S) than other regulators.

However, highly connected transcriptional regulators —
regulating the expression of many target genes — do not
evolve more rapidly than less highly connected regula-
tors (Kendall’s = —0.03, P=0.77; and (Evangelisti and
Wagner, 2004)).

A second possible confounding factor is the relation
between gene expression and evolutionary rate: genes
with a high mRNA expression level evolve more slowly
than other genes (Pal et al., 2001). If gene pairs con-
nected by a small number of paths preferentially involve
intermediate regulators that are highly expressed, then
the association between alternate path number and evolu-
tionary rate might be due to these expression differences.
However, we find that the association between the total
number of alternate paths between any two nodes and
the average mRNA expression level (Wang et al., 2002b)
of intermediate regulators in these pathways is not sta-
tistically significant (Fig. 3a). In addition, the associ-
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Fig. 3. No significant association between the total number of paths
between a regulator and target gene pair and average (a) mRNA (Wang
et al., 2002b) or (b) protein (Ghaemmaghami et al., 2003) expression
levels of intermediate regulators. Expression levels are expressed in
molecules per cell.
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ation between protein abundance (Ghaemmaghami et
al.,, 2003) and the number of alternate paths is also
not statistically significant (Fig. 3b). Thus, the associ-
ation between alternate paths and evolutionary rate is
not merely the result of differential expression levels of
intermediate regulators.

A third possible confounding factor is that alterna-
tive pathways may mediate differential regulation of the
terminal gene in different environments and physiolog-
ical conditions. If so, the results of Fig. 2 — a positive
association between number of alternative pathways and
evolutionary rate — may be merely caused by varia-
tion in regulator expression. Specifically, intermediate
regulators in pathways with many alternatives may pref-
erentially be expressed or function only under certain
environments or physiological conditions. One could
view such regulators as more “specialized” than others.
The results of Fig. 2 would follow if such specialized reg-
ulators can tolerate a higher number of mutations than
others. However, it is straightforward to assess whether
this is the case: we can ask whether the transcriptional
regulators in our analysis do evolve faster if they show
higher expression variation, as indicated by their coef-
ficient of variation in expression. This is not the case if
N/S is used as an indicator of evolutionary rate, whether
we use stress-related variation in expression (Gasch et
al., 2000) or normal physiological variation in expres-
sion (Chu et al., 1998; Eisen et al., 1998; Spellman et
al., 1998) (stress-related: t=—0.11, P=0.56; normal
physiological: 7=0.31, P=0.09). It also does not hold
if amino acid divergence N instead of N/S is used to
gauge the rate of evolution (stress-related: 7=—0.14,
P =0.44; normal physiological: t=0.26, P=0.16). If
standard deviation instead of the coefficient of varia-
tion is used as a measure of expression variation, then an
association is absent if N/S is used as an indicator of evo-
lutionary rate (stress-related: t=0.31, P=0.09; physi-
ological: t=0.33, P=0.07). An association is present
if N instead of N/S is used to gauge the rate of evo-
lution (stress-related: =0.48, P=0.007; physiological:
1=0.46, P=0.01). However, the use of the standard devi-
ation in this kind of analysis is problematic, because
it does not take into account that average expression
changes in different environments can vary manifold
among different genes.

Taken together, these latter analyses suggest that the
variation in evolutionary rates observed in Fig. 2 is not
solely due to differential usage of alternative regulators
in different environments. However, we note that the
apparent mutational robustness suggested by Fig. 2 may
be a by-product of other kinds of robustness. For exam-
ple, genes are subject to substantial expression noise,

which can cause large fluctuations in the concentration of
a gene product even for moderately to highly expressed
genes (Blake et al., 2003; Elowitz et al., 2002; Rao et
al., 2002). Robustness to such gene expression noise
may entail robustness to mutations that change a gene
product’s activity. However, currently available data on
gene expression noise is too limited to assess whether
an association between expression noise of intermediate
regulators and the number of paths connecting two genes
in a network exist.

2.3. Alternative pathways as an adaptation or a
by-product of network organization?

The association between mutational robustness and
pathway organization we observe could have two prin-
cipal ultimate causes. According to the first of them,
the increased evolutionary rate of transcriptional regu-
lators reflects an evolutionary adaptation. Specifically,
many alternative pathways between a regulator and tar-
get gene pair may exist wherever proper regulation of
the target gene is especially important to the organ-
ism. If mutations or gene expression noise change the
activity or concentration of one of the intermediate reg-
ulators, then an alternative regulatory pathway could
compensate for this change, and still assure proper reg-
ulation of the target gene. This hypothesis might explain
why not all regulator—target gene pairs have large num-
bers of alternate pathways between them. If correct,
the hypothesis suggests that such target genes should
have unique properties that distinguish them from other
genes. For example, mutations in such target genes
might have more serious consequences for the organ-
ism. We do not find any such association: The target
genes of a regulator—target gene pair at which many
alternative pathways end do not show larger effects
of a gene deletion (r=0.01, P=0.39), nor do they
evolve more slowly than other target genes. (t=—0.02,
P =0.26). There may, however exist other properties of
such target genes that have eluded our analysis. An alter-
native is that in any biological network of minimum
size and complexity, some regulator—target gene pairs
will be connected by more than one alternative path-
way. Wherever a regulator—target gene pair is connected
by multiple pathways, the consequence may be muta-
tional robustness of intermediate regulators. In other
words, robustness of intermediate regulators to muta-
tions may be a simple consequence of complex network
organization.

One assumption in our analysis is that alternative
pathways function in similar ways. This is certainly
not always true. For example, a pathway responsible
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for target repression and one responsible for target
induction would both constitute alternatives in a reg-
ulatory network. The extent of functional differences
between alternative pathways is poorly understood for
the genome-scale transcriptional regulation network
in S. cerevisiae. These differences are dependent
on a variety of factors, such as regulator expression
levels and environmental conditions. Only detailed
experimental work will be able to elucidate the specific
functional roles of alternative pathways in a given bio-
chemical regulatory network. We hope that the results
presented here will motivate future research in this
area.

3. Conclusions

We show that alternative pathways are abundant in
more than a dozen biochemical regulatory networks. For
the transcriptional regulation network of S. cerevisiae,
molecular evolution data suggest that such alternative
pathways may provide robustness to mutation. Muta-
tional robustness in a network may either be an adap-
tation in and by itself, or it may have emerged as a
by-product of other evolutionary processes. To distin-
guish between these possibilities remains an important
task for future work. Our results demonstrate that sys-
tems biology approaches and the analysis of network
structure may be essential in understanding the func-
tional and evolutionary constraints that the smallest parts
of networks, genes and proteins, are subject to.

4. Methods
4.1. Signal transduction networks

The science signal transduction knowledge environment
(http://stke.sciencemag.org/cgi/cm) contains a collection of
signal transduction pathways manually assembled by experts
on these networks. We analyzed the structure of all 15 sig-
nal transduction networks with more than 30 nodes that were
available in this repository in May 2004. These networks
are the adrenergic pathway (http://www.stke.org/cgi/cm/;
CMP_8762), a network that mediates the responses of cells to
epinephrine and norepinephrine; the Dictyostelium discoideum
cAMP chemotaxis network (CMP_7918), which is involved in
the aggregation of cells in response to starvation; the differ-
entiation pathway in PC12 cells (CM_8038), a network that
mediates the differentiation of a rat adrenal tumor cell line
under the influence of nerve growth factor; the extracellular
signal regulated kinase 1 and 2 (ERK1/2, or mitogen asso-
ciated kinase [MAPK] p42 and p44) network (CMP_10705),
the c-Jun N-terminal MAPK network (CMP_10827), and the
p38 MAPK network (CMP_10958), which are activated by
a variety of mitogenic stimuli, differentiation signals, and

cellular stresses; the B and T lymphocyte receptor signal-
ing network (CMP_6909 and CMP_7019), which mediate the
response of B and T cells to antigens and antigen-presenting
cells; the networks that mediate the action of G,3 (CMP_8809)
and G,; (CMP_7430), two variants of the a-subunit of het-
erotrimeric guanine nucleotide binding proteins (G-proteins),
which have innumerable functions in cell biological processes;
the insulin signaling network (CMP_12069), which modulates
the storage and release of energy after nutrient deprivation
and nutrient uptake; the mammalian Toll-like receptor net-
works (CMC_8644), which are involved in the inflammatory
response of tissues to microbial infections; the Wnt/B-catenin
network (CMP_5533), which influences cell proliferation and
other aspects of cell behavior in vertebrates and invertebrates
through Wnt proteins, which are secreted glycoproteins; the
FAS signal transduction network (CMP_7966), one of whose
functions is to trigger apoptosis; and the Integrin signaling net-
work (CMP_6880), which senses the environment in the extra-
cellular matrix and are necessary for cell migration, growth,
and survival. Note that, as opposed to transcriptional regula-
tion networks, nodes in all of these networks are heterogeneous:
they can represent proteins, small molecules, orions. A directed
edge links node A to node B if A influences the concentration
or activity of B.

4.2. Transcriptional regulation networks

For our analysis of the transcriptional regulation network
of the yeast S. cerevisiae, we used data on likely transcrip-
tional regulatory interactions obtained from a genome-scale
chromatin immunoprecipitation analysis (Knop et al., 1999;
Lee et al., 2002). In this experiment, 106 epitope-tagged tran-
scriptional regulators were used in three replicate chromatin
immunoprecipitation experiments to identify genomic DNA to
which these regulators bound (Ren et al., 2000). The immuno-
precipitated DNA was hybridized to DNA microarrays con-
taining the regulatory regions upstream of known yeast genes.
The fluorescence intensity of a spot (regulatory region) on the
array indicates the binding strength of a transcriptional reg-
ulator to the regulatory region. This indication of binding is
quantitative, but for many analyses, a qualitative (all-none)
indication of binding and transcriptional regulation is more
useful. The authors thus developed an error model of bind-
ing that allowed them to assign a probability or P-value of
binding for each transcriptional regulator to a gene’s regu-
latory region (Lee et al., 2002). This P-value indicates the
confidence one has in a factor’s binding to a specific DNA
region. We here generally follow the authors’ suggestion of
equating bona fide binding of a transcriptional regulator to a
target gene if this P-value is smaller than 1073, This value min-
imizes the number of false—positive binding interactions, while
maximizing the number of true positive regulator—target bind-
ing interactions (Lee et al., 2002). Data of this kind is subject
to experimental noise and ascertainment bias. However, our
results are robust to variation in P that corresponds to a 10-
fold variation in the number of regulatory interactions (data
not shown).
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For the transcriptional regulation network of Escherichia
coli, we used a database of direct transcriptional interactions
published by Shen-Orr et al. (2002). This database was com-
piled from an existing database (RegulonDB) and an exten-
sive literature search; it contains 578 transcriptional regulation
interactions among 423 genes or operons, of which 116 encode
regulators.

4.3. Gene expression changes in different stressful
environmental conditions

To assay the differential expression response of yeast genes
to environmental stresses, we used data published by Gasch et
al. (2000) for the following conditions: heat shock (25-37 °C,
after 30 min), reverse heat shock (37-25 °C, 30 min), H,O, and
Menadione exposure, both of which generate reactive oxygen
species (60 and 80 min, respectively), dithiothreitol, a reduc-
ing agent interfering with protein folding (90 min), diamide,
an agent oxidizing sulfhydryl groups (40 min), hyperosmotic
shock mediated by 1 M sorbitol (60 min), hypo-osmotic shock
mediated by transfer of cells from 1M sorbitol to medium
lacking sorbitol (30 min), amino acid starvation (2 h), nitrogen
depletion (1 d), and stationary phase (7 d). Because the expres-
sion response to most environmental stresses is transient, we
chose a time point (indicated above in parentheses) approxi-
mately halfway through the measured response time series as
an indicator of change in expression of a gene for any given
environmental stressor. We then calculated, for each gene,
coefficients of variation (CV, standard deviation/mean expres-
sion change x 100) and standard deviations of fold-expression
change across the environmental stressors.

4.4. Gene expression changes in different physiological
conditions during

To determine the differential expression of yeast genes
during different physiological stages, we pooled data that
assessed expression changes in yeast genes during three differ-
ent phases of the life cycle of a yeast cell. These are the diauxic
shift — the transition from fermentable to non-fermentable car-
bon sources (DeRisi et al., 1997) (http://cmgm.stanford.edu/
pbrown/explore/array.txt, seven data points) — sporulation (Chu
et al.,, 1998) (http://cmgm.stanford.edu/pbrown/sporulation/
additional/spospread.txt, seven data points per gene), and the
yeast cell-cycle (Spellman et al., 1998) (http://genome-www.
stanford.edu/cellcycle/data/rawdata/combined.txt 72  data
points). These data sets consist of relative mRNA expression
changes (ratios) as ascertained from cDNA microarray
experiments. For the sporulation and diauxic shift data, we
normalized expression levels of each gene such that the aver-
age logarithmically (log,) transformed ratio was equal to O.
The cell-cycle data was already in this form. We then pooled
the three data sets, and calculated from this data for each
gene standard deviations and the coefficients of variation (CV,
standard deviation/mean expression change x 100). The CV
was calculated by using the absolute value of each data point.

4.5. Growth rates of mutant yeast strains

We utilized results from a genome-scale experiment con-
ducted by Steinmetz and collaborators, which assayed the
growth rates of 4706 homozygous diploid yeast deletion
strains.

Briefly (Steinmetz et al., 2002), the authors generated a pool
containing cells from each deletion strain, and allowed cells in
this pool to grow in a variety of media.

These included the rich medium YPD, YPDGE (0.1% glu-
cose, 3% glycerol and 2% ethanol), YPE (2% ethanol), YPG
(3% glycerol), and YPL (2% lactate).

The investigators assayed the growth rate of individual
strains by hybridizing DNA tags that identified each strain to a
suitably designed oligonucleotide microarray. The growth rate
thus measured is a growth rate relative to the pool’s average
growth rate.

We here discuss our analysis of publicly available data
from one of two replicate experiments (file ‘Regression_
Tcl_hom.txt’” at http://www-deletion.stanford.edu/Y DPM/
YDPM._index.html) that reported the growth of homozygous
mutant strains grown in the five different media listed above.
We here consider two indicators of a gene’s deletion effect,
the maximum growth rate difference a deletion strain shows
between the five media and the pool’s average growth rate
(Steinmetz et al., 2002), as well as measures of dispersion (stan-
dard deviation and coefficient of variation) of the growth rate
change in a mutant strain.

4.6. Statistical procedures

We define the set of pathways in a network to be the union
of the sets of simple paths and simple cycles. We enumer-
ated all network pathways with a depth-first search algorithm
(Mehlhorn and Naher, 1999), and used simple variations of this
algorithm to identify intermediate regulators, and to determine
the shortest distance between regulator and target pairs.

To determine the statistics of interest here (N/S, etc.), we
first grouped regulator—target pairs by the total number of paths
connecting them. We then collected the intermediate regulators
within each of the groups, and determined the average statistic
of interest for these regulators. It should be noted that alterna-
tive paths between regulator—target gene pairs are typically not
independent of one another. Stated differently, a single regu-
lator can participate as an intermediate in multiple alternative
paths. This raises the question: should regulators that occur as
intermediates in many alternative paths be weighed differently
than regulators that occur as intermediates in few alternative
paths? If the number of pathways where a regulator occurs as an
intermediate is a biologically important factor, then the answer
to this question would be yes. We find however that no signifi-
cant association exists between degree of pathway involvement
as an intermediate and N/S (t=0.18, P=0.15). The same is
true for maximal deletion effect (t=—0.14, P=0.20). This
evidence warrants our decision to weigh each intermediate reg-
ulator equally when calculating averages for alternative path
classes.


http://cmgm.stanford.edu/pbrown/explore/array.txt
http://cmgm.stanford.edu/pbrown/explore/array.txt
http://cmgm.stanford.edu/pbrown/sporulation/additional/spospread.txt
http://cmgm.stanford.edu/pbrown/sporulation/additional/spospread.txt
http://genome-www.stanford.edu/cellcycle/data/rawdata/combined.txt
http://genome-www.stanford.edu/cellcycle/data/rawdata/combined.txt
http://www-deletion.stanford.edu/YDPM/YDPM_index.html
http://www-deletion.stanford.edu/YDPM/YDPM_index.html

A. Wagner, J. Wright / BioSystems 88 (2007) 163—172 171

Acknowledgments

AW would like to acknowledge support through NIH
grant GM63882 to the University of New Mexico, the
continued support of the Santa Fe Institute, as well as the
support of the Institut des Hautes Etudes Scientifique for
a sabbatical stay.

References

Bi, E., Chiavetta, J., Chen, H., Chen, G., Chan, C., Pringle, J.,
2000. Identification of novel, evolutionarily conserved Cdc42p-
interacting proteins and of redundant pathways linking Cdc24p
and Cdc42p to actin polarization in yeast. Mol. Biol. Cell 11, 773—
793.

Blake, W., Kaern, M., Cantor, C., Collins, J., 2003. Noise in eukaryotic
gene expression. Nature 422, 633-637.

Chu, S., Derisi, J., Eisen, M., Mulholland, J., Botstein, D., Brown, P.O.,
Herskowitz, 1., 1998. The transcriptional program of sporulation
in budding yeast. Science 282, 699-705.

DeRisi, J.L., Iyer, V.R., Brown, P.O., 1997. Exploring the metabolic
and genetic control of gene expression on a genomic scale. Science
278, 680-686.

Dunn, R.B., Fraser, A.S., 1958. Selection for an invariant character —
‘vibrissa number’ — in the house mouse. Nature, 181.

Edwards, J.S., Palsson, B.O., 2000. The Escherichia coli MG1655 in
silico metabolic genotype: its definition, characteristics, and capa-
bilities. Proc. Natl. Acad. Sci. USA 97, 5528-5533.

Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D., 1998. Cluster
analysis and display of genome-wide expression patterns. Proc.
Natl. Acad. Sci. USA 95, 14863-14868.

Elowitz, M., Levine, A., Siggia, E., Swain, P., 2002. Stochastic gene
expression in a single cell. Science 297, 1183-1186.

Evangelisti, A., Wagner, A., 2004. Molecular evolution in the tran-
scriptional regulation network of yeast. J. Exp. Zool./Mol. Dev.
Evol. 302B, 392-411.

Forster, J., Famili, 1., Fu, P., Palsson, B., Nielsen, J., 2003. Genome-
scale reconstruction of the Saccharomyces cerevisiae metabolic
network. Genome Res. 13, 244-253.

Fraser, H.B., Wall, D.P, Hirsh, A.E., 2003. A simple dependence
between protein evolution rate and the number of protein—protein
interactions. BMC Evol. Biol. 3, 11.

Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.B.,
Storz, G., Botstein, D., Brown, P.O., 2000. Genomic expression
programs in the response of yeast cells to environmental change.
Mol. Biol. Cell 11, 4241-4257.

Ghaemmaghami, S., Huh, W., Bower, K., Howson, R.W., Belle, A.,
Dephoure, N., O’Shea, E.K., Weissman, J.S., 2003. Global analysis
of protein expression in yeast. Nature 425, 737-741.

Hahn, M., Conant, G.C., Wagner, A., 2004. Molecular evolution in
large genetic networks: does connectivity equal importance? J.
Mol. Evol. 58, 203-211.

Ho, E., Satoh, M., 2003. Repair of single-strand DNA interruptions
by redundant pathways and its implication in cellular sensitiv-
ity to DNA-damaging agents. Nucleic Acids Res. 31, 7032-
7040.

Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., Sakaki,
Y., 2001. A comprehensive two-hybrid analysis to explore the
yeast protein interactome. Proc. Natl. Acad. Sci. USA 98, 4569—
4574.

Jordan, I.LK., Wolf, Y.I., Koonin, E.V., 2003. Correction: no sim-
ple dependence between protein evolution rate and the number
of protein-protein interactions: only the most prolific interactors
evolve slowly. BMC Evol. Biol. 3, 5.

Kellis, M., Patterson, N., Endrizzi, M., Birren, B., Lander, E., 2003.
Sequencing and comparison of yeast species to identify genes and
regulatory elements. Nature 423, 241-254.

Knop, M., Siegers, K., Pereira, G., Zachariae, W., Winsor, B., Nasmyth,
K., Schiebel, E., 1999. Epitope tagging of yeast genes using a PCR-
based strategy: more tags and improved practical routines. Yeast
15, 963-972.

Kolodner, R., Putnam, C., Myung, K., 2002. Maintenance of genome
stability in Saccharomyces cerevisiae. Science 297, 552-557.
Lee, T., Rinaldi, N., Robert, F., Odom, D., Bar-Joseph, Z., Gerber, G.,
Hannett, N., Harbison, C., Thompson, C., Simon, L., Zeitlinger, J.,
Jennings, E., Murray, H., Gordon, D., Ren, B., Wyrick, J., Tagne, J.,
Volkert, T., Fraenkel, E., Gifford, D., Young, R., 2002. Transcrip-
tional regulatory networks in Saccharomyces cerevisiae. Science

298, 799-804.

Lefers, M., Wang, Q., Holmgren, R., 2001. Genetic dissection of the
drosophila Cubitus interruptus signaling complex. Dev. Biol. 236,
411-420.

LeRoith, D., 2000. Editorial: insulin-like growth factor I receptor
signalling—overlapping or redundant pathways? Endocrinology
141, 1287-1288.

Li, W.-H., 1997. Molecular Evolution. Sinauer, Massachusetts.

Mehlhorn, K., Naher, S., 1999. LEDA: A Platform for Combinatorial
and Geometric Computing. Cambridge University Press, Cam-
bridge, UK.

Morris, T., Reed, K., Cronan, J., 1995. Lipoic acid metabolism in
Escherichia coli—the IplA and lipB genes define redundant path-
ways for ligation of lipoyl groups to apoprotein. J. Bacteriol. 177,
1-10.

Pal, C., Papp, B., Hurst, L.D., 2001. Highly expressed genes in yeast
evolve slowly. Genetics 158, 927-931.

Papp, B., Pal, C., Hurst, L.D., 2004. Metabolic network analysis of
the causes and evolution of enzyme dispensability in yeast. Nature
429, 661-664.

Passalaris, T., Benanti, J., Gewin, L., Kiyono, T., Galloway, D., 1999.
The G(2) checkpoint is maintained by redundant pathways. Mol.
Cell. Biol. 19, 5872-5881.

Rao, C., Wolf, D., Arkin, A., 2002. Control, exploitation and tolerance
of intracellular noise. Nature 420, 231-237.

Ren, B., Robert, F., Wyrick, J., Aparicio, O., Jennings, E., Simon,
1., Zeitlinger, J., Schreiber, J., Hannett, N., Kanin, E., Volkert, T.,
Wilson, C., Bell, S., Young, R., 2000. Genome-wide location and
function of DNA binding proteins. Science, 290.

Segre, D., Vitkup, D., Church, G., 2002. Analysis of optimality in
natural and perturbed metabolic networks. Proc. Natl. Acad. Sci.
USA 99.

Shen-Orr, S., Milo, R., Mangan, S., Alon, U., 2002. Network motifs in
the transcriptional regulation network of Escherichia coli. Nature
Gen. 31, 64-68.

Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K.,
Eisen, M.B., Brown, P.O., Botstein, D., Futcher, B., 1998. Com-
prehensive identification of cell-cycle regulated genes of the yeast
Saccharomyces cerevisiae by microarray hybridization. Mol. Biol.
Cell 9, 3273-3297.

Steinmetz, L., Scharfe, C., Deutschbauer, A., Mokranjac, D., Herman,
Z.,Jones, T., Chu, A., Giaever, G., Prokisch, H., Oefner, P., Davis,
R., 2002. Systematic screen for human disease genes in yeast.
Nature Gen. 31, 400-404.



172 A. Wagner, J. Wright / BioSystems 88 (2007) 163172

Stelling, J., Klamt, S., Bettenbrock, K., Schuster, S., Gilles, E.D., 2002.
Metabolic network structure determines key aspects of functional-
ity and regulation. Nature 420, 190-193.

Uetz, P, Giot, L., Cagney, G., Mansfield, T.A., Judson, R.S., Knight,
J.R., Lockshon, D., Narayan, V., Srinivasan, M., Pochart, P.,
QureshiEmili, A., Li, Y., Godwin, B., Conover, D., Kalbfleisch, T.,
Vijayadamodar, G., Yang, M.J., Johnston, M., Fields, S., Rothberg,
J.M., 2000. A comprehensive analysis of protein-protein interac-
tions in Saccharomyces cerevisiae. Nature 403, 623-627.

Vance, J., Wilson, T., 2002. Yeast Tdpl and Rad1-Rad10 function as
redundant pathways for repairing Topl replicative damage. Proc.
Natl. Acad. Sci. USA 99, 13669-13674.

von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S.G., Fields,
S., Bork, P., 2002. Comparative assessment of large-scale data sets
of protein—protein interactions. Nature 417, 399-403.

Wagner, A., 2000. Mutational robustness in genetic networks of yeast.
Nature Gen. 24, 355-361.

Wang, L., Lee, Y., Bundman, D., Han, Y., Thevananther, S., Kim,
C., Chua, S., Wei, P, Heyman, R., Karin, M., Moore, D., 2002a.
Redundant pathways for negative feedback regulation of bile acid
production. Dev. Cell 2, 721-731.

Wang, Y.L., Liu, C.L., Storey, J.D., Tibshirani, R.J., Herschlag, D.,
Brown, P.O., 2002b. Precision and functional specificity in mRNA
decay. Proc. Natl. Acad. Sci. USA 99, 5860-5865.



	Alternative routes and mutational robustness in complex regulatory networks
	Introduction
	Results and discussion
	Alternative regulatory pathways are not rare
	Alternative pathways and evolutionary rate
	Alternative pathways as an adaptation or a by-product of network organization?

	Conclusions
	Methods
	Signal transduction networks
	Transcriptional regulation networks
	Gene expression changes in different stressful environmental conditions
	Gene expression changes in different physiological conditions during
	Growth rates of mutant yeast strains
	Statistical procedures

	Acknowledgments
	References


