
A metabolism is a complex chemical reaction system, 

whose metabolic genotype – the DNA encoding the 

enzymes catalyzing these reactions – can be compactly 

represented by its complement of metabolic reactions. 

Here, we analyze a space of such metabolic genotypes. 

Specifically, we study nitrogen metabolism and focus 

on nitrogen utilization phenotypes that are defined 

through the viability of a metabolism – its ability to 

synthesize all essential small biomass precursors – on 

a given combination of sole nitrogen sources. We ran-

domly sample metabolisms with known phenotypes 

from metabolic genotype space with the aid of a 

method based on Markov Chain Monte Carlo sam-

pling. We find that metabolisms viable on a given ni-

trogen source or a combination of nitrogen sources can 

differ in as much as 80 percent of their reactions, but 

can form networks of genotypes that are connected to 

one another through sequences of single reaction 

changes. The reactions that cannot vary in any one me-

tabolism differ among metabolisms, and include a 

small core of “absolutely superessential” reactions that 

are required in all metabolisms we study. Only a small 

number of reaction changes are needed to reach the 

genotype network of one metabolic phenotype from 

the genotype network of another metabolic phenotype. 

Our observations indicate deep similarities between 

the genotype spaces of macromolecules, regulatory 

circuits, and metabolism that can facilitate the origin of 

novel phenotypes in evolution.  
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The organization of metabolic genotype space facilitates adaptive evolution in 

nitrogen metabolism  

Introduction 
 

Nitrogen is among the top five chemical elements oc-

curring in living systems, comprising of the order of 

10 percent of biomass in bacteria, for example 

(Fagerbakke et al. 1996, Heldal et al. 1985). Most of 

this nitrogen occurs in the form of amino acids, but 

some of it also as RNA and DNA nucleotides, as well 

as cofactors such as NAD and heme (Neidhardt 1996). 

The biomass of a free-living heterotrophic organism 

such as E. coli is built from approximately sixty small 

molecule biomass precursors, of which 48 contain ni-

trogen (Table S1). 

 Highly abundant but chemically inert atmos-

pheric molecular nitrogen gas can only be converted 

into biomass by a select few organisms (Sadava et al. 

2006). Many other nitrogen sources are less abundant 

and can limit an organism’s rate of growth or repro-

duction. Organisms can circumvent such limitations by 

using more than one nitrogen source. For free-living 

heterotrophic organisms like the bacterium Es-

cherichia coli, three nitrogen-containing molecules 

play an especially important role as nitrogen sources, 

because the biosynthesis pathways leading to nitrogen-

containing biomass precursors require one or more of 

them. These are ammonia, glutamine, and glutamate. 

Among them, ammonium supports the fastest growth 

in E. coli and is thus considered a preferred carbon 

source. Glutamine and glutamate are not only poten-

tially important nitrogen sources; they also serve as 

precursors for the biosynthesis of amino acids, and of 

purine and pyrimidine nucleotides (Merrick & Ed-

wards 1995, Neidhardt 1996, Reitzer 2003). 

 Metabolic generalists like E. coli can use doz-

ens of nitrogen sources, including many amino acids, 

but also compounds such as nitrate and urea 

(Neidhardt 1996). They can also vary considerably in 

their ability to use any one nitrogen source. For exam-

ple, while the proteobacterium Klebsiella aerogenes 

can use histidine (Neidhardt 1996) as a sole nitrogen 

source, its relative E. coli cannot. Some strains of 

E.coli can use agmatine, an intermediate in the degra-
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dation of arginine, as a sole nitrogen source, but Sal-

monella typhimurium cannot (Neidhardt 1996). Varia-

tion also exists in the biochemical pathways that me-

tabolize or synthesize nitrogen-containing molecules. 

For example, arginine can be metabolized by multiple 

different pathways, two of which occur in enteric bac-

teria (Neidhardt 1996). The first uses arginine decar-

boxylase to degrade arginine to γ-aminobutyric acid in 

multiple steps, which then serves as a nitrogen source. 

In the second pathway arginine is succinylated and 

then metabolized further to produce succinate and glu-

tamate. Similarly, L-alanine can be synthesized from 

pyruvate by glutamic-pyruvic transaminase using glu-

tamate as an amino donor, or by transaminase C with 

valine as an amino donor (Neidhardt 1996). L-γ-

glutamic semialdehyde, a precursor to the amino acid 

proline, can be synthesized from two different com-

pounds, N-acetylglutamic γ-semialdehyde and L-γ-

glutamyl phosphate. 

 Observations like these suggest that the path-

ways leading from any one nitrogen source to nitrogen

-containing biomass precursors are flexible. We aimed 

to understand the extent of this flexibility, not just at 

the level of individual pathways, but on the level of the 

entire complex metabolic reaction network that is 

needed to synthesize all biomass precursors. More 

generally, we wanted to understand the basic organiza-

tional features of the space of possible metabolisms 

that can utilize different nitrogen sources. To this end, 

we used a recently developed approach to study large 

ensembles of metabolic networks that share the same 

biosynthetic abilities, but contain an otherwise random 

complement of biochemical reactions. We next intro-

duce some necessary terminology and sketch the 

method behind this approach, which has been de-

scribed in greater detail elsewhere (Rodrigues & Wag-

ner 2009, Samal et al. 2010). 

 

Methods 
 

Metabolic genotypes, phenotypes and viability 

A metabolism is a complex network of chemical reac-

tions catalyzed by enzymes that are encoded by genes. 

The metabolic genotype of an organism is the part of a 

genome’s DNA sequence that encodes these enzymes. 

This DNA-level representation of a metabolic geno-

type is too unwieldy to study qualitative and large-

scale differences in the complement of enzyme-

catalyzed reactions that specifies a metabolism. A 

more suitable and more compact representation is 

based on the observation that our current knowledge of 

metabolism comprises more than 5,000 enzyme-

catalyzed reactions with known stoichiometry that oc-

cur in some organism (Goto et al. 1998, Kanehisa & 

Goto 2000). One can write these reactions as a long 

list, as indicated in Figure 1a. If the genome of an or-

ganism, such as that of a human, a fruit fly, or of E. 

coli encodes an enzyme that can catalyze a specific 

reaction, write "1" next to the reaction, otherwise write 

"0" (Figure 1a). The result is a representation of a 

metabolic genotype as a binary vector that completely 

specifies the reaction complement of a metabolism. 

This representation also makes clear that any one 

metabolic genotype is a member of a giant space of 

genotypes, a metabolic genotype space or a space of 

possible metabolisms.  Since the universe of metabolic 

reactions comprises more than 5000 reactions, this 

space comprises more than 25000 possible genotypes, 

many more than could be realized in the history of life 

on earth.  Two metabolisms are neighbors in this space 

if they differ in a single reaction. A metabolism’s 

neighborhood comprises all its neighbors.  The geno-

type distance of two metabolisms can be defined 

through a variety of distance measures. We here use 

the fraction of reactions in which two metabolisms 

differ (in the representation of Figure 1a) as a distance 

measure. Specifically, if n12 denotes the reactions that 

two metabolic genotypes G1 and G2 have in common, 

and ni denotes the number of reactions in genotype Gi, 

then this distance measure can be written as 1 - (n12 / 

(n1 + n2 - n12)).  

 The metabolic genotype of any one organism 

encodes its metabolic phenotype. There are many ways 

to define a metabolic phenotype, but the best-suited for 

the purpose of this paper is described hereafter. It starts 

from the observation that the most fundamental task of 

any one metabolism is to sustain life; that is, to synthe-

size all major biomass molecules that an organism 

needs for growth and reproduction, which include all 

amino acids, nucleotide precursors, lipids, and several 

co-factors (Feist et al. 2007, 2009, Feist & Palsson 

2010). An organism whose metabolism is able to do 

that in a given chemical environment can survive in 

this environment - we refer to it as viable. Clearly, the 

potential nutrient molecules that occur in a given envi-

ronment strongly influence whether a metabolism is 

viable. We will here consider minimal chemical envi-

ronments that contain a single source of carbon (D-

glucose), phosphorus (inorganic phosphate), sulfur 

(sulfate), oxygen, iron (Fe2+, Fe3+), as well as a single 

one among multiple possible nitrogen sources. One 

can write these potential nitrogen sources as a list, as 

shown in Figure 1b and associate a "1" with a nitrogen 

source if a metabolism is viable on it, that is, if it can 

synthesize all nitrogen-containing biomass precursors 

from it, and a "0" otherwise. In this way, a metabolic 

(nitrogen utilization) phenotype can be represented as 

a binary vector that indicates the spectrum of nitrogen 

3   Journal of Molecular Biochemistry, 2014 



sources on which a metabolism is viable. In this paper, 

we consider 50 different nitrogen sources (Table S2). 

 To characterize those metabolic genotypes 

within the metabolic genotype space that are viable on 

a given number of nitrogen sources, we need to study 

many different metabolic genotypes and their pheno-

types. It is possible to determine the metabolic pheno-

type of any one organism and its metabolic network 

experimentally on multiple different sources of chemi-

cal elements, such as through large scale metabolic 

phenotyping (Bochner 2009). However, it is currently 

not yet possible to experimentally manipulate meta-

bolic genotypes on the large scale necessary to create 

many metabolic networks that are very different from 

each other.  Fortunately, during the last 15 years com-

putational approaches have been developed that allow 

us to predict metabolic phenotypes (Figure 1b) from 

qualitative information about metabolic genotypes, 

such as the stoichiometric equations shown in Figure 

1a (Becker et al. 2007, Edwards & Palsson 2000, Feist 

& Palsson 2008, Heinrich & Schuster 1996, Schilling 

et al. 1999). Most notable among such approaches is 

the constraint-based modeling framework called flux 

balance analysis (Becker et al. 2007, Schilling et al. 

1999).  For a network that operates in a metabolic 

steady-state, such as would occur in a constant chemi-

cal environment under a steady nutrient supply, flux 

balance analysis predicts the maximal rate of biomass 

synthesis that a network can achieve in this chemical 

environment. Importantly, flux balance analysis re-

quires only information about the stoichiometry of a 

metabolic reaction, and not about its kinetics or the 

concentrations of the enzyme catalyzing it. For meta-

bolic networks with a well-studied genotype, the pre-

dictions of flux balance analysis are in good qualitative 

agreement with experimental data, for example on the 

viability of gene deletion mutations (Feist et al. 2007, 

Wang & Zhang 2009). The most important limitation 

of flux balance analysis is that it can incorporate regu-

latory constraints on biomass only with difficulty. 

Aside from the fact that many such constrains are eas-

ily broken in laboratory evolution experiments (Fong 

et al. 2005, Fong et al. 2003), such constraints are not 

of central importance for our purpose, because we are 

concerned mainly with the more fundamental con-

straints on viability caused by the complete absence of 

a reaction (enzyme-coding gene) from a metabolic 

genotype. 

 In our analysis, we constrained uptake rates of 

each nitrogen source to a maximum of 10 mmol/gdw/

hr, and that of oxygen to a maximum of 20 mmol/gdw/

hr. All other nutrients, including glucose as the sole 
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carbon source in the minimal environment were effec-

tively unconstrained in their uptake rate (<1020 mmol/

gdw/hr). As we are studying the metabolism of nitro-

gen sources, choosing s low uptake rate for the nitro-

gen source makes it the rate-limiting nutrient. This is 

especially relevant because we define a network as 

viable if its biomass growth rate (flux) is no less than 

one percent of the starting E. coli network in the same 

minimal environment. Not having the nitrogen source, 

but another nutrient as rate-limiting could result in a 

false estimation of viability. Moreover, our definition 

of viability also takes into account that many microbes 

survive in the wild even though they grow slowly 

(Vieira-Silva et al. 2011). 

 

Sampling of random viable metabolisms 

In bioengineering, flux balance analysis is often ap-

plied to a single metabolism, to help understand the 

role that individual reactions play in the metabolism 

and to improve incomplete knowledge about its meta-

bolic genotype (Figure 1a) (Becker et al. 2007, Feist et 

al. 2007, 2009, Herrgard et al. 2008, Jamshidi & Pals-

son 2007). In contrast, we will characterize many dif-

ferent metabolisms in metabolic genotype space, as 

well as their viability on different nitrogen sources. To 

this end, we employ a variant of Markov Chain Monte 

Carlo (MCMC) sampling in network space that we 

have already described previously (Rodrigues & Wag-

ner 2009, 2011, Samal et al. 2010). This technique can 

produce uniform samples of metabolisms with a given 

phenotype. Briefly, it relies on random walks through 

genotype space that start with a metabolism of a given 

number of reactions and a given metabolic phenotype, 

for example viability on glutamine as a sole nitrogen 

source. Each step of this random walk consists of a so-

called reaction swap, where one reaction chosen at ran-

dom from the known reaction universe is added to a 

metabolism, whereas another randomly chosen reac-

tion is deleted from the metabolism. This procedure 

ensures that each step leaves the number of reactions 

in the metabolism constant. In addition, each step is 

required to preserve viability on the chosen nitrogen 

source. If a step does not fulfill this requirement it is 

rejected, and another step is tried until one is found 

that preserves viability. In this way, one can perform 

long random walks through metabolic genotype space 

and sample networks at some steps during this random 

walk.  

 During a random walk using MCMC sam-

pling, each metabolism in the random walk differs by 

only a reaction pair from the preceding metabolism. In 

other words, successive metabolisms in the random 

walk are “correlated” in their genotype and thus also in 

their phenotypic properties. As the number of steps 

between two metabolisms along the random walk in-

creases, this autocorrelation decreases. Earlier work 

has shown that for metabolisms comprising about 1400 

reactions, similar to the number of reactions in the E. 

coli metabolic network and the metabolisms studied 

here (Feist et al. 2007), 3×103 steps are sufficient to 

erase the correlation to the starting metabolism (Barve 

& Wagner 2013, Rodrigues & Wagner 2009, Samal et 

al. 2010). We thus sampled the first network after 

5,000 steps, a number ensuring that the autocorrelation 

between the starting and the sampled metabolism was 

minimal. After this “burn-in” period, we sampled a 

metabolic genotype every 5,000 steps until we had ob-

tained a sample of 1,000 genotypes that are viable on 

one or more given nitrogen sources, but contain an 

otherwise random complement of reactions (Rodrigues 

& Wagner 2009, Samal et al. 2010). In other words, 

our random walks proceeded for at least 5x106 steps, 

unless otherwise mentioned. We refer to the metabo-

lisms in the samples we thus generated as random vi-

able metabolisms. 

  

Variants of random sampling used in different 

analyses 

Different analyses required us to use different variants 

of the sampling procedure. To estimate maximal geno-

type distances of metabolisms viable on a given, single 

nitrogen source, we started each random walk from the 

E. coli metabolic network (Feist et al. 2007), which 

comprises 1397 metabolic reactions, and required that 

none of the 5000 viability-preserving steps in the ran-

dom walk reduce the distance to the starting network.  

In this way, we generated 1000 metabolisms required 

to be viable on a sole nitrogen source for each of the 

50 nitrogen sources, that is, a total of 5x104 (50 x 

1000) metabolisms. We also used these samples to 

quantify the superessentiality of reactions for each ni-

trogen source (Figure 3). 

 To understand if the maximal genotype dis-

tances we observed for metabolisms viable on a single 

nitrogen source changed when metabolisms were re-

quired to be viable on multiple nitrogen sources, we 

needed metabolisms viable on a randomly chosen n-

tuples (5, 10, 15, 20 and so on) of nitrogen sources. To 

create them, we first generated a random metabolism 

viable on all 50 nitrogen sources starting from the E. 

coli metabolism (which itself is viable on all 50 

sources) after 5000 viability-preserving steps. We then 

randomly chose n nitrogen sources and continued the 

random walk for another 5000 steps while ensuring 

that the metabolism was viable on these n nitrogen 

sources. We then generated 100 random metabolisms 

from this starting metabolism through another 5000 

steps of the random walk, with the constraint that none 
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of the 5000 steps reduced the distance from the starting 

metabolism. We repeated this procedure 9 more times, 

with a different, randomly chosen n-tuple. In other 

words, we used this procedure to generate 1000 me-

tabolisms viable on a given number n of nitrogen 

sources (100 metabolisms for each of 10 n-tuples).  

 As a starting point of our analysis of genotype 

network closeness, we required metabolisms that were 

viable on a specific nitrogen source, but not on other 

nitrogen sources. To generate such metabolisms, we 

returned to our sample of 1000 metabolisms viable on 

a sole nitrogen source. All of them were viable on one 

nitrogen source, but each may also be viable on other 

nitrogen sources (Barve & Wagner 2013). We chose 

an arbitrary metabolism among them, that was viable 

only on the focal nitrogen source (at least one of such 

metabolisms happened to exist in all of our samples). 

We used this metabolism as the starting point for ran-

dom walks in which each reaction-swapping step was 

required to retain viability only on the focal nitrogen 

source. That is, if a step created viability on additional 

nitrogen sources, we discarded it. Through such ran-

dom walks, we generated 10 random viable metabo-

lisms that were strictly viable only on the focal nitro-

gen source. We repeated this approach for all 50 nitro-

gen sources, thus creating a total of 500 metabolisms, 

in groups of 10, where each group contained metabo-

lisms viable on a specific nitrogen source. To estimate 

how close two genotype networks of metabolisms vi-

able on two nitrogen sources (termed source 1 and 2) 

are in genotype space, we chose, with uniform prob-

ability, one metabolism G1 among the ten metabolisms 

viable on source 1 and another metabolism G2 among 

the ten metabolisms viable on source 2. We then used 

G1 as a starting point for a phenotype-preserving ran-

dom walk towards G2, where each step was required to 

preserve viability only on the focal nitrogen source, 

and was not allowed to create viability on a new nitro-

gen source.  After 5000 reaction swaps, we recorded 

the remaining distance between the random walker and 

G2. We note that this distance is an upper bound for the 

point of closest proximity between genotype networks. 
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Figure 2. Metabolisms viable on the same sole nitrogen 

sources can differ in most of their reactions. a) Histogram of 

genotype distances between the E. coli metabolism and 1000 

metabolisms that were the endpoints of viability-preserving 

random walks starting from the E. coli metabolism. The me-

tabolisms in this analysis were required to be viable on gluta-

mine as the sole nitrogen source. b) Distribution of the min-

ima (left histogram, black) and maxima (right histogram, 

grey) of 50 genotype distance distributions obtained as in a), 

but for all 50 nitrogen sources considered here. Note that all 

minima and maxima lie within a narrow interval of genotype 

distance. c) The vertical axis shows means (circles) and three 

standard deviations (whiskers) of metabolic genotype dis-

tances between the start-points and end-points of 1000 viabil-

ity-preserving random walks that started from metabolisms 

viable on the number n of sole nitrogen sources indicated on 

the horizontal axis. Each of these 1000 metabolisms were the 

starting points of a random walk where each step (i) had to 

preserve viability on the n-tuple of nitrogen sources, and (ii) 

was not allowed to decrease the distance to the starting me-

tabolism (see Methods).  

a) b) 

c) 



We repeated this procedure 100 times, i.e., for 100 ran-

domly chosen pairs of nitrogen sources. 

 

Results and Discussion 
 

Connected networks of viable nitrogen metabolisms 

extend far through genotype space 

We first inquired how different two metabolisms 

(metabolic genotypes) can be while preserving their 

viability on a given spectrum of nitrogen sources. To 

answer this question, we performed the following 

analysis. Starting from the E. coli metabolic network, 

we performed a random walk of 5000 viability-

preserving steps, where none of these steps was al-

lowed to reduce the distance to the starting network. 

At the end of this walk, we recorded the genotype dis-

tance between the random walker and the starting net-

work. We repeated this random walk 1000 times. Fig-

ure 2a shows a histogram of the genotype distance 

from E. coli, for 1000 networks viable on glutamine as 

the sole nitrogen source. The distribution of genotype 

distances is sharply peaked around a mean of 0.81, 

with a standard deviation of 0.006, a minimum of 0.79 

and a maximum of 0.83. This means that two networks 

can differ in the vast majority of their reactions – ap-

proximately 80 percent – and still retain viability on 

glutamine as a sole nitrogen source. In addition, the 

networks that we used in this analysis can be con-

nected in genotype space through long sequences of 

single reaction changes, none of which eliminates vi-

ability. In other words, they form part of a single con-

nected network of genotype networks with the same 

viability phenotype, a genotype network (Rodrigues & 

Wagner 2009, Samal et al. 2010). 

 This observation is not a peculiarity of gluta-

mine as a nitrogen source.  To show this, we per-

formed 1000 additional random walks for each of the 

49 remaining nitrogen sources N, such that each ran-

dom walk had to preserve viability on N. The results 

were 49 further genotype distance distributions like the 

one shown in Figure 2a. Figure 2b shows a histogram 

of the minima (black) and the maxima (grey) of all 50 

distributions. It demonstrates that these distributions 

are confined within a narrow interval. Specifically, the 

smallest minimum genotype distance for all 50 nitro-

gen sources is 0.78 and the largest maximal genotype 

distance for all 50 nitrogen sources is 0.83. 

 Next, we asked whether these observations 

change fundamentally if we require networks to be 

viable on multiple different nitrogen sources, when 

each of these sources is provided as the sole nitrogen 

source. The answer is shown in Figure 2c, for 1000 

end-points of viability-preserving random walks start-

ing from networks viable on different numbers of sole 
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Figure 3. Reaction superessentiality in nitrogen metabolism. 

Rank plots of superessentiality indices (vertical axis) ISE 

based on 1000 random metabolisms viable on a) glutamine, 

b) all 50 nitrogen sources considered here (when each is 

provided as the sole nitrogen source). c) Superessentiality 

indices of reactions where ISE >0, for metabolisms viable on 

glutamine (horizontal axis) or adenosine (vertical axis) as 

sole nitrogen sources. Data are based on a sample of 1000 

random viable metabolic metabolisms generated as de-

scribed in methods. 

a) 

b) 

c) 



nitrogen sources, as shown on the horizontal axis. 

Clearly, the large genotype distances we observed for 

metabolisms required to be viable on only one nitrogen 

source change little when we consider multiple nitro-

gen sources. Taken together, these observations mean 

that metabolisms viable on one or more nitrogen 

source can differ greatly in the complement of meta-

bolic reactions they harbor. Regardless of their specific 

nitrogen metabolism phenotype, they form connected 

networks of metabolic genotypes that range far 

through genotype space. In other words, they show 

great internal flexibility in their reaction complements.  

 

Reactions vary widely in their superessentiality  

The observation that 20 percent of metabolic reactions 

cannot change if viability on specific nitrogen sources 

is to be preserved raises the question of what these un-

changeable reactions are, and whether they are the 

same for each of the 1000 metabolisms we studied dur-

ing any one random walk. In other words, are some 

reactions more important than others in this sense? In 

previous works on carbon metabolism, we had shown 

that this is indeed the case, and that one can quantify 

this importance, as described hereafter (Barve et al. 

2012). In any one metabolism, a reaction can be essen-

tial to synthesize biomass, that is, its removal will 

abolish the metabolism’s viability. In a random sample 

of viable metabolisms, a reaction may be essential in 

some metabolisms but not in others. We call a reaction 

that is essential in more than one metabolism superes-

sential – it is more than just essential. We introduced a 

superessentiality index ISE that denotes the fraction of 

metabolic networks in which this reaction is essential. 

This index can range from zero (the reaction is never 

essential) to one (the reaction is essential in all me-

tabolisms). A reaction with a superessentiality index of 

one is special, because it cannot be by-passed through 

an alternative sequence of reactions. We previously 

showed that assessing superessentiality based on ran-

dom samples of at least 500 viable networks gives re-

sults that are in good agreement with a complementary 

approach that estimates superessentiality independ-

ently of random sampling (Barve et al. 2012). We thus 

proceeded to analyze the distribution of reaction super-

essentiality in randomly sampled metabolisms.  

 Figure 3a shows a rank plot of the superessen-

tiality index of those reactions that were essential in at 

least one metabolism in a sample of 1000 random me-

tabolisms viable on glutamine as a sole nitrogen 

source. The graph clearly shows that a small number 

of reactions are essential in all metabolisms – they are 

absolutely superessential and have a superessentiality 

index of one. Specifically, there are 126 such reac-

tions, 102 of which involve nitrogen-containing mole-

cules. The vast majority of reactions whose superes-

sentiality index is shown are not always essential and 

rank from being essential in most metabolisms (left) to 

being essential only in few metabolisms (right). Figure 

3b shows an analogous rank plot, but for metabolisms 

viable on all 50 nitrogen sources shown here. The 

overall shape of this plot is very similar, except that 

the number of absolutely superessential reactions is 

somewhat larger (157 reactions, 114 of which involve 

nitrogen-containing compounds).  Table S3 shows a 

list of these reactions. 

 The absolutely superessential reactions include 

riboflavin synthase, the last step in the biosynthesis of 

riboflavin, a component of the cofactors flavin adenine 

dinucleotide (FAD) and flavin adenine mononucleo-

tide (FMN). Another example is the reaction catalyzed 

by the enzyme phosphomethylpyrimidine kinase, en-

coded by the gene thiD (Blattner number b2103), 

which participates in the biosynthesis of thiamine di-

phosphate (also known as thiamine pyrophosphate 

TPP). TPP is an essential cofactor in enzymes such as 

pyruvate dehydrogenase (Nemeria et al. 2010). Yet 

another example concerns the enzyme histidinol phos-

phatase, encoded by the gene hisB (Blattner number 

b2022). Histidinol-phosphatase is essential for the bio-

synthesis of the amino acid histidine, while the same 

gene product also catalyzes a further reaction essential 

for histidine synthesis, that of imidazoleglycerol-

phosphate dehydratase. The superessentiality indices 

of reactions on different nitrogen sources are statisti-

cally associated with one another. For example, Figure 

3c shows a scatterplot of superessentiality indices of 

reactions where this index is greater than zero, for me-

tabolisms viable on glutamine (horizontal axis) and 

adenosine (vertical axis) as sole nitrogen sources 

(Spearman’s r=0.94, P<<10-17, n=1480).  

 Though most reactions have very similar su-

peressentiality indices for growth on glutamine and 

adenosine, it is instructive to discuss those outlier reac-

tions whose superessentiality differs greatly on these 

nitrogen sources. One of them is the reaction catalyzed 

by the enzyme adenylosuccinate lyase (encoded by the 

gene purB). It is essential in all metabolisms viable on 

glutamine, but only in 0.2 percent of metabolisms vi-

able on adenosine. The reaction converts adenylo-

succinate to adenosine monophosphate.  Whenever 

glutamine is the sole nitrogen source, this reaction is 

essential for the synthesis of the DNA precursor de-

oxyadenosine-triphosphate (dATP) (Baba et al. 2006). 

However, when adenosine is provided as a nutrient, 

this reaction can be by-passed, because dATP can be 

synthesized directly from adenosine. Indeed, E. coli 

strains lacking the gene purB are able to grow only 

when adenosine or adenine is supplied to a minimal 
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Figure 4. Genotypes contain novel phenotypes in their neighborhoods and some fractions of these novel phenotypes are 

unique. a) Distribution of the number of novel phenotypes in the neighborhood of 200 genotypes viable on glutamate. b) 

Distribution of the mean number of novel phenotypes in the neighborhood of genotypes for all 50 nitrogen sources consid-

ered here. Each data item is based on a sample of 200 genotypes (and each genotype’s neighborhoods) for each of 50 nitro-

gen sources. Thus, the histogram is based on 50 samples of 200 genotypes each. c) For genotypes G1 and G2 sampled from 

the same genotype network, that is, they are viable on the same nitrogen source, and for P i the set of all phenotypes that are 

found among genotypes in the neighborhood of Gi, the figure shows the distribution of U=(|P1| - |P1 ∩ P2|)/|P1|). This is the 

fraction of phenotypes unique to one neighborhood, i.e. without occurring in the other genotype’s neighborhood. Specifi-

cally, the vertical axis shows the number of genotype pairs whose value of U is shown on the horizontal axis. The data is 

based on 100 random genotype pairs viable on glutamate. d) Histogram of the mean value of U (horizontal axis) for geno-

type pairs viable on each of the 50 nitrogen sources considered here. The vertical axis shows the number of nitrogen 

sources for which genotype pairs have the mean value of U shown on the horizontal axis. The data is based on 100 random 

genotype pairs (and their neighborhoods) for each of 50 nitrogen sources. Panels b) and d) are based on the mean as a sum-

mary statistic, because it is the simplest such statistic for distributions that are not extremely right- or left-skewed. 
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the neighborhood of different genotypes on a genotype 

network contained different phenotypes. To this end, 

we carried out the following quantitative analysis. 

 Consider two arbitrary genotypes G1 and G2 

that are sampled from the same genotype network, that 

is, they are viable on the same nitrogen source. Denote 

as P1 the set of all phenotypes that are found among 

genotypes in the neighborhood of G1, that is, among all 

those metabolisms that differ in a single reaction from 

G1. Define P2 analogously as the set of all phenotypes 

found in the neighborhood of G2. We wished to quan-

tify the fraction of U of phenotypes that are contained 

in P1 but not in P2, i.e., the number of phenotypes that 

are in this sense unique to P1. To this end we computed 

the quantity U = (|P1| - |P1 ∩ P2|)/|P1|, where |X| denotes 

the number of elements in a set. For example, if |P1| = 

|P2| = 10 and |P1 ∩ P2| = 5 (5 phenotypes are common 

to both sets P1 and P2), then U = (10 - 5)/10) = 0.5; that 

is, 50 percent of phenotypes are unique to the 

neighborhood of G1. More specifically, we computed 

this quantity for 100 random genotype pairs viable on 

the same nitrogen source. We obtained these genotype 

pairs by randomly choosing two different metabolisms 

from our sample of 1000 metabolisms viable on a 

given nitrogen source.  

 Figure 4a shows the distribution of the number 

of novel phenotypes that occur in the neighborhood of 

200 genotypes (100 pairs) viable on glutamate, illus-

trating that most neighborhoods contain some pheno-

types viable on novel combinations of nitrogen 

sources. Figure 4b shows a histogram summarizing the 

same data for all 50 nitrogen sources. Specifically, the 

figure shows the distribution of the mean number of 

novel phenotypes in the neighborhood of genotypes, 

where each data item is the mean value of U based on 

a sample of 200 genotypes (and each genotype’s 

neighborhoods) for each of 50 nitrogen source In other 

words, the histogram is based on 50 samples of 200 

genotypes and their neighborhood. The data illustrates 

that the number of novel phenotypes in a genotype’s 

neighborhood varies broadly between one and ten, de-

pending on the nitrogen source.  Figure 4c shows, as 

an example, the distribution of the fraction U of unique 

phenotypes for 200 pairs of metabolic genotypes vi-

able on glutamate, and Figure 4d shows the distribu-

tion of the mean value of U for genotype pairs viable 

on each of the 50 nitrogen sources considered here. 

The panel is again based on 200 genotype pairs for 

each of the 50 nitrogen sources, i.e., on a total of 

50x200 genotype pairs. The panels show that some 

fraction of novel phenotypes are unique to individual 

neighborhoods, otherwise U would be equal to zero for 

all genotype pairs and nitrogen sources. They also 

demonstrate that U varies broadly among both geno-
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growth medium (Sun et al. 2011). Another example 

involves citrate synthase, which is essential in 0.3 and 

56.9 percent of metabolisms on glutamine and adeno-

sine, respectively. The enzyme citrate synthase is en-

coded by the gene gltA, which participates in the tri-

carboxylic acid cycle and produces citrate, which is in 

turn necessary for the synthesis of important biomass 

precursors such as 2-oxoglutarate and succinyl-CoA 

(generated from 2-oxoglutarate) (Noor et al. 2010). On 

glutamine as the sole nitrogen source, enzymes such as 

glutaminase can convert glutamine to glutamate 

(Brown et al. 2008), which can be further metabolized 

to 2-oxoglutarate via other enzymes such as aspartate-

transaminase (encoded by the gene aspC) (Marcus & 

Halpern 1969). These biochemical pathways make the 

enzyme citrate synthase dispensable on glutamine as 

the sole nitrogen source, because they allow 2-

oxoglutate to be directly synthesized from glutamine 

without the need for citrate synthesis. In contrast, 

growth on adenosine does not easily allow this bypass 

and thus renders citrate synthase essential in the major-

ity of metabolisms (56.9 percent). 

 

Different neighborhoods in metabolic genotype 

space do not contain the same novel phenotypes 

In a population of evolving organisms, metabolism 

would evolve through alteration of an organism’s 

metabolic genotypes. Especially in microbes, such 

evolution can occur rapidly by adding individual en-

zyme-coding genes to a genome through horizontal 

gene transfer, as well as by deleting individual genes. 

Even in populations that evolve under stabilizing se-

lection for an existing, well-adapted phenotype, geno-

typic change can occur, because of the flexibility af-

forded by genotype networks. Such populations will 

explore the genotype network associated with a well-

adapted phenotype, and its member genotypes will 

also explore local neighborhoods around them and 

around their genotype network. In general, the 

neighborhood of a genotype is important from an evo-

lutionary perspective, because it comprises all those 

genotypes – with potentially novel phenotypes – that 

are easily reached via little genotypic change. Some 

metabolic genotypes in this neighborhood may have 

novel metabolic phenotypes, i.e., they may be able to 

survive on novel combinations of nitrogen sources. 

Genotype networks would be especially important for 

evolutionary adaptation, if different neighborhoods 

contained a different spectrum of novel phenotypes: 

Because genotype networks allow the exploration of 

different regions of genotype space, they also allow the 

exploration of different neighborhoods, and thus the 

exploration of novel phenotypes that would not be ac-

cessible otherwise. We thus wished to find out whether 



types (Figure 4c) and nitrogen sources (Figure 4d).  

The mean U tends to be lowest for those nitrogen 

sources where genotypes have, on average, the small-

est number of novel phenotypes in their neighborhood 

(Figure 4e, Spearman’s r=0.71, p=7.35x10-9). 

 

Some genotypes on two different genotype net-

works are close to each other in genotype space 

Earlier analyses on metabolic and other systems 

showed that two genotypes with arbitrary different 

phenotypes can often be found close together in geno-

type space (Ciliberti et al. 2007, Rodrigues & Wagner 

2009, Schuster et al. 1994). In the context of metabo-

lism, this means that few reaction changes may be nec-

essary for a transition from one phenotype to another, 

unrelated phenotype. We wished to explore whether 

this also holds true for our nitrogen utilization pheno-

types. In this regard, we conducted an analysis that 

starts with two metabolic genotypes, G1 and G2, each 

of which is viable only on one nitrogen source, but 

where these nitrogen sources are different.   

 We then asked how similar we can make the 

reaction complement of G1 to that of G2 without alter-

ing its phenotype. To this end, we carried out reaction-

swapping and phenotype-preserving random walks that 

started from G1 and approached G2, i.e., each step in 

such a random walk was not allowed to increase the 

distance to the target G2. After 5000 steps we recorded 

the distance remaining between G1 and G2. We empha-

size that our estimates of minimal distances are upper 

bounds, since our procedure does not exclude the pos-

sibility that metabolisms with different phenotypes 

differ in even fewer reactions. Figure 5 shows the re-

sults of this approach for 100 different pairs of me-

tabolisms viable on different nitrogen sources. The 

figure shows that the minimum genotype distance of 

networks with different phenotypes is very small, and 

comprises less than 2% of the total diameter (maximal 

distance) of genotype space. In other words, metabo-

lism pairs that are viable on different nitrogen sources 

can share 98% or more of their chemical reactions. 

Only very few reaction changes are minimally needed 

to produce one nitrogen utilization phenotype from 

another such phenotype.  

 

Conclusion 
 

To summarise, our analysis has shown that metabolic 

genotypes can differ in most of the biochemical reac-

tions they encode, yet share the same nitrogen utiliza-

tion phenotype. In addition, our Markov chain Monte 

Carlo approach shows that even very different geno-

types with the same phenotype can be transformed into 

one another through a series of single reaction 

changes. In other words, such genotypes form large 

connected networks – genotype networks – that extend 

far through metabolic genotype space. A second quali-

tative feature we observed is that different neighbor-

hoods of genotypes on the same genotype network 

usually do not contain the same novel phenotypes. To-

gether, these properties can facilitate the exploration of 

novel phenotypes by a population whose metabolism 

evolves through the addition and deletion of enzyme-

coding genes in a genome. Specifically, the individuals 

in such a population can preserve existing, well 

adapted phenotypes, while at the same time altering 

their genotypes in a step-by-step manner, thus explor-

ing different regions and neighborhoods of a genotype 

network. Because different neighborhoods contain dif-

ferent novel phenotypes, the existence of genotype 

networks can help in the exploration of novel pheno-

types. Any evolutionary search for novel and adaptive 

phenotypes may be further facilitated by the observa-

tion that different genotype networks tend to be highly 

interwoven and close together in genotype space 

(Figure 5). These observations are in qualitative agree-

ment with earlier ones on carbon and sulfur metabo-

lism (Rodrigues & Wagner 2009, 2011, Samal et al. 

2010), and genotype spaces with these features also 

exist in proteins, RNA, as well as in regulatory cir-

cuits, where they help facilitate evolutionary adapta-

tion (Wagner 2011). Although some 80% of chemical 

reactions in a genotype network may change without 

affecting nitrogen utilization phenotype, not all reac-

tions are equally changeable. In particular, there is a 
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Figure 5. Metabolisms with different nitrogen utilization 

phenotypes can be very close together in genotype space. 

The figure shows the distribution of the minimal genotype 

distance for 100 pairs of metabolisms with different pheno-

types, where each member of a pair was required to be vi-

able on a different sole nitrogen source randomly and 

equiprobably chosen from the 50 nitrogen sources in Table 

S2 (See Methods for procedures). 



small core of super essential reactions that cannot be 

altered without abolishing viability on any one nitro-

gen source, at least based on current biochemical 

knowledge. Reactions like these are potential targets 

for antimetabolic drugs whose action cannot be easily 

circumvented through the evolution of alternative 

metabolic pathways in pathogens targeted by these 

drugs (Barve et al. 2012).  
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