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a b s t r a c t

Bacterial insertion sequences are the simplest form of autonomous mobile DNA. It is unknown whether
they need to have beneficial effects to infect and persist in bacterial populations, or whether horizontal
gene transfer suffices for their persistence. We address this question by using branching process models
to investigate the critical, early phase of an insertion sequence infection. We find that the probability
of a successful infection is low and depends linearly on the difference between the rate of horizontal
gene transfer and the fitness cost of the insertion sequences. Our models show that the median time to
extinction of an insertion sequence that dies out is very short, while the median time for a successful
infection to reach a modest population size is very long. We conclude that horizontal gene transfer is
strong enough to allow the persistence of insertion sequences, although infection is an erratic and slow
process.

© 2010 Elsevier Inc. All rights reserved.
1. Introduction

Ever since its discovery in the 1940s byBarbaraMcClintock (Mc-
Clintock, 1950), mobile DNA has fascinated researchers. Why does
it exist, and how does it persist? Some authors claim that mobile
DNA ultimately needs to have beneficial effects on the host cell
to be able to persist in the long term (Blot, 1994; Shapiro, 1999;
Schneider and Lenski, 2004). Other authors disagree and think that
mobile DNA is selfish DNA, which merely persists by replicating
inside a host cell’s genome and by infecting new hosts through
sexual reproduction or horizontal gene transfer (Dawkins, 1976;
Doolittle and Sapienza, 1980; Orgel and Crick, 1980; Charlesworth
et al., 1994; Nuzhdin, 1999). While even purely detrimental mo-
bile DNA can spread in a sexually reproducing eukaryote popu-
lation (Charlesworth et al., 1994), the persistence of detrimental
mobile DNA in an asexually reproducing, prokaryote population is
more difficult to explain.

Besides raising theoretical issues, the existence and persistence
of certain classes of mobile DNA is also of practical interest.
Some prokaryotic transposons – mobile DNA elements that move
inside their host genome through a cut-and-paste process – carry
antibiotic resistance genes (Berg, 1989; Kleckner, 1989), genes
encoding toxins (So and McCarthy, 1980), or genes with new
metabolic functions (Top and Springael, 2003). Thus, transposons
on the one hand contribute to an important public health threat
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by spreading antibiotic resistance among pathogens. On the other
hand, transposons are also very useful tools in genetic engineering.

Prokaryotic transposons consist of two groups: simple and
composite transposons. Simple transposons encode the proteins
needed for their mobility themselves. Composite transposons
contain two flanking insertion sequences, another class of mobile
DNA. The insertion sequences encode the protein needed for the
composite transposon’s mobility.

Bacterial insertion sequences (ISs) are short DNA segmentswith
a length of between 700 and 2700 bp (Chandler and Mahillon,
2002). An IS usually codes for only one protein, transposase, which
excises it from its current position in the genome and inserts
it at a new position, a process called conservative transposition.
Occasionally, instead of being cut-and-pasted, an IS is copy-and-
pasted through replicative transposition. Replicative transposition
increases the IS count per genome; however, ISs are sometimes
also excised, thus decreasing the IS count. ISs are probably the
simplest form of autonomous mobile DNA, encoding for just
enough functionality to move and spread on their own inside
a host genome. Currently, all ISs have been classified into 20
families, based on differences in their internal organization (open
reading frames), in their transposases, in the nucleotide sequence
at their ends, and in the nucleotide sequences they leave behind
in the genome after being excised (Chandler and Mahillon, 2002;
Mahillon et al., 2009). Individual ISs are named ISn, where n is an
integer (e.g. IS1, IS2 and IS630).

ISs pose a threat to host cells for at least two reasons. First, ISs
can disable genes by inserting themselves into them. Second, if
more than one IS is present in a genome, ISs can lead to the rear-
rangement of thewhole host genome through homologous recom-
bination (Galas and Chandler, 1989; Kleckner, 1989; Schneider and
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Lenski, 2004). Therefore, although ISs can occasionally cause bene-
ficialmutations (Hall, 1999; Schneider and Lenski, 2004), their gen-
eral effect on the host cell is probably detrimental, especially if the
IS count per genome is high.

Why then do ISs persist? When an IS first enters an uninfected
host cell population, it occurs in only one or a few genomes of the
population. It can then spread by horizontal gene transfer (HGT)
to the genomes of other cells. This early phase of an IS invasion is
crucial for its long-term fate and has parallels in the fate of a rare,
slightly detrimental allele in a large population (Ohta, 1974). HGT is
a necessary condition for the persistence of a detrimental IS. But is
HGT enough to allow IS persistence, or are (albeit rare) beneficial
effects of ISs needed? We address this question by modeling the
early phase of an invasion of a slightly detrimental IS into an
uninfected bacterial host cell population as a branching process.
Specifically, we first use our branching process models to compute
the survival probability of an IS infection, its time to extinction
if it becomes extinct, and the time to reach a given population
size threshold if the infection persists. Last, we use our multi-
type branching process model to derive the distribution of the IS
count per infected cell genome, and we compare this distribution
with the real IS count distribution in 728 fully sequenced bacterial
genomes.

2. Models

In our models, we assume a large bacterial host cell population
living at carrying capacity. Into this population, we introduce
one cell infected with a single IS. We use a continuous-time,
multi-type Markov branching process model to compute the IS
survival probability, the time needed to reach a given population
size threshold if the IS persists, and the IS count distribution
(Haccou et al., 2005; Athreya and Ney, 1972). We use a related
birth-and-death process model to analyse the time to extinction
if the IS becomes extinct. Being stochastic processes, branching
processes are particularly well-suited to model the early phase
of an IS infection, given that the number of infected cells is still
low and prone to strong random fluctuation. The use of branching
process models in population genetics dates back to Fisher (Fisher,
1922) andHaldane (Haldane, 1927). For introductions to branching
processes and their use in biology, see (Athreya and Ney, 1972;
Sewastjanow, 1975; Jagers, 1975; Kimmel and Axelrod, 2002;
Haccou et al., 2005).

As we only model the early phase of an IS infection, we assume
that the number of infected cells is always several orders of mag-
nitude lower than the number of uninfected cells. We furthermore
assume the cells to live in a well-mixed bulk environment, e.g. in
seawater. In such an environment, each infected cell is surrounded
by uninfected cells only and not influenced by any other infected
cells, i.e. there is no HGT between infected cells.

We do not allow for immigration or emigration of cells, and as
the host cell population lives at carrying capacity, the cell division
rate b equals the base death rate d. For convenience, we choose
b = d = 1 per cell generation. This choice of the cell division
rate leads to the generation time being one time unit. As ISs are
relatively short compared to their host genome (2.7 kbp at the
most, versus e.g. around 4500–5500 kbp for the Escherichia coli
genome (Bergthorsson and Ochman, 1998)), we neglect the small
additional cost needed in replicating ISs during cell division and
assume the same birth rate b for infected cells as for uninfected
cells. Empirical data suggest a death rate of infected cells with at
most a linear dependence on the IS count per genome (Sawyer
et al., 1987).We assume a linearly increasing death rate of the form
d + js for infected cells, where j is the IS count per genome, and
s ≪ d is the fitness cost per IS.
We allow for five event types that change the total IS count in
the population: division of an infected cell, death of an infected
cell, replicative transposition of an IS, excision of an IS, and HGT.
In HGT, an IS is copied from an infected cell to an uninfected cell.
Replicative transposition and excision only change the number of
ISs in a population but keep the number of infected cells constant,
except if excision removes the last IS in a cell. The division of an
infected cell, the death of an infected cell, and HGT also change the
number of infected cells.

2.1. Multi-type model

Our multi-type model is inspired by and similar to the models
used by Moody (1988) and by Basten and Moody (1991), but our
model differs in the effect of a cell’s IS count on the cell’s fitness,
and, more importantly, instead of assuming a fixed bacterial gen-
eration time, we assume a continuous, exponentially distributed
generation time. Although not strictly correct (Powell, 1955), an
exponentially distributed generation time has been chosen to sim-
plify calculations, because the branching process is then also a
Markov process. In any case, our results will still be qualitatively
correct if a better suited non-exponentially distributed generation
time is assumed.

Some ISs down-regulate their transposition rate with increas-
ing IS count per genome (Sawyer et al., 1987; Chandler and
Mahillon, 2002). An example is IS10, where the IS produces both
a locally operating transposase and a globally operating negative
regulator of transposase gene expression, so that with increasing
IS count the transposase density at an IS site stays constant, while
the density of the negative regulator increases. We include this
effect in our model and assume the replicative transposition rate
u per infected cell and per generation to be constant and inde-
pendent of the cell genome’s IS count (but see Section 4.5 for a
discussion of the effects of a nonconstant transposition rate).
Furthermore,we assume excision events to be independent of each
other. In ourmulti-typemodel,we therefore adopt a rate je of IS ex-
cision events per infected cell and generation, proportional to the
genome’s IS count j and the excision rate e per IS, where e < u
(Egner and Berg, 1981). It is not known whether the IS count of a
cell’s genome influences the cell’s HGT rate. But it is known that
HGT is tightly regulated and depends on many internal and exter-
nal factors (Dröge et al., 1999), of which the IS count of the donor
cell is probably only a minor one. For simplicity, we assume a con-
stant rate h of HGT per infected cell and per generation, indepen-
dent of the cell genome’s IS count (see Section 4.5 for a discussion
of the effects of a nonconstant HGT rate).

To avoid having to deal with an infinite-dimensional system,
we assume an upper limit of l = 50 ISs per genome, except
where noted otherwise. This is not a serious restriction, because
only a very small proportion of infected cells in the wild has such
a high IS count, and most infected cells harbor only a few ISs in
their genome, as has already been seen before (Sawyer et al., 1987;
Wagner, 2006; Touchon and Rocha, 2007), and as we also show in
Section 3.4.

Fig. 1 shows the structure of the multi-type model, as defined
by our assumptions.

A cell genome’s IS count k, k ∈ {1, . . . , l}, determines the cell’s
event rate ak, i.e. the rate at which either a cell death, a cell birth, a
replicative transposition event, an excision event, or an HGT event
happen in a cell harboring k ISs:

a1 = b + d + s + u + e + h
aj = b + d + js + u + je + h (1 < j < l)
al = b + d + ls + le + h,

where b and d are the birth and base death rates, respectively, s is
the fitness cost per IS copy, u is the replicative transposition rate, e
is the IS excision rate, and h is the rate of HGT.
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Fig. 1. Multi-type model design. Zk = number of cells with k ISs (k ∈ {1, . . . , l}), b = birth rate per cell, d = base death rate per cell, u = replicative IS transposition rate
per cell, e = IS excision rate per IS, h = HGT rate per infected cell, s = fitness cost per IS, and l = maximal IS count per genome (all rates are per host cell generation). Solid
arrows indicate a change of total IS count and total infected cell count. Dashed arrows indicate a change of total IS count only.
The waiting time to the cell’s next event is assumed to have
an exponential distribution with mean 1/ak, and at the time of an
event, the probabilities pk of the five different event types are given
by
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For a cell infected with one IS, excision is counted as cell death
(uninfected cells are not included in the model), and HGT is
counted as cell division.

The event probabilities pk are then used to define the vector-
valued probability generating function g(z) =

∑
j p(j)zj, z =

(z1, . . . , zl) (see Appendix A). From the probability generating
function, we derive the infinitesimal generating functions g̃k(z) =

ak(gk(z) − zk), and the infinitesimal generator A, which is defined
as A = (aij) = aibij, where bij =

∂gi(z)
∂zj


z=1

− δij (Athreya and Ney,
1972, p. 183 and 200), also shown in Appendix A. The eigenvalue
λ0 of A with the largest real part is itself real. If λ0 is negative, 0,
or positive, the branching process is called subcritical, critical, or
supercritical, respectively. If the branching process is subcritical
or critical, it will become extinct with certainty; if the branching
process is supercritical, it has a positive probability smaller than
one of survival.

If the branching process is supercritical, there exist positive
right and left eigenvectors u = (u1, . . . , ul) and v = (v1, . . . , vl)

of the infinitesimal generator A, which can be scaled so that∑l
k=1 uk = 1 and

∑l
k=1 ukvk = 1. In the following, it will always

be assumed that this scaling has been done for u and v.

2.2. Single-type model

For the birth-and-death process model, we simplify the multi-
type model by assuming that transposition and excision can be
neglected, so that there is only one type of infected cell, bearing
exactly one IS. The process state of the birth-and-death process
model corresponds to the number of infected cells, and process
state 0 is considered to be absorbing, meaning that the population
of infected cells has become extinct. The birth and death rates per
infected cell are b + h and d + s, respectively, where again b and d
are the birth and base death rates of a cell, h is the HGT rate, and s
is the fitness cost of an IS.

Feller was the first to investigate this birth-and-death process
(Feller, 1939). Kendall derived the probability Pn(t) of the process
being in state n at time t (Kendall, 1948). In our case, this probabil-
ity is

Pn(t) =


ξt if n = 0
(1 − ξt)(1 − ηt)η

n−1
t if n > 0 (1)

where

ξt =
(d + s)


1 − e−(b+h−(d+s))t


b + h − (d + s)e−(b+h−(d+s))t

and

ηt =
(b + h)


1 − e−(b+h−(d+s))t


b + h − (d + s)e−(b+h−(d+s))t

.

At all times t , the state of the birth-and-death process is therefore
zero (i.e. the process has become extinct) with probability ξt , and
otherwise the state has a geometric distributionwith parameterηt .

2.3. Model parameters

Wenow turn to the parameters that we are using to analyze the
models. Reliable rates for replicative transposition, IS excision and
HGT are difficult to establish. However, in some cases at least their
order of magnitude is known or can be estimated. Conservative
transposition occurs with a rate of around 10−7–10−4 events
per cell and host cell generation (Chandler and Mahillon, 2002;
Kleckner, 1989). We assume the replicative transposition rate to
be a few orders of magnitude smaller (Tavakoli and Derbyshire,
2001). IS excision rates are lower than replicative transposition
rates (Egner and Berg, 1981). For example, IS10 is excised from the
genome at a rate of around 10−10 per cell and host cell generation,
whereas its conservative transposition rate is 10−4 per cell and
host cell generation (Kleckner, 1989). Similarly, transposon Tn5, a
mobileDNA sequence flankedby two copies of IS50, has an excision
rate of 10−6 to 10−5 and a conservative transposition rate of 10−3

to 10−2 (Berg, 1977). HGT rates vary widely and depend on many
environmental factors. For viral transduction in marine bacteria,
rates of between 1.6·10−8 and 3.7·10−8 transductants per colony-
forming unit have been reported (Jiang and Paul, 1998). For the
conjugational transfer of plasmids in diverse seawater bacteria,
2.3 · 10−6 to 5.6 · 10−5 transconjugants per recipient cell have
been found after 3 days of incubation (Dahlberg et al., 1998). For
transformation involving epilithic bacteria froma river, in situ rates
of 2.2 · 10−6 to 1.0 · 10−3 events per recipient cell have been
reported per 24 h incubation time (Williams et al., 1996). Note that
in this case, the transformation occurred in cells that were fixed on
a surface, i.e. not in awell-mixed environment aswe assume in our
models. No information is available about the fitness cost caused by
ISs. In our models, we therefore vary this cost over a broad range
of values.

Table 1 shows a summary of reported rates and rates used in
our models.
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Table 1
Rates.

Event Reported rates Model rates

Transposition Conservative 10−7– 10−4 Replicative 10−9– 10−6

Excision 10−10 10−12– 10−9

HGT Transduction 10−8

Conjugation 10−6– 10−5 Total 10−7– 10−4

Transformation 10−6– 10−3

Fitness cost – 10−12– 10−6

Event rates reported by different authors (rates are converted into events per cell or
IS and day), and corresponding parameter ranges used in our models. Model rates
are per cell and cell generation or, in the case of the fitness cost, per IS and cell
generation. Origin of reported rates: conservative transposition (Kleckner, 1989;
Chandler and Mahillon, 2002), excision (Kleckner, 1989), transduction (Jiang and
Paul, 1998), conjugation (Dahlberg et al., 1998), and transformation (Williams et al.,
1996).

Fig. 2. Computed survival probability psurv of a population of infected cells, start-
ing with one cell infected with a single IS, as a function of the relative difference
(h − s)/s between the HGT rate h and the fitness cost s, for different parameter
combinations. Note the logarithmic scales. Parameter values: b = d = 1 gen.−1 ,
(s, u, e) ∈


10−12, 10−13, 10−16


,

10−12, 10−11, 10−14


,

10−9, 10−10, 10−13


,

10−9, 10−8, 10−11

,

10−6, 10−7, 10−10


,

10−6, 10−5, 10−8


gen.−1 , l = 50.

2.4. Software

We use Mathematica version 7.0 to carry out the numerical
and analytical model computations. With the exception of Fig. 7,
we also use Mathematica to generate the figures in the results
section. Fig. 7 has been generated by first counting ISs in fully
sequenced bacterial genomes using IScan (Wagner et al., 2007),
and then computing the IS count distribution using R, version
2.6.2 (R Development Core Team, 2008).

3. Results

3.1. The survival probability of an IS infection is small

The survival probability psurv of an IS infection starting with
one cell that is infected with a single IS is given by psurv =

1 − pext, where pext is the infection’s extinction probability. The
extinction probability of an IS infection starting with one cell that
is infected with k ISs is the k-th component of the smallest root
q = (q1, . . . , ql) of the infinitesimal generating function g̃(z) in
the interval [0, 1] (Athreya and Ney, 1972, p. 205). The survival
probability of an infection starting with one cell that contains one
IS in its genome can therefore be computed as psurv = 1 − q1.

Fig. 2 shows the survival probability as a function of the relative
difference between the HGT rate and the fitness cost of an IS,
based on a numerical computation of q1 for different parameter
combinations.

Fig. 2 shows that psurv ≈ h − s, i.e. that the survival probability
of an IS infection starting with one cell that is infected with one
IS is approximately equal to the difference between the HGT rate
Fig. 3. Computed critical HGT ratehcrit as a function of the fitness cost s, for different
parameter combinations. Note the logarithmic scales. Parameter values: b = d =

1 gen.−1 , (u, e) ∈


10−9, 10−12

,

10−9, 10−9


,

10−6, 10−12


,

10−6, 10−9


gen.−1 , l = 50.

and the fitness cost, at least if the replicative transposition rate
u is smaller than the fitness cost s per IS. Only if u > s does
the infection’s survival probability drop well below h − s for low
HGT rates h. The comparatively small excision rate does not have a
significant effect on the infection’s survival probability.

This result can be interpreted as follows: an IS infection can
only persist if HGT is strong enough to overcome the mean fitness
cost induced by ISs in infected cells (cf. Fig. 1). For replicative
transposition rates that are lower than the fitness cost per IS, most
cells will have only one IS. In that case, the survival probability of
an infection will linearly depend on the difference h − s between
the HGT rate and the fitness cost induced by one IS. If, on the other
hand, the replicative transposition rate is much larger than the
fitness cost per IS, the population of infected cells includes many
cells with higher IS counts, thus increasing the mean fitness cost
per infected cell. This leads to a survival probability lower than
h − s.

The negative effect that a high replicative transposition rate
has on the survival probability of an IS infection can also be
demonstrated by computing the HGT rate hcrit at which the multi-
type branching process is critical and will only just become extinct
with certainty. hcrit can be computed by observing that λ0, the
eigenvalue with the largest real part of the infinitesimal generator
A (see Appendix A), must then be 0. Therefore, the constant term in
the characteristic polynomial of A, which equals the determinant
of A, must vanish. As h occurs only in the first column of A, the
constant term linearly depends on h, and looking for its root, we
find hcrit. Fig. 3 shows hcrit as a function of s.

Fig. 3 shows that for a fitness cost much larger than the
replicative transposition rate u (infected cells then carry only one
IS), the critical HGT rate is equal to the fitness cost. Fig. 3 also shows
that for a fitness cost coming near or falling below the replicative
transposition rate (infected cells then carry on average more than
one IS), the critical HGT rate is higher than the fitness cost per
IS, because HGT has to compensate for a larger total fitness cost
caused by a higher IS count per cell.

We will see later that the IS count distribution in infected
cells is indeed strongly L-shaped, i.e. most infected cells contain
only one or at most a few ISs in their genome (see Section 3.4).
We can therefore use the birth-and-death process model as an
approximation to our multi-type branching process model. In this
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single-type model, we can analytically confirm that psurv ≈ h − s
for small values of h and s. To do this, we observe that our birth-
and-death process only survives if it does not get absorbed in state
0. Using (1), we therefore get

psurv = 1 − lim
t→∞

P0(t) = 1 −
d + s
b + h

.

Remembering that b = d = 1 gen.−1, and linearizing around
h = s = 0 gen.−1 then gives

psurv ≈ h − s.

Haldane (1927), following an idea of Fisher (1922), showed that
a dominant mutant gene with a small selective advantage s, so
that the expected number of offspring is 1 + s, has a probability
of about 2s to persist in a random mating population. Observe
that in our case, the selective advantage of a cell that harbors
an IS is (h − s)/2, as the cell’s expected number of offspring is
2 · (b + h)/(b + d + h + s) ≈ 1 + (h − s)/2 for b = d = 1 gen.−1

and small h and s.

3.2. The time to extinction of an IS infection is short

According to the last section, the vast majority of IS infections
die out. Again considering that IS infections are dominated by cells
with only a few ISs (see Section 3.4), we use the single-type birth-
and-death process model to compute the time to extinction of an
IS infection that becomes extinct.We start with one infected cell in
an uninfected host cell population. We then use the process state
probability given in (1), observing that the probability of the birth-
and-death process ever becoming extinct is given by limt→∞ P0(t).
Therefore, using our assumption that b = d = 1 gen.−1, the
cumulative distribution function F of the time to extinction T0,
conditioned on the branching process becoming extinct, is

F(t) = P(T0 ≤ t|T0 < ∞) =
P0(t)

lim
t→∞

P0(t)
.

As we have shown earlier, only in the case h > s is there a positive
probability of the birth-and-death process not becoming extinct.
The distribution function is then

F(t) =
(1 + h)


1 − e−(h−s)t


1 + h − (1 + s)e−(h−s)t

,

and the corresponding probability density function of the time
to extinction, conditioned on the branching process becoming
extinct, is

f (t) =
dF(t)
dt

=
(1 + h)(h − s)2e−(h−s)t
1 + h − (1 + s)e−(h−s)t

2 .

Fig. 4 shows the density of T0 for different parameter com-
binations of the fitness cost s and the HGT rate h, where always
h > s.

Fig. 4 shows that first, the time to extinction is not strongly
influenced by the fitness cost of an IS and by the HGT rate, and
second, the distribution of the time to extinction is very skewed.
Because of the latter observation, the median T0,med of the time
to extinction is more useful to report than the mean. We use the
distribution F of the time to extinction to obtain themedian time to
extinction. To this end, we first transform F algebraically and then
linearize the transformed expression around h = s = 0 gen.−1:

F(t) =
1

1 +

h−s
1+h e

−(h−s)t

1−e−(h−s)t

≈
t

t + 1
+

1
2


t

t + 1

2  t + 2
t

h − s


.

Solving the equation F(t) = 1/2 for t and then again linearizing
around h = s = 0 gen.−1 gives the median time
.

Fig. 4. Probability density function of the time to extinction T0 , for different
parameter combinations. Parameter values: b = d = 1 gen.−1 , (s, h) ∈

10−12, 10−7

,

10−12, 10−4


,

10−6, 10−4


gen.−1 . The single line is an overlay

of the graphs obtainedwhen using the three parameter value combinations of s and
h indicated above.

T0, med ≈

√
1 + h + h2 − s − h

1 + h − s
≈ 1 −

3h − s
2

.

The median time to extinction of an IS infection that becomes
extinct therefore almost linearly depends on 3h − s, but is
dominated by the comparatively large constant 1. In this short
time, replicative transposition and excision cannot take effect,
which adds justification to our use of the birth-and-death process
model.

3.3. The time an IS infection needs to attain a modest size threshold is
long

Only a small fraction of IS infections survives. In a branching
process, the surviving populations go into exponential growth after
having lingered at lower population sizes during a random time
period (Haccou et al., 2005, p. 158, Athreya and Ney, 1972, p.
206), where they have been under strong threat of extinction. We
first use our multi-type branching process model to numerically
compute the time needed by a surviving population of infected
cells to reach a given population size threshold. We then use our
single-type birth-and-death process model to analytically confirm
our numerical results from the multi-type model.

In a supercritical, irreducible, multi-type branching process
with finite second moment as described by our multi-type model,
the following holds (Sewastjanow, 1975, pp. 257–258):

1. The random variable Wm
k (t) :=

Zmk (t)

vkeλ0t
t→∞
−→ Wm for any m ∈

{1, . . . , l} and k ∈ {1, . . . , l}, where Zm
k (t) is the number of

cells of type k at time t , starting with one cell of type m at time
t = 0, and where vk is the k-th component of the scaled left
eigenvector v to the eigenvalueλ0 of the infinitesimal generator
A defined in Appendix A.

2. The characteristic function ϕm(x) = E

eiW

mx

of Wm, where

i =
√

−1, obeys the system of ordinary differential equations
dϕm(x)

dx =
g̃m(ϕ1(x),...,ϕl(x))

λ0x
, with ϕm(0) = 1 for m ∈ {1, . . . , l},

where g̃m is the infinitesimal generating function.

The ordinary differential equation system can be numerically
solved for the characteristic functions ϕm(x), m ∈ {1, . . . , l} (see
Appendix B for details of the system). By the Fourier inversion
theorem, the probability density f 1 of the random variableW 1 can
be reconstructed from its characteristic function ϕ1 as f 1(t) =
1
2π


∞

−∞
e−itxϕ1(x)dx. From W 1, in turn, the number Z1

k (t) of
infected cellswith k ISs at time t (large enough) in a population that
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Fig. 5. Computed median time TN, med to a threshold of N = 108 infected
cells as a function of the difference h − s between the HGT rate and the fitness
cost, for different parameter combinations. Note the logarithmic scales. Parameter
values: b = d = 1 gen.−1 , (s, u, e) ∈


10−12, 10−9, 10−12


,

10−8, 10−9, 10−12


,

10−6, 10−9, 10−12

,

10−6, 10−6, 10−9


gen.−1 , l = 5. Because computing the

characteristic function is feasible only for moderate fitness costs, not all graphs ex-
tend to the full range of the difference between the HGT rate and the fitness cost.
The arrows mark the beginnings of the curves with the corresponding parameter
sets.

has been infected with one cell containing one IS in its genome can
be derived as Z1

k (t) ≈ vkeλ0tW 1. The total size of the population
of infected cells is then Z(t) :=

∑l
k=1 Z

1
k (t) ≈ eλ0tW 1∑l

k=1 vk.
Therefore, the time TN to the threshold N is

TN =
1
λ0


ln(N) − ln(W 1) − ln


l−

k=1

vk


.

We again use themedian to characterize the time to threshold and
get

TN,med =
1
λ0


ln(N) − ln


W 1

med


− ln


l−

k=1

vk


,

whereW 1
med is themedian of the randomvariableW 1, which can be

computed using the density f 1 ofW 1. Fig. 5 shows themedian time
to a threshold of 108 infected cells versus the difference between
the HGT rate and the fitness cost, for different fitness costs s,
replicative transposition rates u and excision rates e. N = 108 is
still a comparatively small threshold in a population of bacterial
cells. In a bulk environment like seawater, for example, 8.4 · 108

to 2.5 · 1010 bacterial cells per liter have been counted (Thompson
et al., 2004). And still, the threshold is large enough to guarantee
a negligible extinction probability once it has been attained by
the population of infected cells. Because of the computational
complexity involved in calculating the time to threshold, the
maximal number of ISs per cell genome had to be reduced from
l = 50 to l = 5. This is not a strong limitation, since the population
of infected cells is dominated by cells that harbor only one or very
few ISs.

Fig. 5 shows that themedian time to threshold is approximately
inversely proportional to h− s for large thresholds N , e.g. TN,med =

55.5 · (h− s)−0.82 for s = 10−8 gen.−1 and N = 108. We have con-
firmed that for larger thresholds the approximation to inverse pro-
portionality becomes even better, e.g. TN,med = 35.5·(h−s)−0.93 for
s = 10−8 gen.−1 and N = 1012 (graph not shown). This is because
first, for large thresholds N , the population dynamics of the super-
critical branching process is dominated by the exponential growth
phase; second, the time spent in the exponential growth phase is
inversely proportional to the growth rate, which is identical to the
eigenvalue λ0 of the infinitesimal generator A; third, at least for h
much larger than s if u ≥ s, λ0 is approximately equal to the differ-
ence h − s between the HGT rate and the fitness cost (see Fig. 6).

Fig. 6 shows that if s > u or h > u, λ0 ≈ h − s. Using a
linear regression on the data shown in Fig. 6 that is restricted to
s = 10−8 gen.−1 shows that λ0 ≈ 1.00060 · (h − s)1.00005. But λ0
is smaller than h − s (and can even drop below zero) if u > s and
u ≥ h, because the population of infected cells is then no longer
dominated by cells with only one IS, and HGT cannot replace fast
enough the cells dying due to the increased total fitness cost per
cell.

Because the population of infected cells is dominated by cells
with only one IS, the single-type model is a good approximation
to the multi-type model. We now use the birth-and-death process
model to analytically show that the median time to threshold
is in fact approximately inversely proportional to the difference
between theHGT rate and the fitness cost. Let again Z(t) be the size
of the population of infected cells at time t . Then Z(t)/e(b+h−(d+s))t

is a nonnegative Martingale, and thus limt→∞ Z(t)/e(b+h−(d+s))t
=

W almost surely exists (Athreya and Ney, 1972, p. 111). W is a
random variable that is zero with probability P(W = 0) =

d+s
b+h

and otherwise has an exponential distributionwith rate parameter
b+h−(d+s)

b+h (Harris, 1951, p. 319).
From limt→∞ Z(t)/e(b+h−(d+s))t

= W , we get ln(Z(t)) − (b +

h − (d + s))t ≈ ln(W ) if t is large. Therefore, the time TN to
reach the threshold N , on the condition that it is reached, is TN ≈

1
b+h−(d+s) [ln(N) − ln(W )]. Using this approximation, we get for TN
the distribution function

P(TN ≤ t) = P


1
b + h − (d + s)

(ln(N) − ln(W )) ≤ t


= 1 − P

W < Ne−(b+h−(d+s))t

= 1 −

∫ Ne−(b+h−(d+s))t

0

b + h − (d + s)
b + h

e−
b+h−(d+s)

b+h xdx

= exp

− exp

−

x −

ln

N b+h−(d+s)

b+h


b + h − (d + s)




1
b + h − (d + s)

 .

This means that TN has a Gumbel distribution, P(TN ≤ t) =

exp

−e−(x−a)/b


with parameters a =

1
b+h−(d+s) ln


N b+h−(d+s)

b+h


and b =

1
b+h−(d+s) , see (Johnson et al., 1995, p. 2), and therefore

the median time to threshold is

TN,med =
1

b + h − (d + s)
ln

N
b + h − (d + s)

b + h


−

1
b + h − (d + s)

ln(ln(2))

=
1

b + h − (d + s)

[
ln

N
b + h − (d + s)

b + h


− ln(ln(2))

]
≈

1
h − s

ln(N) if N big and b = d.

This result shows that for large population size thresholds, the
median time to threshold is approximately inversely proportional
to the difference h − s between the HGT rate and the fitness cost,
and that the proportionality constant is the natural logarithm of
the threshold size N .
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Fig. 6. Growth rate λ0 as a function of the difference h − s between the HGT rate and the fitness cost, for different parameter combinations. Note the logarithmic scales.
Parameter values: b = d = 1 gen.−1 , (s, u, e) ∈


10−12, 10−9, 10−12


,

10−8, 10−9, 10−12


,

10−6, 10−9, 10−12


,

10−6, 10−6, 10−9


gen.−1 , l = 50.
Fig. 7. IS count distribution of the six most abundant ISs in 728 fully sequenced
bacterial genomes (June 2009). ‘‘ISs’’ means ‘‘IS count per genome’’. Note the
logarithmic vertical axis.

3.4. The IS count distribution is biased towards low IS counts

The IS count distribution is the link between our model and
real data. We demonstrate that our multi-type branching process
model can adequately reproduce the real IS count distribution.
Fig. 7 shows the IS count distribution of the six most abundant
ISs IS1A, IS2, IS4, IS5, IS110 and IS630, which occur in at least 20
of the 728 bacterial genomes that have been fully sequenced as of
June 2009.We obtained the necessary genome sequences from the
National Center for Biotechnology Information, NCBI (2009), and
we obtained the reference sequences of the ISs from the IS Finder
database (Mahillon et al., 2009). We used our previously published
software IScan to identify and count ISs in the genomes, analogous
to our earlier work (Wagner et al., 2007), but for a larger number
of genomes.

Fig. 7 shows that for each of the six most abundant ISs we
examined, on average only 31 out of 728 sequenced bacterial
genomes contain aminimumof one copy. The IS count distribution
is L-shaped: most genomes contain none of these six ISs, a small
number of genomes have up to a dozen copies of these ISs, and
only a few genomes contain more than a dozen copies, although
there are a few genomes containing many ISs. Among the six ISs
we examined, only IS1A and IS5 have more than 50 copies in
some bacterial genomes: the seven sequenced Shigella genomes
contain between 105 and 228 copies of IS1A, and Xanthomonas
oryzae contains 53 copies of IS5. Of the 14 other, less abundant ISs
we examined, only IS481 and IS982 have more than 50 copies in a
genome: Bordetella pertussis contains 233 copies of IS481 (all other
genomes contain atmost 11 copies of IS481), and Lactotcoccus lactis
cremoris contains 56 copies of IS982 (all other genomes contain at
most 3 copies of IS982).

We do not distinguish between different prokaryotic species
in the data of Fig. 7, because, especially for prokaryotes, HGT
occurs across species boundaries (Gogarten and Townsend, 2005;
Sørensen et al., 2005). It is known that many ISs show DNA target
specificities of varying degrees (Chandler and Mahillon, 2002). For
example, while IS1 just prefers AT-rich regions, IS4 is known to
insert into DNA sequences of the form AAA–N15−20–TTT (Zerbib
et al., 1985; Mayaux et al., 1984). In practice, target specificity is
probably not strong enough to be a limiting factor in the IS count
distribution.

Wenowderive themodel’s IS count distribution by pointing out
that for our multi-type branching process, the limit limt→∞

Z(t)
eλ0t

=

Wv almost surely exists, where Z(t) = (Z1(t), . . . , Zl(t)) is the
vector of population sizes of infected cells with IS count k ∈

{1, . . . , l} at time t , W is a random variable (independent of the
cell genome’s IS count), and v = (v1, . . . , vl) is the scaled left
eigenvector to the eigenvalue λ0 of the infinitesimal generator
A (Athreya and Ney, 1972, p. 206). Therefore, if v is rescaled so
that

∑l
k=1 vk = 1, its components v1, . . . , vl denote the limit

distribution of IS counts in infected cells.
Fig. 8 shows the computed limit distributions of IS counts per

genome as a function of the HGT rate, for different parameter com-
binations. These limit distributions are approached asymptotically
after the first IS infection occurred.

Fig. 8 shows that for the broad parameter range used in our
model, most infected cells contain only one IS. The decrease in
the fraction of cells with two, three, or more ISs per genome gets
even steeper for higher HGT rates. This result can be understood
by noting that the IS count distribution in our multi-type model
is determined by the replicative transposition rate u opposing the
fitness cost s per IS and the HGT rate h (the excision rate e is
too small to be of any importance). As h > s is necessary for a
persisting infection (see Section 3.1), we can distinguish between
three scenarios: u > h > s, h > u > s, and h > s > u. In the first
scenario u > h > s, replicative transposition increases the IS count
of cells faster than new cells can be infected with one IS. Therefore,
the IS count distribution gets shifted towards higher values until
an equilibrium is reached with the increasing total fitness cost per
cell. In the second and third scenarios h > u > s or h > s > u,
HGT infects new cells fasterwith one IS than the IS count of already
infected cells can increase. Therefore, the IS count distribution is
strongly L-shaped. Considering our model parameter range, the
latter two scenarios are more probable, and therefore, the IS count
distribution in our model is generally L-shaped. Because h > s
is a necessary condition for IS infection persistence, no IS count
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Fig. 8. Computed IS count distribution as a function of theHGT rate h, for different parameter combinations. Note the logarithmic scales. Parameter values: b = d = 1 gen.−1 ,
(s, u, e) ∈


10−9, 10−10, 10−13


,

10−9, 10−8, 10−11


,

10−7, 10−8, 10−11


,

10−7, 10−6, 10−9


gen.−1 , l = 50 (but at most 5 ISs per infected cell are shown). The

numbers in italics indicate the IS count per genome.
distribution can be shown in Fig. 8 for h < s. In fact, an infection
can become extinct with certainty even for h slightly larger than s
if the IS count distribution is no longer strictly dominated by cells
with one IS (see the lower right graph in Fig. 8).

4. Discussion

An IS that provides a sufficiently large benefit to its host
can rapidly rise to fixation through natural selection (Hall, 1999;
Schneider and Lenski, 2004). We are interested in the more chal-
lenging scenario, where an IS is slightly detrimental. When newly
introduced into an uninfected host cell population, such an IS faces
a situation analogous to that of a slightly detrimental mutant al-
lele that has newly emerged in a population. Its frequency in the
population is subject to random drift, and it is easily driven to ex-
tinction (Moran, 1962; Ohta, 1974; Kimura, 1983). However, this
analogy with population genetics is limited: most population-
genetic models are neither concerned with HGT, which can in-
crease the number of cells carrying an IS for reasons different from
selection and genetic drift, nor do they take into account the possi-
bility of a genetic element increasing its number (and therefore its
fitness cost) in a genome. Here, we focus on the interplay between
HGT and other factors influencing the persistence of an infection
with mobile genetic elements that can autonomously reproduce
and increase their own number in an infected genome.

4.1. Survival probability

The linear dependency of psurv on h − s for low replicative
transposition rate means that HGT stands in direct opposition
to the selection against ISs. Specifically, an IS infection will only
survive if the HGT rate h is higher than the fitness cost s of an IS.
However, even if ISs have no fitness cost, the survival probability of
an IS infection starting with one infected cell is small, because HGT
rates are generally small. In a bulk environment (e.g. seawater),
HGT rates are probably at most 10−5 to 10−4 events per infected
cell and generation (Dahlberg et al., 1998). This range of the HGT
rate provides an upper bound for the difference h − s. Even for
neutral ISs, the survival probability of an IS infection starting with
one infected cell would therefore be 10−4 at most.

4.2. Time to extinction

The median time to extinction T0,med ≈ 1 − (3h − s)/2 is
dominated by the comparatively large constant 1. This means that
half of the IS infections that die out do so inmerely one generation.
However, the distribution of the time to extinction is highly right-
skewed. Some infections can therefore survive for a much longer
time before they eventually die out.

The relationship T0,med ≈ 1 − (3h − s)/2 seems paradoxical
at first, as the median time to extinction decreases with increasing
HGT rate and/or decreasing fitness cost. However, this is due to
the following bias: we are examining only infections that become
extinct, and with increasing HGT rate and/or decreasing fitness
cost, populations of infected cells tend to spend less time lingering
at low population sizes before they either die out or begin to grow.
In other words, an infection’s fate is determined more quickly for
increased HGT rate and/or decreased fitness cost, thereby reducing
the median time to extinction.



286 M. Bichsel et al. / Theoretical Population Biology 78 (2010) 278–288
4.3. Time to threshold

The time to threshold can be very long, especially if the HGT
rate is only slightly higher than the fitness cost and therefore
their difference almost vanishes. For the upper bound h ∈

[10−5, 10−4
] gen.−1 of h − s we used before, the median time to

reach a population size threshold of 108 infected cells is between
105 and 105.8

= 6.3 ·105 generations (see Fig. 5). Generation times
of bacteria living in the wild vary broadly, but with an assumed
generation time of one day for E. coli (Gibbons and Kapsimalis,
1967; Savageau, 1983), the median time to threshold for these
large HGT rates is between 300 and 1700 years. As the time
to threshold is right-skewed, it can sometimes be much longer.
Because our information about IS infections stems from limited
samples, such long times to threshold would in practice make it
difficult to detect many IS infections, even if they were successful
in the end.

4.4. IS count distribution

Within broad parameter ranges, our model predicts that a large
majority of infected cells harbor only one IS per genome, and
the fraction of cells with more than one IS drops quickly with
increasing IS count. This holds even more for high HGT rates.
The predicted distribution, biased towards very low IS counts, is
corroborated by empirical data frommore than 700 genomes, and
it has also been observed in previous work based on a smaller
number of genomes (Sawyer et al., 1987; Touchon and Rocha,
2007).

If the fitness cost is larger than the replicative transposition rate,
the IS count distribution is highly skewed over the whole range of
used HGT rates, with most cells harboring only one IS (see Fig. 8).
To get an IS count distribution similar to the empirical distribution
shown in Fig. 7, the fitness cost probably has to be somewhat
smaller than the replicative transposition rate. The replicative
transposition rate, in turn, is very low. We assume it to be in the
interval u ∈ [10−9, 10−6

] gen.−1. Our models therefore suggest
that ISs might be effectively neutral in their effects on the host cell.

4.5. Effects of non-constant HGT and transposition rates

In our model, we assume the replicative transposition rate and
the HGT rate to be independent of the cell’s IS count. We now
discuss an alternative scenario, where the replicative transposition
rate and/or the HGT rate linearly increase with the cell’s IS count.
Specifically, we discuss the effects of these scenarios on the IS
count distribution, the survival probability of an IS infection,
and the time to threshold. We do not discuss the effects on
the extinction probability of an IS infection, because extinction
happens fast and does not leave much time for transposition and
HGT, and because our birth-and-death process model does not
include transposition.

If the replicative transposition rate linearly increaseswith the IS
count, the balance of forces determining the IS count distribution
shifts: replicative transposition is strengthened in its opposition
against fitness cost and HGT. Infected cells reach higher IS counts
than if the replicative transposition rate is constant; although in
most cases, the IS count distribution is still dominated by cells with
one or a few ISs. Only if the replicative transposition rate is larger
than the HGT rate (and therefore larger than the fitness cost), then
the IS count distribution is dominated by cells with the highest IS
count allowed in the model. This is an unrealistic scenario and not
consistent with the observed IS count distribution. A shift towards
higher IS counts increases the fitness cost and therefore reduces
the survival probability; although only slightly so, as long as the IS
count distribution is still dominated by cells with one or only a few
ISs. For the same reason, the time to threshold does not noticeably
change (but remember that for the time to threshold, we have to
restrict our model to a maximum of l = 5 ISs per cell).

If the HGT rate linearly increases with the IS count, the IS count
distribution shifts towards lower values, as more cells get infected
with one IS. Together, the higher infection rate and the lower
fitness cost induced by only one IS increase the survival probability
of an infection, especially for HGT rates only slightly larger than the
fitness cost of an IS. A higher infection rate and a lower fitness cost
also slightly decrease the time to threshold.

If both the replicative transposition rate and the HGT rate
increase linearly with the IS count, two opposing forces in shaping
the IS count distribution are strengthened: infected cells will reach
higher IS counts, and at the same time, cells with higher IS counts
will infect more cells with only one IS. The IS count distribution
then shifts towards higher IS counts, but less so than when only
the replicative transposition rate linearly increases. The survival
probability, on the other hand, is similar to the one observed when
only the HGT rate linearly increases: although cells with higher IS
counts bear a higher fitness cost, they also infect more cells with
an IS and keep the IS infection spreading. For this reason, the time
to threshold is also slightly lower than with constant replicative
transposition and HGT rate, albeit not as low aswhen only the HGT
rate linearly increases with the IS count.

4.6. Caveats

We here discuss the limitations of our analysis, some of which
are caused by our model assumptions, whereas others are caused
by limited data.

First, in our branching processmodels, we assume awell-mixed
environment, where infected cells are surrounded by uninfected
cells and where they are not clustered. The models are therefore
not valid for bacteria living in a spatially structured environment,
e.g. in a biofilm. Second, we assume that an infection starts with
one cell that is infected with one IS. We note that in naturally
occurring bacterial populations, the prevalence of infected cells is
low (see Wagner (2006), Touchon and Rocha (2007) and Fig. 7).
Therefore, even if many new bacterial cells are introduced into an
uninfected host cell population, probably only a few of these new
cells are infected. This justifies our assumption. Third, we restrict
HGT to transferring an IS copy only into uninfected cells. Again, this
is no serious restriction: first, we only consider the early phase of
an IS infection, with a low number of infected cells, and second,
we assume infected cells to be well-mixed with and surrounded
by uninfected cells, so that HGT into already infected cells can be
neglected.

Acknowledgments

MB and AW would like to acknowledge support from Swiss
National Science Foundation grants 315200-116814 and 315200-
119697, as well as from the YeastX grant of SystemsX.ch.

MB thanks Dominik Heinzmann for many fruitful discussions
about mathematical models, Nicole de la Chaux for her help with
programming, and Corina Bichsel for her editorial help. He also
thanks the reviewers for their helpful comments and suggestions.

Appendix A. Models: multi-type model

The probability generating function of a multi-type branching
process is defined as

g(z) =

−
j

p(j)zj
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A =



b + h − d − s − u − e u
h + 2e b − d − 2s − u − 2e u

h 3e b − d − 3s − u − 3e u
...

. . .

h je b − d − js − u − je u
...

. . .

h le b − d − ls − le


Box I.
=

 −
(j11,...,j1l)

p1(j11, . . . , j1l)z
j11
1 · . . . · z j1ll , . . . ,

−
(jl1,...,jll)

pl(jl1, . . . , jll)z
jl1
1 · . . . · z jlll


,

where pk(jk1, . . . , jkl) is the probability of a particle of type k (here:
a cell with k ISs) to produce jk1, . . . , jkl particles of type 1, . . . , l. In
our case, we get the following probability generating function:

g1(z) =
b + h
a1

z21 +
d + s + e

a1
+

u
a1

z2

gj(z) =
b
aj
z2j +

d + js
aj

+
u
aj
zj+1 +

je
aj
zj−1 +

h
aj
z1zj

(1 < j < l)

gl(z) =
b
al
z2l +

d + ls
al

+
le
al
zl−1 +

h
al
z1zl,

where ak = b + d + ks + u + ke + h is the event rate of a cell with
k ISs (see Section 2.1).

From the probability generating function, we derive the in-
finitesimal generating function g̃k(z) = ak(gk(z) − zk):

g̃1(z) = (b + h)z21 − (b + h + d + s + u + e)z1 + uz2 + d + s + e

g̃j(z) = bz2j − (b + h + d + js + u + je)zj + uzj+1 + jezj−1

+ hz1zj + d + js

g̃l(z) = bz2l − (b + h + d + ls + le)zl + lezl−1 + hz1zl + d + ls

and the infinitesimal generator A = (aij) = aibij, where bij =

∂gi(z)
∂zj


z=1

− δij; see the equation in Box I.

Appendix B. Results: time to threshold

To extend the ordinary differential equations given in Sec-
tion 3.3 to x = 0, we observe that

dϕm(x)
dx

=
d
dx

E

eiW

mx


=
d
dx

∫
∞

0
eitxf m(t)dt

Leibniz
=

∫
∞

0

∂

∂x


eitxf m(t)


dt

=

∫
∞

0
iteitxf m(t)dt = E


iWmeiW

mx


,

where f m(t) is the probability distribution of Wm, and so
dϕm(x)

dx


x=0

= iE (Wm) = ium, where um is the m-th component
of the scaled right eigenvector u to the eigenvalue λ0 of the
infinitesimal generator A.
Therefore, the ordinary differential equation system for ϕm(x),
m ∈ {1, . . . , l}, is

dϕ1(x)
dx

=
1

λ0x


(b + h)(ϕ1(x))2 − (b + h + d

+ s + u + e)ϕ1(x) + uϕ2(x) + d + s + e


dϕj(x)
dx

=
1

λ0x


hϕ1(x)ϕj(x) + b(ϕj(x))2

− (b + h + d + js + u + je)ϕj(x)
+ uϕj+1(x) + jeϕj−1(x) + d + js


(1 < j < l)

dϕ l(x)
dx

=
1

λ0x


hϕ1(x)ϕ l(x) + b(ϕ l(x))2

− (b + h + d + ls + le)ϕ l(x)
+ leϕ l−1(x) + d + ls


if x ≠ 0, and

dϕm(x)
dx


x=0

= ium form ∈ {1, . . . , l}

if x = 0, with

ϕm(0) = 1 form ∈ {1, . . . , l}.
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