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University of Zürich, Switzerland
‡andreas.wagner@ieu.uzh.ch

Received 30 May 2017
Accepted 3 February 2018
Published 19 March 2018

Bacterial insertion sequences (ISs), the simplest form of autonomous mobile DNA,
depend on their prokaryote hosts to spread in a spatially structured environment. We
use a spatially explicit metapopulation model to simulate the spread of an IS that can
have both detrimental and beneficial effects on its host cell. We find that, on the one
hand, the spatial structure of the metapopulation and cell dispersal between subpop-
ulations have no strong effect on the time to full infection of the metapopulation. On
the other hand, factors that influence the IS infection dynamics within a subpopulation
have a strong effect on that time. These factors are mainly the fitness benefit of an IS
and the rate of horizontal gene transfer. We also find that the infection process of a
metapopulation is very erratic in its early phase. Finally, we show that the infection’s
success depends critically on the initially infected subpopulation.

Keywords: Transposable Element; Infection Dynamics; Spatial Model; Simulation.

1. Introduction

Mobile DNA has been fascinating researchers since its discovery in the 1940s by
McClintock.1 Why does it persist, even though its effects are detrimental to its host
cells on average? The persistence of mobile DNA is especially puzzling in prokary-
otes. While even detrimental mobile DNA may spread in a sexually reproducing
eukaryote, especially if the mobile DNA’s effects are recessive,2–4 the detrimental
effects of mobile DNA cannot be masked in this way in an asexually reproduc-
ing prokaryote. In addition, due to the generally high effective population size of
prokaryotes, even small detrimental fitness effects of mobile DNA may cause strong
negative selection. The spread of mobile DNA in prokaryotes is thus more difficult
to explain.
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In this paper, we study the spread of insertion sequences (ISs), the simplest form
of autonomous mobile DNA, in spatially structured metapopulations of prokaryotes.
ISs are short DNA sequences (0.7–2.5 kb) that typically encode only one enzyme,
transposase, which enables transposition. During transposition, an IS usually gets
excised and inserted into another location in the genome (conservative transposi-
tion), but occasionally, the IS is copied during the transposition process (replicative
transposition).5 While the number of active IS copies in a genome increases through
replicative transposition, it decreases through IS excision and mutations that ren-
der transposase ineffective. ISs are vertically transmitted through inheritance, but
ISs can also be horizontally transmitted by horizontal gene transfer (HGT) between
prokaryotes.6

ISs in general have a detrimental fitness effect on their host cell, not only due
to their transposition activity, but also because of genome rearrangements that
can occur if a genome contains more than one IS copy.7–9 Occasionally, though,
ISs benefit their hosts. Many ISs contain an outwardly directed, entire or partial
promoter that can increase the expression of a nearby gene.10 Furthermore, two
synchronously transposing ISs can mobilize genes lying between them. These genes
often confer resistance to antibiotics, encode toxins, or allow for new metabolic
functions.11–13 The composite transposon (also called compound transposon) that
has thus been created can then insert into a plasmid and spread through a host
cell population. A still unresolved question is whether ISs persist because they are
occasionally beneficial to their hosts9,14,15 or because HGT is strong enough to over-
come their detrimental fitness effects.3,16–19 In earlier work, we showed that a purely
detrimental IS infection can successfully invade an uninfected host cell population,
provided that the HGT rate exceeds the detrimental effect of ISs on a host cell.20

For a specific IS family, we also estimated the HGT rate that would be needed to
reach the distribution of IS copies per genome which can be observed in the wild.
We showed that this HGT rate is well within the range of HGT rates estimated by
experiments, but that the infection process would take an unrealistically long time
if it depended only on HGT.21 We then concluded that beneficial effects of an IS
infection on infected cells, although they may be temporary, can play an important
role in speeding up the infection process. This is in accordance to an earlier find-
ing of one of us22 who has shown that the sequence divergence of IS copies within
genomes is much lower than between genomes, indicating that ISs might undergo
“burst and bust” cycles of infection and extinction in local populations which may
take several hundred thousand host cell generations.

Many prokaryotes live in a spatially structured environment, which may
influence the dynamics of an IS infection. A few studies explore the infection dynam-
ics of mobile DNA in spatially structured metapopulations of multicellular organ-
isms.23,24 However, to our knowledge, there exists no analysis of prokaryotic IS
infection dynamics in a spatially structured environment, even though theoretical
predictions for single populations without spatial structure exist.20,25,26 In such a
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spatially structured environment, ISs may spread to new prokaryote host popula-
tions through the dispersal of infected cells.

While the Baas Becking hypothesis for microorganisms, “everything is
everywhere, but the environment selects” (Ref. 27, translated), is still debated among
microbiologists (for a review, see Ref. 28), it has been shown that microorgan-
isms can indeed spread widely. This holds especially for spore-forming prokaryotes,
which can spread not only through migrating host animals,29 but also directly
through the air by wind30,31 or through the oceans by water currents32,33 over long
(even intercontinental) distances. Many prokaryote species may thus have a global
distribution, although other prokaryote species, e.g., the extremophiles, seem to
show a more restricted, local distribution.34 However, even in a globally distributed
prokaryote host species, the spreading of an IS does not occur instantaneously, and
IS infection dynamics may be affected by the spatial structure of the environment.

A large body of literature exists about spatial invasion processes in ecology35,36

and about spatial infection processes in epidemiology (Ref. 37, Chap. 7). Some phe-
nomena that may be observed during invasion or infection processes in the wild are
directly linked to space. One such phenomenon is the appearance of infection waves,
where a geographical area containing infected individuals or subpopulations shows
a well-defined, expanding front line. Another relevant phenomenon is the extinc-
tion/rescue effect, whereby an invading species may become temporarily extinct in
a specific habitat patch (subpopulation), only to be rescued by immigrating indi-
viduals from another patch. In its extreme form, this effect can lead to a source–
sink dynamics, where an invading species only persists in a specific patch because
of constant immigration from other patches.36 Phenomena like these can only be
analyzed with spatially explicit models, where subpopulations or even individu-
als occupy specific spatial locations. With such a model, one can then explore the
effect of different spatial distributions of subpopulations on the speed of invasion or
infection, and examine processes of pattern formation during invasion or infection.

Here, we model a metapopulation consisting of spatially separate subpopula-
tions, where all subpopulations initially contain only uninfected cells, with the
exception of one subpopulation, which in addition contains a few infected cells. The
infection dynamics of ISs in the metapopulation is determined by local processes
within each subpopulation, such as HGT and the competition between infected and
uninfected host cells, and by global processes between subpopulations, such as cell
dispersal. We use stochastic and deterministic models to analyze the influence of
local processes on the infection dynamics in a subpopulation. In addition, we use
a spatially explicit, stochastic metapopulation model to simulate the spreading of
an IS infection. Using this latter model, we address two main questions concern-
ing beneficial and detrimental IS infections in a spatially structured environment.
First, how do spatiality and local or global processes influence IS infection speed?
And second, what is the role of the initially infected subpopulation in the infection
process?
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2. Model and Methods

In stochastic population modeling, two sources of random variation in population
dynamics can be distinguished.38–41 The first is demographic stochasticity due to
the randomness of birth and death events in a finite population. The second is
environmental stochasticity due to random variation of birth and death rates over
time and space. The effects of demographic stochasticity are the strongest for small
populations and dominate during the initial phase of population growth. In con-
trast, the effects of environmental stochasticity dominate during later phases, when
population sizes are already large. It is very difficult to assess the extent of envi-
ronmental stochasticity for bacterial host cells over long time periods and over
large spatial scales. Rather than assuming some arbitrary variation in cell division
rate and death rate over time and space, we therefore only take into account the
demographic stochasticity in our simulation model. The effects of neglecting envi-
ronmental stochasticity are mitigated by the fact that our unit of time is a host
cell generation, defined by the mean time between cell divisions. As long as model
rates do not change in relation to the rate of cell division over time and space, times
measured in generations will therefore not change either (although absolute times
may change).

In our modeling, we distinguish between a subpopulation level and a metapop-
ulation level. In the next two subsections, we describe both levels in more detail.

2.1. Subpopulation level

We assume that subpopulations have no spatial structure but are well mixed. We use
a stochastic simulation model and a combination of a branching process model with
a deterministic model to understand IS dynamics on the subpopulation level. The
stochastic simulation model (panel (A) in Fig. 1) is embedded into the stochastic
simulation model of the metapopulation, and together they allow us to determine
the influence of both local and global processes on the infection dynamics of a
metapopulation in a spatially structured environment. Both the branching process
model (panel (B) in Fig. 1) and the deterministic model (panel (C) in Fig. 1) closely
follow the design of the stochastic simulation model. Combined, the branching
process model and the deterministic model allow us to determine the influence of
local processes on the infection dynamics in a subpopulation. The next paragraph
describes the assumptions we make to keep our subpopulation models tractable.

We assume that each host cell can carry at most a single IS in its genome. This
is not a strong limitation, as the IS count distribution of all IS families in the wild
is strongly L-shaped, i.e., for any IS family, most genomes contain no IS copy, many
genomes contain one copy, and only few contain more than five copies.21,22,42 To
reduce model complexity, and especially to increase simulation speed, it is therefore
reasonable to allow for at most one IS copy per genome. In all our models, an IS
insertion can either have a detrimental effect sd < 0 or a beneficial effect sb > 0 on
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(A) (B) (C)

Fig. 1. Subpopulation model design. In the stochastic simulation model (panel (A)) and in the
branching process model (panel (B)), N0, Nd and Nb are the cell counts of uninfected, detri-
mentally infected and beneficially infected cells, respectively, and K is the carrying capacity.
N = N0 + Nd + Nb is the total cell count. Observe that uninfected cells (N0) are not included in
our branching process model. In the deterministic model (panel (C)), Z0 = N0/K, Zd = Nd/K and
Zb = Nb/K are normalized population sizes, where K is the carrying capacity. Z = Z0 + Zd + Zb

is the total normalized population. For all models, sd < 0 and sb > 0 indicate the fitness cost of a
detrimental infection and the fitness benefit of a beneficial infection, respectively. The parameter
e denotes the IS excision rate, cd and cb are the conversion rates from beneficial to detrimental
infection and from detrimental to beneficial infection, respectively, and h is the HGT rate. All
rates are per cell and cell generation. Solid and dashed arrows indicate a change and no change
in the total size of the modeled population, respectively.

host cell fitness. Empirical data show that the fitness effect of an IS depends on the
location of the insertion in the genome. In a few locations, an IS may have a bene-
ficial fitness effect, for example, by promoting the expression of a nearby gene.10 In
most other locations, the same IS may have a detrimental fitness effect, for example,
by inserting into a gene, thus silencing the gene.43 Noncoding regions, into which an
IS could safely insert, constitute only a small fraction of about 10% of prokaryotic
genomes,44 and even noncoding regions include many regulatory DNA sequences
that are sensitive to disruption. Genome locations with beneficial side effects are
therefore rare in comparison with genome locations with detrimental side effects.
Keeping these observations in mind, we assume that the conversion from a detri-
mentally infected cell to a beneficially infected cell by conservative transposition
occurs with a rate cb that is 1,000 times lower than the rate of conversion cd from a
beneficially infected cell to a detrimentally infected cell. We set the conversion rate
cd of beneficial to detrimental infection to the conservative transposition rate in the
wild, because conservative transposition is the only way to switch between beneficial
and detrimental infections in our model, and because transposition into a genome
location with beneficial side effects is very rare. An IS can get excised and lost or
suffer an inactivating mutation with rate e.8,45 Furthermore, an IS can be copied
from an infected host cell’s genome to an uninfected host cell’s genome by HGT.
The process by which an IS can be transferred from an infected to an uninfected
host cell’s genome can be complex. For example, it may involve bacterial conjuga-
tion, followed by the transfer of an IS-bearing plasmid, and the IS’s transposition
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into the host genome (into sites whose specificity may depend on the IS itself). To
keep the model tractable, we collapse all this mechanistic complexity of HGT into a
single parameter h that represents the HGT rate.46 Because genome locations that
lead to a beneficial infection are rare, we assume that all cells that acquire an IS by
HGT will initially be detrimentally infected. Transposition, excision and HGT rates
reported in the literature cover a wide range of values (Table A.1 in Appendix A).
We therefore systematically vary the parameters of local processes over a wide
range, starting from a default parameter set, with which we conduct most of our
analysis and simulations. Table 1 shows for each local parameter its default value
and the parameter range that we explore.

We now discuss the specifics of our stochastic simulation model (panel (A)
in Fig. 1). The effective size Ne of prokaryote populations usually exceeds 108

individuals.47 We therefore assume in our stochastic simulation model that each
subpopulation has a carrying capacity of K = 109 host cells (computational lim-
itations prevent us from exploring much larger populations). At the start of the
simulation, all subpopulations contain 109 uninfected cells, and one subpopula-
tion — the initially infected subpopulation — usually contains an additional 100
beneficially infected cells. Ideally, we would want the simulation to start with one
infected cell, so as to simulate the spread of an IS that has been generated de novo
or has been reactivated by mutation from an inactive state. However, we choose an
initial number of 100 infected cells as a compromise between two conflicting require-
ments. On the one hand, as the number of initially infected cells increases, so does
the probability that a metapopulation becomes fully infected during simulation.
Because we are mainly interested in metapopulations that become fully infected,
we need fewer simulations if we increase the number of initially infected cells. On
the other hand, an increase in the number of initially infected cells decreases the
time for a metapopulation to become fully infected and, more importantly, also
decreases the variation in that time. By substantially increasing the number of ini-
tially infected cells, we would thus obtain unreliable simulation results, especially
regarding the variability of the infection process. In exploratory simulations starting
with one beneficially infected cell, the median time needed to reach 100 infected
cells was 60 generations for those simulations that did reach 100 infected cells,
with an interquartile range of 45 generations. This interquartile range is very small

Table 1. Default values and ranges of values of local parameters used in our simulation model.

Symbol Description Default value Range of values

sd Detrimental fitness effect −10−4 [−10−3, −10−5]
sb Beneficial fitness effect 10−4 [10−7, 10−1]
cd Detrimental conversion rate 10−6 [0, 10−6]
cb Beneficial conversion rate 10−9 [0, 10−9]
e Excision rate 10−9 [0, 10−9]
h HGT rate 10−4 [10−7, 10−1]

Note: All rates are indicated as numbers of events per cell and generation.
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compared with the interquartile range in the time to full infection of a metapopula-
tion, which typically is of the order of 10,000 generations. It is therefore reasonable
to choose an initial number of 100 beneficially infected cells instead of just one
infected cell, thus strongly decreasing the number of simulations needed to obtain
a statistically meaningful sample size of fully infected metapopulations. Neverthe-
less, for comparison with the results obtained from the deterministic model, we also
perform simulations of a subpopulation starting with 109 uninfected cells and only
one beneficially infected cell, using the set of default parameters for local processes
described in Table 1.

In our stochastic simulation model, we simulate the IS infection dynamics in
each subpopulation by using the tau-leaping algorithm.48,49 We use this algorithm
to calculate the length of each time step in the simulation and to determine the
numbers N0 of uninfected cells, Nd of detrimentally infected cells, and Nb of bene-
ficially infected cells at the end of each time step. For a more detailed description
of the tau-leaping algorithm, see Appendix B.

We now turn to a discussion of our combination of a branching process model
with a deterministic model, where we use a branching process for the early phase of
an IS infection inside a subpopulation and model the later phase deterministically.50

For the parameter range of local processes described in Table 1, we use a multi-type,
continuous-time Markov branching process (panel (B) in Fig. 1) to calculate the
probability of infection persistence, of the time needed to reach a certain threshold of
infected cells, and of the distribution of detrimentally and beneficially infected cells
when reaching this threshold. After some experimentation, we chose a threshold of
106 for the total of detrimentally or beneficially infected cells. This threshold is on
the one hand big enough for the asymptotic results from the theory of branching
processes to apply (e.g., the distribution of the time to reach the threshold, or the
distribution of detrimentally and beneficially infected cells). On the other hand, it is
small enough for the proportion of infected cells in a subpopulation with K = 109 to
be negligible. This is important because branching processes in the long term either
die out or grow infinitely, without self-regulation. In Appendix C, we give a more
detailed description of our branching process model. There we also show how the
multi-type branching process model can under some circumstances be simplified to a
single-type, birth-and-death process model. For this simpler model, we analytically
deduce the survival probability psurv ≈ sb of an IS infection if h ≤ |sd|, i.e., if HGT
cannot overcome the fitness cost of a detrimental IS.

We use a deterministic model of a subpopulation (panel (C) in Fig. 1) to analyze
the later phase of an IS infection inside a subpopulation. The deterministic model’s
initial conditions are based on results from our branching process model, namely the
median time to reach the threshold of 106 infected cells (if the infection persists),
and the distribution of detrimentally and beneficially infected cells at that time.
We formulate the deterministic model in terms of normalized population sizes Z0 =
N0/K, Zd = Nd/K and Zb = Nb/K. The infection dynamics in a subpopulation
without immigrating or emigrating cells can then be described by the following
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system of ordinary differential equations (ODEs), where Z = Z0 + Zd + Zb is the
total normalized population size:

Ż0 = (1 − Z)Z0 − hZ0(Zd + Zb) + e(Zd + Zb),

Żd = (1 + sd − Z)Zd + hZ0(Zd + Zb) + cdZb − cbZd − eZd,

Żb = (1 + sb − Z)Zb − cdZb + cbZd − eZb.

(2.1)

Starting with Z0 = 1 (corresponding to N0 = 109), and Zd = Nd/K and Zb =
Nb/K based on the branching process model’s prediction of Nd and Nb at the time
when the infection threshold of 106 cells has been reached, we solve this system
numerically, using the same parameters as in the branching process model.

2.2. Metapopulation level

Even though many prokaryotes are motile, they are slow and move only short dis-
tances on their own. However, prokaryotes can also be dispersed passively by wind,
water and migrating animals over long distances. We study the influence of this
passive dispersal on the IS infection dynamics using a metapopulation of spatially
distributed subpopulations inside a circular region of 100 km radius, roughly the
size of an ecoregion.51 Using this radius, the region is large enough to possibly
observe spatial phenomena like infection waves, while being small enough to keep
the number of subpopulations low and allow for manageable simulation times.

For most of our simulations, we cover the circular region with a hexagonal lattice
in such a way that a vertex of the lattice is located at the center of the region. We
then place a subpopulation at each vertex. As to the distance between neighboring
subpopulations (i.e., the edge length of the lattice), we seek a compromise between
a high level of detail in our simulations (many subpopulations, and therefore short
distances between them) and simulation feasibility (few subpopulations, and there-
fore long distances between them). After exploratory simulations with different dis-
tances between neighboring subpopulations, we chose a value of 100/8 = 12.5 km,
which results in a default metapopulation comprising a total of 241 subpopulations
(panel (A) in Fig. 2). Simulations with halved and doubled distances showed that
our choice of edge length does not influence our results. In order to assess the effect
of spatial metapopulation organization on the infection dynamics of ISs, we use two
additional types of spatial subpopulation distribution. In the first, the 241 subpopu-
lations show a uniform random distribution (panel (B) in Fig. 2). In the second, the
241 subpopulations show a clustered distribution, determined by a mixture of hab-
itable and uninhabitable landscape types with a contagion index of 0.4 (panel (C)
in Fig. 2). The contagion index52,53 is a measure of the clumpiness of a landscape,
where a value of zero signifies no clumping, i.e., a thorough mixture of landscape
types, and a value of one signifies that the landscape consists of only one type. For
comparison purposes, we also conduct simulations with a spatially unstructured,
single population with the same initial number of cells as the spatially structured
metapopulations (241 · 109 uninfected cells plus 100 beneficially infected cells).
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(A) (B) (C)

Fig. 2. Metapopulation model design. Regular (panel (A)), uniform random (panel (B)), and
clustered (panel (C)) spatial distributions of 241 subpopulations inside a circular region with a
radius of 100 km are shown; the initially infected subpopulation in the center is indicated as a
black closed circle; the landscape in the clustered spatial distribution of subpopulations (panel
(C)) has a contagion index of 0.4.

We simulate cell dispersal by exchanging cells between all subpopulations every
10 generations. We used exploratory simulations in which subpopulations exchange
cells every 2 and 50 generations, respectively, to ensure that our choice of the time
between cell exchange would not influence our results. We compute the number of
cells that migrate from one subpopulation to another based on a Poisson distri-
bution. The distribution’s mean is computed using a cell dispersal rate function
that describes how the mean number r of cells migrating from one subpopula-
tion to another during one generation depends on the distance d (in km) between
the two subpopulations. To our knowledge, there exist no direct measurements of
prokaryotic cell dispersal in the wild. Our default rate function is derived from the
indirectly measured cell dispersal data from Ref. 54 and has the form of a power
function, r = r(d) = 239.6 · (d + 0.1)−0.53 migrating cells per generation (Sec. 3.2
and Fig. 4). In view of the uncertainty about dispersal rates over long distances, we
also conduct simulations using rate functions with different proportions of dispersal
over short and long distances, while keeping the mean dispersal rates identical to
those in a metapopulation with regularly distributed subpopulations on the vertices
of a hexagonal grid (panel (A) in Fig. 2), to allow for fair comparisons between
rate functions. To explore the effects of steeper power functions with exponents
smaller than −2, which have been estimated by other authors for pollen and plant
seeds,55,56 we use an exponent of 4·(−0.53) = −2.13 and readjust the multiplicative
constant in our default rate function so that the mean dispersal rate in a metapop-
ulation with regularly distributed subpopulations is the same as for the default
rate function. This leads to the rate function r = 91,728.4 · (d+0.1)−2.13 migrating
cells per generation. We also include two extreme dispersal rate functions: a con-
stant function, where the dispersal rate does not depend on the distance between
two subpopulations, and a nearest neighbor function, where cell dispersal occurs
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only between immediately neighboring subpopulations, i.e., there exists a threshold
distance below which dispersal is constant and above which dispersal is impossible.
We again choose the constants so that the mean dispersal rate in a metapopulation
with regularly distributed subpopulations is the same as for the default rate func-
tion. This leads to the constant rate function r = 24.5 migrating cells per generation
for all subpopulations. For the nearest neighbor rate function, the cell dispersal rate
to the nearest six subpopulations on the hexagonal grid is r = 1,065.3 migrating
cells per generation, and r = 0 to all other subpopulations.

We say that a subpopulation has reached complete infection if it has an infection
prevalence of at least 95%, i.e., if at least 95% of all cells are infected. If at least
99% of all subpopulations are completely infected, we say that the metapopulation
has reached full infection. This definition ensures that a few subpopulations with
low cell dispersal rates will not unduly distort our results. We then use the time (in
cell generations) to full infection as a simple indicator of the infection dynamics.
For the large, spatially unstructured population with a carrying capacity of 241·109

cells, we correspondingly define the time to full infection as the time to reach an
infection prevalence of at least 0.95 · 0.99 = 94.05%.

For metapopulations with subpopulations on a hexagonal lattice, we conducted
5,000 simulations per metapopulation, of which typically about 50 simulations led to
full infection. For metapopulations with randomly distributed subpopulations, we
conducted 100 simulations on each of 50 different realizations of a random subpop-
ulation distribution. All times are given in cell generations. The time resolution of
the output for metapopulations is 500 generations. This means that every 500 gen-
erations, the number of uninfected, detrimentally infected and beneficially infected
cells existing in the subpopulations are reported, as is the number of immigrating
or emigrating cells for every subpopulation during the previous 500 generations.

For comparison with our combination of a branching process model with a
deterministic model of a subpopulation, we also conducted 105 simulations of a
single subpopulation, starting with 109 uninfected cells and one beneficially infected
cell, using a time resolution of 10 generations. This led to 14 complete infections.

We wrote the simulation program in C++ (gcc version 4.6.4), using the Boost
libraries (version 1.49.0). The documented source code is available upon request.
We analyzed the deterministic model for a subpopulation and all simulation data
using Mathematica (versions 10 and 11).

3. Results

Whether an infection of the metapopulation will succeed or not depends mainly
on the fate of the infection in the initially infected subpopulation, because it is
unlikely that during the early phase of an infection, any of the few infected cells
in this subpopulation will be dispersed to other, still uninfected subpopulations.
In a first step, we therefore analyzed the infection dynamics and its dependence
on local processes in a single subpopulation (next subsection). We then widened
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our scope, investigated bacterial cell dispersal based on existing data and examined
the influence of both local and global processes on the infection dynamics in the
metapopulation (later subsections).

3.1. In a subpopulation, the fitness benefit of an IS and HGT

strongly influence infection speed, but IS excision and

conversion do not

We used both a stochastic simulation model and a combination of a branching
process model with a deterministic model to analyze the IS infection dynamics in a
single, well-mixed subpopulation (K = 109) without any spatial structure. Figure 3
shows a comparison of the infection dynamics between the two approaches. In
both cases, we used default values for local process parameters (Table 1) and chose
complete infection as the endpoint of the infection process, i.e., the time to reach an

Fig. 3. In a subpopulation, the combination of a branching process model with a deterministic
model predicts the infection dynamics of the simulation model well. Fraction of uninfected cells
(dark gray disks, solid line), beneficially infected cells (light gray disks, crosses and dashed line)
and detrimentally infected cells (circles, cross and dotted line) in a subpopulation over time. We
determined these fractions by using the simulation model (disks and circles), and by numerically
solving the combination of a branching process model (crosses) with a deterministic model (lines).
In all models, we use the default parameter set. For the simulation model, the infection starts
with a population of uninfected cells at carrying capacity (N0 = 109), one beneficially infected
cell (Nb = 1), and no detrimentally infected cells (Nd = 0). For illustration, we use the three
simulations whose times to complete infection were closest to the quartiles of that time in all
14 simulations which reached complete infection. For the branching process model, the infection
starts with one beneficially infected cell (Nb = 1) and no detrimentally infected cells (Nd = 0). We
calculate the median time to reach a threshold of 106 infected cells and the numbers Nd and Nb of
detrimentally and beneficially infected cells at that time. We then use Nd and Nb to construct the
initial conditions for the deterministic model (Zd = Nd/109, Zb = Nb/109), together with Z0 = 1,
and calculate the solution of the ODEs based on the deterministic model. The horizontal axis
indicates the time between infection start and complete infection with negative values, because
we aligned the time lines of the combined branching process and deterministic model’s solution
and of all three simulations at the time point when complete infection was reached.
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infection prevalence of 95% in the subpopulation. In Fig. 3, we show the infection
process of those three simulations whose times to complete infection were closest to
the quartiles of that time in all 14 simulations (out of 105) that reached complete
infection. While the IS infection process of a subpopulation is very erratic during
the early phase, when there are only few infected cells, the infection process becomes
more deterministic later on, when a large fraction of cells is infected. To compare
the infection dynamics of the stochastic simulation model with the dynamics of
the combined model, we therefore align in Fig. 3 the time lines of all infection
processes at the time point of complete infection, i.e., we set the time point at
which complete infection has been reached to t = 0, and show all other time points
during the infection process as negative values.

As can be seen in Fig. 3, the combination of a branching process model with
a deterministic model predicts the infection dynamics of the stochastic simulation
model well, at least for the default values for local process parameters that we
used. It can also be seen that the population of infected cells initially seems to
grow faster than during the later infection phase. This is a well-known feature of
stochastic processes (e.g., Ref. 57, p. 12 and Ref. 58, p. 154), here caused by the
following dynamics during the early phase of an IS infection: the risk of infection
extinction through random events is very high when the number of infected cells is
still low, and only those infections which by chance quickly grow to a substantial
number of infected cells (i.e., 103 to 104 cells in Fig. 3) evade this risk and may
persist, thus shortening the expected time to reach a 95% infection prevalence.

We note that the small number of 14 simulations that have reached complete
infection out of 105 simulations that have been conducted is expected, as we now
show. According to Eq. (C.7) in Appendix C, the probability of a simulation starting
with one beneficially infected cell and with default parameters, where h ≤ |sd|,
is psurv ≈ sb = 10−4. The number of simulations that reach complete infection
therefore has a binomial distribution Bi(n; p) with n = 105 and p = sb = 10−4. The
expected number of simulations that reach complete infection is then np = 10, and
the standard deviation of this number is

√
np(1 − p) ≈ 3.2.

Using a combination of a multi-type branching process model with a determinis-
tic model, we analyzed the influence of local processes on the infection dynamics in
a subpopulation. To this effect, we systematically decreased and increased tenfold
the fitness cost sd, the fitness benefit sb, and the HGT rate h, while keeping all
other parameters constant. In addition, we analyzed a model without IS excision
and IS conversion (e = cd = cb = 0). Table 2 shows for different ratios of our model
parameters the corresponding ratio in the time to complete infection.

Table 2 shows that IS excision and conversion do not influence the time to
complete infection notably. However, a tenfold decrease in the fitness cost increases
the time to complete infection by 72%. This apparent paradox is caused by the effect
of a lower fitness cost on the distribution of detrimentally and beneficially infected
cells: if the fitness cost is smaller than the HGT rate (here, |sd| = 10−5 < 10−4 = h),
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Table 2. Dependence of the time to complete infection on model parameters.

Parameters γ γnew/γdefault tnew/tdefault

sd 0.1 1.72
10 1.02

sb 0.1 4.9
10 0.13

h 0.1 1.14
10 0.15

e, cd, cb 0 0.99

Note: Ratios tnew/tdefault of the time t to complete
infection for different ratios γnew/γdefault of model
parameters γ using the combination of a branching
process model and a deterministic model inside a sub-
population. γdefault and tdefault are the default value
of the parameter and the time to complete infection for
this default value, respectively. γnew and tnew are the
new value of the parameter and the time to complete
infection for this new value, respectively. The default
values of our model parameters are sd = −10−4,
sb = 10−4, h = 10−4, e = 10−9, cd = 10−6, cb =
10−9 (all rates are indicated per cell and generation),
and the corresponding time to complete infection is
t = 1.28 · 105 generations.

even a population of purely detrimentally infected cells may persist and grow, albeit
slowly. Therefore, for all infections that persist, the median time to reach complete
infection is longer than if the fitness cost is equal to the HGT rate, and infections
that persist contain more beneficially infected cells. The fitness benefit of a beneficial
infection influences the time to complete infection even more than the fitness cost
of a detrimental infection. As expected, increasing the fitness benefit decreases the
time to complete infection, and decreasing the fitness benefit increases that time.
For the HGT rate, the situation is more complex in that the influence of the HGT
rate h on the time to complete infection depends on whether the HGT rate is larger
or smaller than the absolute value |sd| = 10−4 of the fitness cost in a detrimental
infection. If the HGT rate is larger than this value, the infection time decreases with
increasing HGT rate, but if the HGT rate is smaller, the time to complete infection
does not greatly increase with decreasing HGT rate. This asymmetry arises because
IS insertion is much more likely to be detrimental than beneficial, and we therefore
assume that HGT leads to only detrimentally infected cells. To contribute to the
spread of an IS in a subpopulation, HGT then has to overcome the fitness cost
sd = −10−4 of a detrimental IS. If the HGT rate is smaller than |sd|, HGT cannot
do so, and the infection will be driven by beneficially infected cells only, i.e., the
time to complete infection does not depend on the HGT rate. But, if the HGT rate
is larger than |sd|, HGT contributes in the same way to the infection dynamics as
the fitness benefit sb of a beneficial infection does.
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3.2. The dispersal kernel of bacterial cells is fat-tailed

Having determined the influence of different local processes on the infection
dynamics in a subpopulation, we then turned to the infection dynamics on a
metapopulation level. We first searched the literature for information about the
dispersal of bacterial cells in the wild.

While there is evidence of widespread, large-distance cell dispersal, e.g., through
the air30,31 or through the oceans,32,33 reliable rates of cell dispersal are diffi-
cult to obtain. We based our default rate function on data that two authors54

obtained by applying a cladistic method59 to Bacillus subtilis and Bacillus mojaven-
sis nucleotide sequences from three continents. Briefly, they treat the geographic
location of each sequence as a multistate character and add the location to the
sequence phylogeny. Then, they derive the minimal number of migration events
that are necessary to obtain the observed distribution of multistate characters over
the phylogeny. From this number of migration events, they calculate the average
number Nm of migrating individuals between subpopulations per generation (N is
the subpopulation size, and m is the migration rate per individual and generation).
The authors report Nm for three different distances d (in km) between subpopu-
lations: (d, Nm) ∈ {(30, 50), (500, 5.5), (10,000, 2.25)}.54 To obtain a dispersal rate
function relating the mean rate r of migrating cells per generation between two
subpopulations to the distance d between the subpopulations, we fitted a power
law function of the form r = r(d) = a · (d + 0.1)b to the three data points men-
tioned above. We used d + 0.1 instead of d in the function to avoid a singularity
at d = 0. Using a power law function resulted in a better fit (residual sum of
squares RSS = 127.3) than using other functions, e.g., an exponential function
(RSS = 1,145.5). This is in agreement with observations of long-distance dispersal
of (small) pollen and plant seeds, where the dispersal kernel usually has a fat tail,
i.e., the tail drops off slower than in an exponential function.55,56,60 The best-fitting
power law function we obtained was r = 239.6 · (d + 0.1)−0.53. It is shown in Fig. 4,
together with the best-fitting exponential function and three other dispersal ker-
nels that we used in our simulations (steep power law, constant and nearest neigbor
function).

3.3. Early on, an IS infection of a metapopulation is an erratic

process

Using the power law dispersal kernel based on data from the literature, we next
analyzed the early phase of an IS infection in a metapopulation, when infected cells
are restricted primarily to the initially infected subpopulation. Using default values
for the local (Table 1) and global parameters of the metapopulation, with subpop-
ulations on a hexagonal grid (panel A in Fig. 2), only 49 out of 5,000 simulations
of our stochastic model led to full infection of the metapopulation. Moreover, only
in one out of these 49 full infections of the metapopulation did the infection in the
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Fig. 4. The dispersal kernel of bacterial cells is fat-tailed. Dispersal rate of bacterial cells as a
function of the dispersal distance. Shown are three indirect measurements (closed circles) from the
literature,54 together with several dispersal kernels r = r(d), where r is the dispersal rate (cells
per generation) and d is the distance in km. The best-fitting power law function is r(d) = 239.6 ·
(d + 0.1)−0.53 (solid, thick line). The best-fitting exponential function is r(d) = 18.0 · e−0.0021·d
(solid, thin line). In addition to the best-fitting power law function, we also used three other
dispersal kernels in our simulations: a steep power law function r(d) = 91,728.4 · (d + 0.1)−2.13

(dashed line), a constant function r(d) ≡ 24.5 (dot-dashed line), and a nearest-neighbor function
with r(d) = 1,065.3 for d ≤ 12.5 and r(d) = 0 for d > 12.5 (dotted line, only visible in top left
corner), where d = 12.5 km is the distance between two subpopulations on the hexagonal grid.
Note that both axes are logarithmic.

initially infected subpopulation die out temporarily and was rescued by another
subpopulation, which it had infected before. This last observation illustrates the
importance of the initially infected subpopulation for the infection process of the
metapopulation. Due to the low number of infected cells in the initially infected
subpopulation, the early phase of the infection is dominated by stochastic effects.
The low number of 49 full infections of the metapopulation in 5,000 simulations
with default parameters is thus not unexpected, as can also be shown by the fol-
lowing calculation. According to Eq. (C.7) in Appendix C, the survival probability
of a subpopulation starting with one beneficially infected cell and with h ≤ |sd| is
psurv ≈ sb = 10−4. Because the 100 initially infected cells act independently of each
other during the early phase of a subpopulation infection, when their number is
low compared to the total number of host cells in the subpopulation, the number of
persisting cell lineages, each starting with one beneficially infected cell, has a bino-
mial distribution Bi(n; p) with n = 100 and small p = sb = 10−4. The probability
of an infection with 100 beneficially infected cells to persist and spread can then
be approximated by a linearization for small sb as 1− (1− sb)100 ≈ 100 · sb = 0.01.
Because a fully infected subpopulation sooner or later inevitably leads to full infec-
tion of the metapopulation through cell dispersal, this is also the probability that
a metapopulation gets fully infected. We thus expect about 50 out of 5,000 simula-
tions to lead to full infection of the metapopulation.
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We call a subpopulation successfully infected if the number of infected cells in
the subpopulation increases faster than the number of immigrating infected cells,
i.e., if the infection in the subpopulation can spread on its own, without any immi-
gration of infected cells. The median time for the initially infected subpopulation
to successfully infect a second subpopulation is 2.0 · 104 generations, but with a
large interquartile range of 1.8 · 104 generations.

A survival probability of psurv ≈ sb = 10−4 for an infection with default
parameters that starts with one beneficially infected cell means that on average
1/psurv = 104 beneficially infected cells must immigrate into an uninfected subpop-
ulation before an infection succeeds, i.e., most infections of a subpopulation die out.

Taken together, these observations demonstrate that the infection process is very
erratic during its early phase, when both the number of infected subpopulations and
the number of infected cells per subpopulation are low. Over time, when a larger
fraction of cells in a subpopulation gets infected, the infection process becomes
more deterministic. For example, the coefficient of variation of the time to reach
an infection prevalence of 1% in the initially infected subpopulation (starting with
a prevalence of 10−7) is 15.0%, while the coefficient of variation of the time that
passes between reaching an infection prevalence of 94% and of 95% in the initially
infected subpopulation is only 5.7%.

3.4. An IS infection of a metapopulation is not strongly slowed

down by spatiality

We next examined how the spatial distribution of subpopulations in a metapopula-
tion influences the IS infection dynamics. Figure 5 shows the time to full infection
for different spatial distributions, using default values for the local parameters of all
metapopulations (Table 1). The nonspatial metapopulation consists of a well-mixed
single population starting with the same number of cells as the other metapopu-
lations (241 · 109 cells). The median time to full infection for this large, single
population is 1.82 · 105 generations, and the median times to full infection for the
three metapopulations with a spatial structure of regional extent (median times
between 1.97 · 105 and 1.98 · 105 generations) are at most 8.4% higher than the
median time for the nonspatial population.

Figure 5 also shows that the type of spatial distribution (regular, random, or
clustered) does not notably influence the median time to full infection. This may
be a consequence of the fact that the default power law cell dispersal rate function,
which is based on dispersal data from the wild, is relatively flat. For this function,
the dispersal rate only drops from 70.3 cells per generation at a distance of 10 km
between subpopulations to 20.9 cells per generation at a distance of 100 km between
subpopulations. With this rate function, strongly varying distances between a sub-
population and its nearest neighbors, which are a characteristic of clustered land-
scapes, do therefore not pose any difficulties for the IS infection and will not slow
it down notably.
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Fig. 5. The spatial distribution of subpopulations influences IS infection dynamics only weakly.
Violin plot showing a kernel density estimate (shaded region), the median (dot) and the first
and third quartile (endpoint of whiskers) of the time to full infection for a nonspatial, single
population and the following three spatially structured metapopulations: regular (subpopulations
on a hexagonal lattice), random (subpopulations uniformly distributed), clustered (subpopulations
uniformly distributed in a clustered landscape). Number of observations (left to right): 62, 49, 57,
and 63 simulations that led to fully infected metapopulations (out of 5,000 simulations).

3.5. The shape of the dispersal function has only a limited

influence on the infection speed in a metapopulation

We also explored the effect of the cell dispersal rate function on IS infection dynam-
ics. Figure 6 shows the time to full infection for four different cell dispersal rate
functions: constant, default power law, steep power law, and nearest neighbor.

There is no notable difference in the median time to full infection for the constant
rate function and the default power law rate function: the time for both is about
1.99 · 105 generations. Even the median times to full infection for the two power
law rate functions differ by a mere 7.3%: 1.98 · 105 and 2.12 · 105 generations for
the default and the steep power law rate function, respectively. Only the nearest
neighbor dispersal rate function leads to a substantially longer median time to full
infection than the other functions (e.g., 77.7% longer than for the default power
law rate function). Taken together, Fig. 6 shows that the times to full infection
for the default power law rate function, which is based on dispersal data from the
wild, and two rate functions with flatter (constant) or steeper (steep power law)
shape are very similar. Even for the nearest neighbor rate function, the time to
full infection has the same order of magnitude. For quite different shapes of the
dispersal rate function, the infection speed does therefore not vary strongly inside
a metapopulation with regional extent.

We examined the effect of changing the total cell dispersal rate while keeping
the overall shape of the dispersal function the same. To this end, we used our
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Fig. 6. Realistic, data-based cell dispersal influences IS infection dynamics only weakly. Violin
plot showing a kernel density estimate (shaded region), the median (dot) and the first and third
quartile (endpoint of whiskers) of the time to full infection for the constant (c), default power law
(p), steep power law (sp) and nearest neighbor (nn) cell dispersal function. Number of observations
(left to right): 58, 49, 48, and 51 simulations that led to fully infected metapopulations (out of
5,000 simulations).

default power law dispersal function r(d) = c · (d + 0.1)−0.53, where c = 239.6,
and decreased or increased the multiplicative constant c by up to two orders of
magnitude. Based on 5,000 simulations for ten and hundredfold smaller or larger
values of c, we observed that such a decrease/increase of the dispersal rate leads to
notably longer/shorter times to full infection than those obtained with the default
rates. Specifically, while a tenfold reduced dispersal rate leads to a substantially
increased time to full infection (+22.2%), a tenfold increased dispersal rate leads
to a much smaller decrease in the time to full infection, from 1.98 · 105 to 1.84 · 105

generations (−7.1%). This is not unexpected, because the lower limit for the time
to full infection is given by 1.82 · 105 generations, the time to full infection for a
single, spatially unstructured population with carrying capacity K = 241 ·109 cells.
In summary, while the shape of the dispersal function, i.e., different proportions of
dispersal over short and long distances, does not strongly influence the time to full
infection, the total number of dispersed cells has a strong influence on this time.

3.6. Both HGT rate and fitness benefit of an IS strongly influence

infection speed

We next examined how the fitness benefit sb of an IS and the HGT rate h influence
the infection dynamics. In contrast to the spatial distribution of subpopulations
and the cell dispersal rate, these two parameters both reflect local processes within
a subpopulation. In Sec. 3.1, we have already shown that of all the local processes
we consider in our models, the fitness benefit of an IS and HGT are the ones that
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Fig. 7. The fitness benefit of an IS and HGT rate influence IS infection dynamics in a metapop-
ulation strongly. Median of the time to full infection for different values of the fitness benefit sb

of an IS (closed circles) and of the HGT rate h (open circles). Circles have been slightly shifted
horizontally to avoid overlap. The first and third quartiles are not shown because they are so close
together as to be covered by the circles indicating the median. Number of observations for the
time to full infection, with increasing fitness benefit: 0, 0, 7, 49, 509, 3,168, 5,000 simulations that
led to fully infected metapopulations (out of 5,000 simulations). Number of observations for the
time to full infection, with increasing HGT rates: 46, 62, 53, 49, 470, 3,080, 5,000 simulations
that led to fully infected metapopulations (out of 5,000 simulations). Note that both axes are
logarithmic.

have the strongest influence on the infection dynamics in a subpopulation. We
therefore expect them to also have a strong effect on the infection dynamics in the
metapopulation.

This is indeed what we observe in Fig. 7. For constant HGT rate h = 10−4, the
time to full infection increases with decreasing fitness benefit sb of an IS (closed
circles in the figure). At the same time, the extinction probability of an IS infection
increases and for low fitness benefits, sb < 10−5 reaches such high values that no
infection persisted in 5,000 simulations.

Similarly, for constant fitness benefit sb = 10−4, the time to full infection
increases with decreasing HGT rate h (open circles in the figure), but only as
long as the HGT rate is larger than the absolute value |sd| = 10−4 of the fitness
cost in a detrimental infection. For even smaller values, h < 10−4, HGT cannot
overcome the fitness cost of a detrimental infection. The infection process is then
driven by beneficially infected cells only, and the time to full infection thus becomes
independent of the HGT rate.

The HGT rate and the fitness benefit not only strongly influence the infection
speed, but also the probability that a metapopulation gets fully infected. This is
reflected in the number of simulations that lead to fully infected metapopulations,
which is reported in Fig. 7. Starting with the default parameter set, where h = 10−4,
sd = −10−4 and sb = 10−4, a tenfold change in the fitness benefit leads to a roughly
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tenfold change in the number of simulations that lead to full infection. This is to
be expected, because Eq. (C.7) in Appendix C shows that for small values of the
fitness benefit sb and for the HGT rate equal to the absolute value of the fitness cost,
h = |sd|, the probability p of an IS infection first to spread through a subpopulation
and then through the metapopulation is approximately equal to the fitness benefit,
p ≈ sb. In contrast, Fig. 7 shows that a tenfold increase in the HGT rate increases
the number of simulations that lead to full infection roughly tenfold, but a decrease
in the HGT rate does not decrease that number. The reason for this is the same
as suggested above for the influence of the HGT rate on the time to full infection:
only if the HGT rate is larger than the absolute value of the fitness cost, h > |sd|,
can HGT contribute in the same way to the infection as the fitness benefit sb, and
for smaller HGT rate, h < |sd|, the persistence probability of the infection depends
only on the fitness benefit.

3.7. Metapopulation infection is mainly driven by the initially

infected subpopulation

To assess the role of the initially infected subpopulation during the infection process
of a metapopulation, we focused on the 49 simulations with default parameters that
led to full infection of the metapopulation. In 44 out of those 49 simulations, the ini-
tially infected subpopulation was the first to reach complete infection (i.e., reaching
an infection prevalence of 95%). For each of these 44 simulations, we first sorted all
240 initially uninfected subpopulations according to their time to successful infec-
tion, thus creating a ranked list of subpopulations for each simulation (recall that
we call a subpopulation successfully infected if its number of infected cells increases
faster than the number of immigrating infected cells). Any given subpopulation
need not have the same rank in all 44 ranked lists because the subpopulation may
get successfully infected at different times during the 44 simulations we analyzed.
We then collected all the subpopulations of the same rank into groups, thus form-
ing 240 rank groups with 44 subpopulations per group. For each of the 240 rank
groups, the horizontal axis in Fig. 8 shows the median time to successful infection
of the subpopulations in that rank group. The vertical axis shows, for the subpop-
ulations in that rank group, the median fraction of immigrated, infected cells that
originate from the initially infected subpopulation until the time when a subpopu-
lation becomes successfully infected. In order to get an impression of the amount
of variation in the data, the figure shows all three quartiles (dot for median, and
endpoint of whiskers for first and third quartile) of the time to successful infection
and of the fraction for groups number 1 (first successfully infected), 120, and 240
(last successfully infected).

Figure 8 shows that even for the last successfully infected subpopulation in each
simulation (rank group number 240, with a median time to successful infection of
8.5 · 104 generations), a majority of immigrating, infected cells (median: 66.8%)
originate from the initially infected subpopulation. This means that the initially
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Fig. 8. Metapopulation infection is mainly driven by the initially infected subpopulation. Each
gray dot corresponds to one of 240 “time rank” groups of initially uninfected subpopulations. The
horizontal axis shows the median time to successful infection of a subpopulation, and the vertical
axis shows the median fraction of cells that immigrate from the initially infected subpopulation
until a subpopulation becomes successfully infected. In addition, the figure shows the median
(black dot) and the first and third quartile (endpoint of black whiskers) of these quantities for
three specific rank groups, i.e., numbers 1 (first successfully infected), 120 and 240 (last success-
fully infected). We constructed the time rank groups by first ranking all 240 initially uninfected
subpopulations for each simulation by their time to successful infection and then collecting all
subpopulations with the same rank into the same group.

infected subpopulation actually drives the infection process of the metapopula-
tion, while subpopulations which are infected later on contribute much less to the
infection of not yet infected subpopulations. We confirmed this observation with
simulations in which cell dispersal was possible only from the initially infected
subpopulation. Subpopulations that got infected later on were therefore not con-
tributing to the infection of still uninfected subpopulations. Nevertheless, the time
to full infection of the metapopulation increased by only 5.2%, compared with the
original simulations in which dispersal is possible from all subpopulations.

While the emigration of infected cells allows the initially infected subpopulation
to infect a whole metapopulation, the emigration (i.e., loss) of infected cells also
takes a minor toll on the infection speed in the initially infected subpopulation.
The median time to complete infection for the initially infected subpopulation is
10.9% longer than for a single population of the same size (K = 109 cells) without
dispersal.

4. Discussion

We have shown in earlier papers that a detrimental IS can successfully invade a
single host cell population if the HGT rate is larger than the detrimental fitness
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effect of the IS on the host cell, but that the infection process may take a very long
time.20,21 In this paper, we investigate the influence of spatiality on the spread of
an IS through a host cell metapopulation by using a spatially explicit simulation
model for the spatial infection dynamics of an IS that can be both detrimental and
beneficial to its host. In doing so, we also allow for beneficial effects of an IS on
its host, which may shorten the infection process. Our key observations are that
global processes at the metapopulation scale are less important for the infection
dynamics than local processes within subpopulations, and that the initially infected
subpopulation plays a key role in the infection of the metapopulation. We next
discuss these observations in more detail.

4.1. Global processes are less important for the IS infection

dynamics than local processes

In spatial ecology, one of the most important factors for the spread of an inva-
sive agent is the dispersal kernel, a probability distribution describing the distance
between a parent and its offspring (e.g., the probability distribution of the distance
between a plant and one of its seedlings). The speed with which the agent spreads
is mainly determined by the tail of the dispersal kernel.61 If the kernel is fat-tailed
(i.e., the probability of long distance dispersal diminishes slower than a negative
exponential with distance), long-distance dispersal events usually lead to an infec-
tion that spreads without clearly defined and steadily expanding borders between
infected and uninfected subpopulations. Instead, the initially infected subpopula-
tion becomes surrounded by a fragmented patch of infected subpopulations, and
many isolated, infected subpopulations far away from the initially infected sub-
population may exist. Those isolated subpopulations may then themselves become
the seeds of fragmented patches of infected subpopulations, and the patches coa-
lesce over time. In addition, the speed with which the infection spreads, defined by
the square root of the infected area, divided by time, increases over time.61–63 The
spreading of an IS infection depends on the spreading of its prokaryote host, and we
found that at least some prokaryotes have a fat-tailed dispersal kernel (Fig. 4), based
on data from other authors.54 We would therefore expect a patchy and irregular
spreading of an IS infection in a metapopulation. This is indeed what we observe
in Fig. D.1 in Appendix D. This figure shows that the spreading of a simulated
IS infection with a power law dispersal function proceeds irregularly, with many
isolated infected subpopulations. We also conducted simulations which show that
decreasing or increasing the spatial extent of a regional metapopulation has only
a moderate effect on the time to full infection (Fig. E.1 in Appendix E). Together
with our observation that the spatial distribution of subpopulations does not limit
the spreading of an IS inside the region we consider (Fig. 5), this suggests that ISs
may also spread quickly over larger regions, even if the host cell habitat is clustered
instead of uniform.
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While the spreading of an IS is not strongly slowed down by spatiality and by
dispersal, at least for the organisms and on the spatial scale we consider, IS infection
speed depends very sensitively on processes within a host cell or between host cells
in a local subpopulation (Fig. 7).

4.2. An IS infection strongly depends on the initially infected

subpopulation

We show that the IS infection process depends critically on the initially infected sub-
population. The infection in that subpopulation must prevail against a high prob-
ability of dying out quickly, and the prevalence of infected cells needs to increase
to high enough values so that the initially infected subpopulation has a substan-
tial chance of infecting other subpopulations. We show that the infection process
of the initially infected subpopulation is very erratic. The probability of an infec-
tion to persist is low, and the variation in the time to successful infection of the
first initially uninfected subpopulation is quite large (Fig. 8). This is in agreement
with well-known results, e.g., about infection persistence,37,64–67 about population
dynamics,36,68–70 and about the persistence probability of a dominant mutant gene
with a small selective advantage.71 We also show that the infection process of other
subpopulations follows a pattern of frequent extinction and rescue cycles, which
have already been observed by other authors in metapopulations (Refs. 72 and 36,
p. 148f). Even successfully infected subpopulations do not contribute heavily to
the infection of other, still uninfected subpopulations (Fig. 8). During the infec-
tion process of a metapopulation, the initially infected subpopulation is the main
contributor of infected cells. Conversely, this means that if the initially infected
subpopulation dies out too soon, the infection is at risk.

4.3. Caveats

We now discuss some limitations of our study.
First, the spatial distribution of habitat patches for host cells of an IS infection

is not known, and it may vary strongly for different landscapes. This lack of knowl-
edge may be furthermore aggravated by our uncertainty about dispersal rates of
prokaryotes over different distances. For example, a steeply decreasing dispersal rate
function might reduce the infection speed of an IS much more in a landscape with
strongly clumped habitat patches than in a landscape with uniformly distributed
habitat patches. However, available dispersal data of prokaryotes in the wild54 sug-
gest that their dispersal rate function has a fat tail and does not decrease steeply
with increasing distance, which reduces the dependence of the infection speed on the
spatial distribution of habitat patches. In addition, because many ISs can move by
HGT among different genera of prokaryote hosts5 with different dispersal rate func-
tions, some of which may well have a fat tail, the dependence of the infection speed
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on the spatial distribution of habitat patches may be further reduced. Moreover, we
simulated a wide range of spatially structured and unstructured metapopulations
(Fig. 5) and used different dispersal rate functions (Fig. 6). With the exception of
the nearest neighbor rate function, we did not find any large differences in the time
to full infection, which suggests that on the spatial scales we consider, spatiality
has only a limited impact on the time to full infection.

Second, there is considerable uncertainty in the parameters that govern local
processes within a subpopulation or within host cells, i.e., the HGT rate h, the
fitness cost and benefit sd and sb of an IS, the IS conversion rates cd and cb, and
the IS excision rate e. To compensate for this uncertainty, we conducted simulations
using a range of values for these parameters.

Third, we assumed that local and global process parameters stay constant over
time and space, at least in relation to the rate of cell division, and we also assumed
that no externally induced catastrophic events take place (e.g., no subpopulation
extinction caused by habitat destruction). Our interest lies mainly in the influence
of spatiality on infection dynamics.

Fourth, for reasons of simulation feasibility, we had to restrict the geographical
size of all metapopulations to a diameter between 100km and 400km. Our results
are therefore only valid for a geographical region of about that size.

5. Conclusion

Despite the limitations mentioned above, our results allow us to make the following
qualitative assertions. First, an IS infection is an erratic process during its early
phase, both in a single population and in a metapopulation consisting of several
subpopulations. Second, the initially infected subpopulation is the driving force
of the IS infection in a metapopulation, so that the success of a metapopulation
infection mainly depends on the success of the infection in this subpopulation. The
extinction probability in the initially infected subpopulation is high, and even if
the IS infection in this subpopulation succeeds, it takes many failed attempts until
another subpopulation is successfully infected. Third, for the dispersal rates and
the spatial scales we study, spatiality and dispersal do not strongly reduce infec-
tion speed, in contrast to local processes within a subpopulation or within a host
cell.
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Appendix A. Transposition, Excision, and HGT Rates

Table A.1 shows a summary of reported IS transposition, IS excision, and HGT
rates that are used as a reference for our model parameters.

Appendix B. The Tau-Leaping Algorithm

Originally, the tau-leaping algorithm was developed to approximately simulate the
dynamics of a chemically reacting system,48 as an extension of the exact but compu-
tationally expensive Doob–Gillespie algorithm.76 We use the tau-leaping algorithm
to simulate the infection dynamics inside a well-mixed subpopulation. The formu-
lation of this algorithm below will therefore be adapted to accommodate such a
situation.

The basic algorithm works as follows. Assume that a population consists of
different types of individuals (e.g., uninfected, detrimentally infected or beneficially

Table A.1. Transposition, excision, and HGT rates reported by different authors.

Event Rates Sources

Transposition Conservative 10−7–10−4 Refs. 5, 8 and 45
Excision 10−10–10−6 Refs. 8 and 45
HGT Transformation 10−6–10−3 Ref. 73

Transduction 10−8 Ref. 74
Conjugation 10−6–10−5 Ref. 75

Note: Rates have been converted to numbers of events per cell or IS and generation.
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infected cells). Everything that can happen to an individual is called an event.
There are different classes of events, i.e., one event class may be a specific change
of type (e.g., detrimental infection of an uninfected cell), and death or propagation
of an individual of a specific type (e.g., cell division of an uninfected cell). The
rates with which those different event classes happen may depend on the numbers
of individuals of any type (e.g., density-dependent death or infection by HGT).
For an event of any class, we know how it will affect the numbers of individuals of
different types (e.g., the detrimental infection of an uninfected cell will decrease the
number of uninfected cells by one and increase the number of detrimentally infected
cells by one). Assume that we know the numbers of individuals of all different types
at a specific time t0. We can then calculate the rates with which all classes of events
will happen at that time. Based on these rates, we can calculate the maximal time
span τ during which all the events that are expected to happen do not change the
numbers of individuals of different types by too much, and therefore do not change
the rates of all different event classes by too much either. Having calculated that
time span τ (from which the algorithm got its name), we then determine for each
event class the number of events occurring during τ by drawing a random number
from a Poisson distribution with a mean equal to the product of τ and the event
rate in that class at time t0. Finally, we use all the events of all classes that have
been determined to calculate the numbers of individuals of all types at time t0 + τ .
One τ -leap has then been executed.48

The basic algorithm described in the last paragraph works well to simulate the
population dynamics as long as none of the numbers of individuals of any type are
small. If at any time the number of individuals of a type gets small, there is a risk
that during the next τ -leap, the events that have been determined to happen would
by chance require to decrease the number of individuals of that type to negative
values. To avoid such situations, one distinguishes between noncritical and critical
event classes at time t0. Noncritical are those classes which will presumably not
reduce any numbers of individuals to negative values during the next time step.
(This is usually implemented by imposing a threshold value on the number of
events of a class that can happen without reducing the numbers of individuals of
any involved types to negative values.) For those event classes, we calculate τnoncrit

using the basic algorithm. We call an event class critical, if during the next τ -leap,
events of that class might result in negative numbers of individuals for at least
one type. To avoid this, we determine the time span τcrit until the next event of
any of the critical event classes will happen by drawing a random number from an
exponential distribution with mean 1/r, where r is the sum of the rates of all critical
event classes. The idea is to make sure that at most one event of any critical class
happens during the next τ -leap. We therefore choose τ = min(τcrit, τnoncrit) as the
length of the next τ -leap. The numbers of events of noncritical classes that occur
during the next τ -leap are determined using the basic algorithm. If τ = τnoncrit, no
event of any critical class will happen during the τ -leap, and if τ = τcrit, exactly
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one event of any critical class will happen. We determine the class to which this
event belongs by drawing a random number from a distribution with probabilities
proportional to the rates of all critical event classes. Finally, we use all events of all
classes (noncritical and perhaps critical) to calculate the numbers of individuals of
all types at time t0 + τ .49

Appendix C. The Branching Process Model

Our multi-type, continuous-time Markov branching process model (Ref. 77, p. 199ff)
consists of two types: detrimentally and beneficially infected cells (panel (B) in
Fig. 1). At any time, four different events can happen to a cell: cell division, cell
death (including IS excision), IS conversion, and HGT. Observe that we do not
include uninfected cells in our model, and therefore IS excision from a detrimentally
or beneficially infected cell is treated as cell death. In addition, since we assume that
HGT always leads to detrimentally infected cells, an HGT event in a detrimentally
infected cell can be treated the same way as cell division. We assume the waiting
time to a cell’s next event to have an exponential distribution with mean 1/ad for
detrimentally infected cells and 1/ab for beneficially infected cells, where

ad = 2 + sd + e + cb + h,

ab = 2 + sb + e + cd + h.

At the time of an event, the probabilities of the four different event types are given
by the following values:

Cell type Cell div. Cell death IS conversion HGT

Detrimentally inf. 1+sd+h
ad

1+e
ad

cb

ad
0

Beneficially inf. 1+sb

ab

1+e
ab

cd

ab

h
ab

Based on the event probabilities at the time of an event, we obtain the probability
generating functions:

gd(zd, zb) =
1 + sd + h

ad
z2

d +
1 + e

ad
+

cb

ad
zb,

gb(zd, zb) =
1 + sb

ab
z2

b +
1 + e

ab
+

cd

ab
zd +

h

ab
zdzb.

(C.1)

From the probability generating functions, we derive the infinitesimal generating
functions:

g̃d(zd, zb) = (1 + sd + h)z2
d − (2 + sd + e + cb + h)zd + cbzb + 1 + e,

g̃b(zd, zb) = (1 + sb)z2
b − (2 + sb + e + cd + h)zb + cdzd + hzdzb + 1 + e,

(C.2)
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and the infinitesimal generator

A =

(
sd − e − cb + h cb

cd + h sb − e − cd

)
. (C.3)

The eigenvalue λ0 of A with the largest real part is itself real. If λ0 < 0, λ0 = 0
or λ0 > 0, the branching process is called subcritical, critical, or supercritical,
respectively.

Subcritical and critical branching processes become extinct with certainty.
Supercritical branching processes have a nonzero probability of survival. The sur-
vival probability of an IS infection starting with one beneficially infected cell is
given by psurv = 1 − pext, where pext is the infection’s extinction probability. The
extinction probability of an IS infection starting with one beneficially infected cell
is the component qb of the smallest root q = (qd qb)T of the infinitesimal generating
function g̃(z) (Eq. (C.2)) in the interval [0,1] (Ref. 77, p. 205).

If the branching process is supercritical, there exist positive right and left eigen-
vectors u = (ud ub)T and v = (vd vb)T of the infinitesimal generator A (Eq. (C.3)),
which can be scaled so that ud + ub = 1 and udvd + ubvb = 1. In the following, we
always assume that this scaling has been done.

The following holds in a supercritical, irreducible, multi-type branching process
with finite 2nd moment, as described by our model (Ref. 78, p. 157f):

(1) There exists a random variable Wm
k (t) := Zm

k (t)

vkeλ0t

t→∞→ Wm for any m ∈ {d, b}
and k ∈ {d, b}, where Zm

k (t) is the number of cells of type k at time t, starting
with one cell of type m at time t = 0.

(2) The characteristic function ϕm(x) = E(eiW mx) of Wm, where i =
√−1, obeys

the system of ODEs dϕm(x)
dx = g̃m(ϕ1(x),...,ϕl(x))

λ0x .

After numerically solving the ODE system for the characteristic functions
ϕm(x), we use the Fourier inversion theorem to reconstruct the probability den-
sity f b of the random variable W b from its characteristic function ϕb as f b(t) =
1
2π

∫∞
−∞ e−itxϕb(x)dx. We then calculate the number Zb

k(t) of detrimentally (k = d)
and beneficially (k = b) infected cells at time t (big enough for the approximation
to hold) in a population that has been infected with one cell containing one IS in
its genome as Zb

k(t) = vkeλ0tW b. The total size of the population of infected cells
is Z(t) := Zb

d(t) + Zb
b (t) = eλ0tW b(vd + vb). Therefore, the time TN to a threshold

of N infected cells, for N sufficiently large, is

TN =
1
λ0

[ln(N) − ln(W b) − ln(vd + vb)], (C.4)

and the median time to this threshold of infected cells is

TN,med =
1
λ0

[ln(N) − ln(W b
med) − ln(vd + vb)], (C.5)

where W b
med is the median of the random variable W b, which can be computed

using the density f b of W b.
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The observation mentioned above that Zm
k (t)

vkeλ0t

t→∞→ Wm for m ∈ {d, b} and
k ∈ {d, b} means that the proportion of detrimentally and beneficially infected cells
at time t (big enough for the approximation to hold) is given by vd/(vd + vb) and
vb/(vd + vb), respectively.

In an earlier paper, we showed that a purely detrimental IS infection can only
persist if HGT can overcome an IS’s fitness cost, i.e., if h > |sd|.20 Taking into
account that the conversion rates cb and cd are small, the persistence of an IS
infection for h ≤ |sd| therefore depends on the persistence of the population of ben-
eficially infected cells. To calculate the survival probability of such an IS infection
with h ≤ |sd|, we can thus simplify the multi-type model to a birth-and-death pro-
cess model, where the state of the model corresponds to the number of beneficially
infected cells, and process state 0 is considered to be absorbing, meaning that the
population of beneficially infected cells has become extinct. The birth and death
rates per infected cell are 1 + sd and 1 + e ≈ 1, respectively. According to a result
by Kendall,79 the probability of the birth-and-death process being in state 0 (i.e.,
the population of beneficially infected cells having died out) at time t is

P0(t) =
1 − e−sbt

1 + sb − e−sbt
. (C.6)

The survival probability of an IS infection with h ≤ |sd| can therefore be approxi-
mated by

psurv = 1 − lim
t→∞ P0(t) = 1 − 1

1 + sb
≈ sb for small sb, (C.7)

where we have linearized around sb = 0 in the last step.
This agrees with a result by Haldane,71 who showed that a dominant mutant

gene with a small selective advantage s, so that the expected number of offspring is
1 + s, persists with a probability of about 2s in a random mating population. Con-
sidering the small fitness advantage sb of a beneficially infected cell, the expected
number of offspring of such a cell is [2 · (b + sb)+ 0 · d]/(b + sb + d) ≈ 1 + sb/2 (lin-
earization for small sb), where b = d = 1 are the division and death rates, respec-
tively, of an uninfected cell in a subpopulation at carrying capacity. In our model,
the selective advantage assumed by Haldane is therefore s = sb/2, and the proba-
bility of a beneficially infected cell to persist and spread through the subpopulation
is 2s = sb.

Appendix D. The Spreading of an IS Infection Inside
a Metapopulation is Irregular

Figure D.1 shows four different dispersal rate functions snapshots of the IS infec-
tion process, when for the first time at least one third of all subpopulations of a
metapopulation are infected. The figure shows that whether an IS infection spreads
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Fig. D.1. The spreading of an IS infection inside a metapopulation is irregular. The four panels
show, for four representative simulations, snapshots of infected (closed circles) and uninfected
(open circles) subpopulations at the first time when at least one third of all subpopulations in the
metapopulation are infected. Each of the four simulations is representative of all simulations with
default parameters from one of the following four dispersal rate functions: constant (c), default
power law (p), steep power law (sp), and nearest neighbor (nn). For each dispersal rate function,
the representative simulation is chosen so that the simulation’s time to full infection is the one
closest to the median time to full infection of all simulations with this dispersal rate function.

regularly or irregularly depends strongly on the dispersal rate function. For exam-
ple, infections based on power law dispersal rate functions (panels p and sp in
Fig. D.1) proceed irregularly, with many isolated infected subpopulations.

Appendix E. The Spatial Size of a Metapopulation has Only
a Moderate Effect on the Time to Full Infection

To assess the influence of a metapopulation’s size on the IS infection dynamics, we
also conducted 5,000 simulations for metapopulations with default parameters in
circular regions with a radius of 50 km and of 200 km instead of the default radius
of 100 km. Using a hexagonal lattice with the same distance of 12.5 km between
two neighboring subpopulations as in our default simulations, these two regions
contained 61 and 931 subpopulations, respectively. Figure E.1 shows the time to
full infection for the two new metapopulations and the original metapopulation with

J.
 B

io
l. 

Sy
st

. 2
01

8.
26

:1
33

-1
66

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n 
05

/0
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.



March 28, 2018 14:29 WSPC/S0218-3390 129-JBS 1850007

166 Bichsel, Barbour & Wagner

Fig. E.1. The spatial extent of a metapopulation influences IS infection dynamics only weakly.
Violin plot showing a kernel density estimate (shaded region), the median (dot) and the first and
third quartile (endpoint of whiskers) of the time to full infection for three different radii of the
circular region which encloses a metapopulation. Number of observations (left to right): 61, 49,
and 47 simulations that led to fully infected metapopulations. Due to excessive simulation times,
only 4,807 out of 5,000 simulations finished when using a radius of 200 km.

241 subpopulations. While there is no notable difference in the time to full infection
between a radius of 50 km and a radius of 100km, the time to full infection in a
circular region of 200km radius is somewhat longer than in the other two regions.
However, the difference in the median times to full infection is not large. For the
circular region with radius 200km, the median time increases by only 3.3% in
comparison to the region with radius 100km.
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