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We ask whether natural selection has shaped three biologically important features of 15
signal transduction networks and two genome-scale transcriptional regulation networks.
These features are regulatory cycles, the lengths of the longest pathways through a
network — a measure of network compactness — and the abundance of node pairs con-
nected by many alternative regulatory pathways. We determine whether these features
are significantly more or less abundant in biological networks than in randomized net-
works with the same distribution of incoming and outgoing connections per network
node. We find that autoregulatory cycles are of exceptionally high abundance in tran-
scriptional regulation networks. All other cycles, however, are significantly less abundant
in several signal transduction networks. This suggests that the multistability caused by
complex feedback loops in a network may interfere with the functioning of such networks.
We also find that several of the networks we examine are more compact than expected
by chance alone. This raises the possibility that the transmission of information through
such networks, which is fastest in compact networks, is a biologically important charac-
teristic of such networks.
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1. Introduction

Metabolic, regulatory, and molecular interaction networks have been characterized
in multiple organisms [7, 10, 11, 13, 16, 19, 21, 25, 30, 34]. However, we still know
very little about the design principles of such networks. On what level of organiza-
tion does natural selection shape the structure of such networks? Does selection act
mainly on the level of the entire network, which may comprise thousands of genes?
Does it act predominantly on the level of local neighborhoods around individual
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genes? Or does it act on the smallest level, that of individual network genes and
their interactions with other genes? With few exceptions, we have no empirically
established answers to this question. One such exception regards the protein inter-
action network of the yeast Saccharomyces cerevisiae. Here, interactions between
highly connected proteins (proteins with many interaction partners) occur much less
frequently than expected by chance alone. In contrast, interactions between highly
connected proteins and lowly connected proteins occur much more frequently than
expected by chance alone [23]. To arrive at this statement, one compares the connec-
tivity of proteins between the experimentally observed protein interaction network,
and random networks in which each protein has the same number of interaction
partners as in the yeast protein interaction network [23]. The statistically signifi-
cant pattern suggests that natural selection suppresses interactions between highly
connected nodes. Unfortunately, it does not tell us why.

Other limited evidence for the influence of natural selection on network struc-
ture comes from transcriptional regulation networks [5, 15, 21, 32, 34]. Here, short
regulatory motifs involving few transcriptional regulators and their target genes
are much more abundant than expected by chance alone [21, 32]. Examples include
a so-called feedforward loop where a transcriptional regulator R; regulates the
expression of a regulator Rs, which regulates the expression of a target gene T.
In addition, R; also regulates the expression of T directly. Experimental and the-
oretical evidence suggests that such motifs can serve specific biological functions,
such as the suppression of gene expression noise [22]. In addition, they appear
to have arisen not from a common ancestral motif but independently through
convergent evolution [5]. Both of these findings support the notion that natural
selection has contributed to the abundance of such network motifs. Other current
claims that the structure of genetic networks is optimized by natural selection
are speculative and may not hold up to closer scrutiny. A case in point is the
notion that the power-law distribution of connectivity often observed in genetic
networks [17, 18] results from an evolutionary optimization of network “robust-
ness” to mutations. The very ubiquity of power-law connectivity distributions in
networks that have not been under the influence of natural selection sheds doubt
on this notion [2].

Aside from connectivity correlations and small regulatory motifs, biological net-
works have several structural features that natural selection might have influenced.
We here examine 15 different signal transduction networks and two large transcrip-
tional regulation networks for the presence of several such features. We represent
these networks as directed graphs, in which directed edges point from a regula-
tory molecule to its regulatory targets, molecules whose concentration or activity
the regulators influence. We take the above null-hypothesis approach, where the
structure of a network is compared to that of randomized networks with the same
number of incoming and outgoing connections for each node [23]. Despite its limi-
tations [3, 24], this is currently the most promising approach to identify candidates
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for important network features, even though it needs to be supplemented by other
kinds of evidence to be conclusive.

For our analysis, we chose two maximally different kinds of networks about which
systems biology is generating information. The first kind, transcriptional regulation
networks [21, 34], are large (genome-scale) networks about which single functional
genomics experiments have revealed much information. In these networks, one kind
of regulatory molecule, a transcriptional regulator, influences the expression of its
target genes. Signal transduction networks, in contrast, are much smaller, contain-
ing of the order of dozens of genes. Their structure is painstakingly elucidated by
thousands of man-years of experimentation in different laboratories. In addition,
signal transduction networks include not only one but multiple levels of regulation:
their regulatory moieties may be proteins, but also small molecules or even ions. We
here use information curated by experts on 15 different signal transduction networks
that are important in processes as different as slime mold aggregation and mam-
malian development [1]. We are acutely aware of the potential shortcomings of such
data — especially nonuniform representation due to different expert “styles” —
but absent standardized representations of signal transduction networks, such data
provides currently the only viable avenue to analyze the structure of signal trans-
duction networks. Below, we analyze two transcriptional regulation networks and
15 signal transduction networks for the abundance of three features, cycles indi-
cating feedback regulation, the lengths of the longest paths, and the incidence of
nodes with paths between them.

2. Materials and Methods
2.1. Signal transduction networks

The Science Signal Transduction Knowledge Environment (http://stke.sciencemag.
org/cgi/cm) contains a collection of signal transduction pathways manually assem-
bled by experts on these networks. We analyzed the structure of all 15 signal trans-
duction networks with more than 30 nodes that were available in this repository
in May 2004. These networks are the adrenergic pathway (http://www.stke.org/
cgi/cm/; CMP_8762), a network that mediates the responses of cells to epinephrine
and norepinephrine; the Dictyostelium discoideum cAMP chemotaxis network
(CMP_7918), which is involved in the aggregation of cells in response to starvation;
the differentiation pathway in PC12 cells (CM_8038), a network that mediates the
differentiation of a rat adrenal tumor cell line under the influence of nerve growth
factor; the extracellular signal regulated kinase 1 and 2 (ERK1/2, or mitogen asso-
ciated kinase [MAPK] p42 and p44) network (CMP_10705), the c-Jun N-terminal
MAPK network (CMP_10827), and the p38 MAPK network (CMP_10958), which
are activated by a variety of mitogenic stimuli, differentiation signals, and cellu-
lar stresses; the B and T lymphocyte receptor signaling network (CMP_6909 and



422  A. Wagner and J. Wright

CMP_7019), which mediate the response of B and T cells to antigens and antigen-
presenting cells; the networks that mediate the action of G135 (CMP_8809) and G;
(CMP_7430), two variants of the a-subunit of heterotrimeric guanine nucleotide
binding proteins (G-proteins), which have innumerable functions in cell biological
processes; the insulin signaling network (CMP_12069), which modulates the storage
and release of energy after nutrient deprivation and nutrient uptake; the mammalian
Toll-like receptor networks (CMC_8644), which are involved in the inflammatory
response of tissues to microbial infections; the Wnt/-catenin network (CMP _5533),
which influences cell proliferation and other aspects of cell behavior in vertebrates
and invertebrates through Wnt proteins, which are secreted glycoproteins; the FAS
signal transduction network (CMP_7966), one of whose functions is to trigger apop-
tosis; and the Integrin signaling network (CMP_6880), which senses the environ-
ment in the extracellular matrix and is necessary for cell migration, growth, and
survival. Note that, as opposed to transcriptional regulation networks, nodes in all
of these networks are heterogeneous: they can represent proteins, small molecules,
or ions. A directed edge links node A to node B if A influences the concentration
or activity of B.

2.2. Transcriptional regulation networks

For our analysis of the transcriptional regulation network of the yeast Saccha-
romyces cerevisiae, we used data on likely transcriptional regulatory interactions
obtained from a genome-scale chromatin immunoprecipitation analysis [20, 21]. In
this experiment, 106 epitope-tagged transcriptional regulators were used in three
replicate chromatin immunoprecipitation experiment to identify genomic DNA
to which these regulators were bound [26]. The immunoprecipitated DNA was
hybridized to DNA microarrays containing the regulatory regions upstream of
known yeast genes. The fluorescence intensity of a spot (regulatory region) on the
array indicates the binding strength of a transcriptional regulator to the regulatory
region. This indication of binding is quantitative, but for many analyses, a qualita-
tive (all-none) indication of binding and transcriptional regulation is more useful.
The authors thus developed an error model of binding that allowed them to assign
a probability or P-value of binding for each transcriptional regulator to a gene’s
regulatory region [21]. This P-value indicates the confidence one has in a factor’s
binding to a specific DNA region. We here generally follow the authors’ suggestion
of equating bona fide binding of a transcriptional regulator to a target gene if this
P-value is smaller than 1073, This value minimizes the number of false-positive
binding interactions, while maximizing the number of true positive regulator-target
binding interactions [21].

For the transcriptional regulation network of Fscherichia coli, we used a
database of direct transcriptional interactions published by Shen—Orr and collabo-
rators [32]. This database was compiled from an existing database (RegulonDB) and
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an extensive literature search; it contains 578 transcriptional regulation interactions
among 423 genes or operons, of which 116 encode regulators.

3. Results
3.1. Cyclic structures

Regulatory cycles or feedback loops have long been recognized as important for bio-
logical networks [8, 29]. They were perhaps first appreciated in metabolic networks,
where the end product of a metabolic pathway can inhibit an upstream reaction
and thus repress its own production [33]. Cycles also occur in gene regulation net-
works, where they may endow a gene or network with robustness to environmental
change or intracellular noise. Alternatively, regulatory cycles can cause a biological
network to adopt one of multiple alternative states [9, 12]. The simplest possible
cycles are autoregulatory cycles, in which a regulator affects its own concentration
or activity.

The importance of cyclic structures raises the question whether they are more
abundant in biological networks than one might expect by chance alone. We asked
this question for the transcriptional regulation networks of E. coli and yeast, as
well as for 15 signal transduction networks, each of them with at least 30 regulatory
molecules (see Sec. 2). To this end, we created from each of these networks 1,000
randomized networks, using the following procedure [1]. To create a randomized
network, we select two directed edges at random from the network. These edges
can connect up to four different nodes A, B, C, and D (A — B, C — D). If node A
is different from node C and node B is different from node D, then we swap the two
edges between the nodes (A — D, C — B). We repeat this procedure until 4n edge
pairs have been swapped, where n is the number of edges in the network. (Note
that the above condition on node differences does not require that A is unequal
to B, nor that C is unequal to D. This means that autoregulatory (self-)loops are
legitimate edges and can be created or destroyed in the randomization process.) We
then compared the number of cycles that occur in the biologically realized networks
with the distribution of the number of cycles in the randomized network. In general,
exhaustive counting of cycles in large graphs may be prohibitive computationally,
requiring alternative means to estimate the abundance of cycles [14]. However,
because of the moderate size of our networks, we were able to determine the number
of cycles in them exhaustively.

In our analysis, we distinguish between cycles of length one, i.e. autoregulatory
loops, and cycles of length greater than one. None of the signal transduction net-
works show a significant difference of autoregulatory cycles to randomized networks.
However, 7 out of 15 signal transduction networks show a significantly smaller (!)
number of cycles with length between two and ten than randomized networks. These
are the B-cell antigen receptor network (2 cycles, P = 0.002), the G,13 network
(2 cycles, P = 0.033), the Toll-like receptor network (6 cycles, P = 0.044), the
ERK1/2 MAP kinase network (no cycles, P < 1073), the c-Jun N-terminal MAPK
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network (0 cycles, P < 1073), the p38 MAPK network (0 cycles, P = 1073), and
the Integrin signaling network (52 cycles, P = 0.009). The only exception is the
FAS signaling network, which shows more cycles than expected by chance alone
(1298 cycles, P = 0.003). Cycle data on the six networks with the most significant
deviation from the random expectation are shown in Fig. 1.

In contrast to the signal transduction networks, autoregulatory cycles are over-
abundant in the transcriptional regulation network of both E. coli (59 cycles,
P < 1073) and yeast (12 cycles, P < 10~3; Fig. 2). However, no cycles of any
other length are overabundant or underabundant in either the yeast (e.g. P = 0.46
for cycles with length between 2 and 10) or the E. coli (P = 0.22) transcriptional
regulation network.

3.2. Network compactness

In many biological and other networks, the number of edges connecting any two
nodes is small [37]. One could loosely call such networks highly “compact,” because
they can be traversed very rapidly along any path of edges. Similar compactness
is also observed in simple random networks, such as the classical Erdosz—Renyi
network with a Poisson distribution of the number of interactions per node. High
compactness means that information can rapidly spread from any one node to all
other nodes connected to it. In biological networks, compactness might be advan-
tageous, because it allows a network to react rapidly to perturbations, for example
in the concentrations of regulatory molecules. This need has perhaps first been
acknowledged for metabolic networks, where transition times between metabolic
states in different environments need to be minimized [4, 6, 31]. These observations
raise the question whether biological networks are compact beyond what would be
expected by chance alone. We addressed this question here by asking whether the
longest paths through a network are significantly shorter in biological than in ran-
domized networks where every node has the same number of incoming and outgoing
connections. More specifically, we determined the average length of the n longest
paths through a network (n =1, 2, 5, 10, and 15) and compared it with the average
length of the n longest paths in 1,000 randomized networks.

Only a minority of biological networks is significantly differently compact than
randomized networks. The networks where this difference is statistically most pro-
nounced are all more compact than randomized networks. Figure 3(a) shows the
P-values for the four networks that are significantly more compact for all n than
randomized networks. These are the c-Jun N-terminal MAP kinase network (P <
1073), the p38 MAP kinase network (P = 0.006), the Integrin network, and the
E. coli transcriptional regulation network (P < 10~3). There are also two networks
that show marginally significantly different compactness at some n. These are the
ERK1/2 MAP kinase network, which is marginally significantly more compact, and
the T-cell signal transduction network, which is marginally significantly less com-
pact at some n. Figure 3(b) and (c¢) show the distribution of the average length of
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Fig. 1. Cycles (exclusive of autoregulation) in signal transduction networks. Six signal trans-

duction networks with significantly different numbers of cycles than 1,000 randomized networks
with the same distribution of incoming and outgoing edges: (a) B-cell antigen receptor network;
(b) c-Jun N-terminal MAP kinase network; (c) ERK1/2 MAP kinase network; (d) FAS signaling
network; (e) Integrin network; (f) p38 MAP kinase network. The distribution of the numbers of
cycles with lengths between 2 and 10 for 1,000 randomized networks is shown. The arrow indicates
the number of cycles in the actual biological network.
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the numbers of autoregulatory cycles for 1,000 randomized transcriptional regulation networks
of (a) E. coli and (b) yeast. The arrow indicates the number of cycles in the actual biological
network.

the n = 15 longest path for the two networks with the most significantly elevated
compactness. These are the c-Jun N-terminal MAP kinase network (Fig. 3(b)) and
the E. coli transcriptional regulation network (Fig. 3(c)).

3.3. Alternative paths between node pairs

Regulatory interactions between a regulatory molecule and its regulatory target
need not be direct. That is, they may be mediated by one or more intermediate



Number of Randomized Networks

Fig. 3.

(a)

Compactness and Cycles in Signal Transduction 427

Network P-value for average length of n longest paths

n=1 n=2 n=5 n=10 n=15

c-Jun N-terminal MAP kinase <102 <103 <10® <10? <107
p38 MAP kinase 0.006  0.006 0.006  0.006 0.006
Integrin signaling 0.011  0.011 0.009  0.009 0.007
E.coli transcriptional regulation <10® <103 <10? <10? <107

(b)

100

90

80

70

60

50 c-Jun N-terminal

40 MAPK network

30
20
10

60
50
40
30
20

10

(6, P<10%)

E. coli
transcriptional
regulation

network

Average Length of 15 Longest Paths

Network compactness. (a) Biological networks where the average length of the n longest
pathways through the network differs significantly from that in random networks for all n shown.
The P-values shown correspond to the fraction of randomized networks (among 1,000 such net-
works) where this average length is less than or equal to that of the actual network. (b) Distribution
of the average length of the 15 longest paths in the c-Jun N-terminal MAP kinase network. (c)
Distribution of the average length of the 15 longest paths in the E. coli transcriptional regulation
network.



428 A. Wagner and J. Wright

regulators. Moreover, there may be more than one regulatory path through a net-
work connecting any one regulator to its target. It is possible that such alternative
paths provide robustness to mutations in the intermediate regulators. That is, if
many alternative paths connect a regulator to its target gene, a loss of function in
one of the intermediate regulators may be compensated by one of the alternative
pathways through the network. We have indeed recently found evidence for this
phenomenon [36]. Specifically, the yeast transcriptional regulation network is most
robust to mutations in intermediate regulators that are part of many alternative
pathways between a regulator—target pair: such regulators evolve at faster rates,
and have weaker effects on cell growth when eliminated. This observation raises the
question whether natural selection has influenced the number of pathways between
at least some regulator—target pairs.

We addressed this question by comparing the number of regulator—target pairs
connected by many [10, 20, 30] alternative pathways between an actual network
and its randomized counterpart. The results are equivocal, because in some net-
works regulator—target pairs are over-represented, whereas in others they are under-
represented. Specifically, we find that the Insulin signaling pathway has significantly
more (101) regulator target pairs with more than 20 pathways between them than
1,000 randomized networks (P = 0.024). Alternative pathways between some nodes
are similarly abundant in the Wnt/S-catenin network (101 and 72 regulator—target
pairs with more than 20 and 30 alternative pathways; P = 0.007 and P = 0.001,
respectively), and in the FAS signaling network (1409, 1270, and 1203 regulator—
target pairs with more than 10, 20, and 30 alternative pathways; P = 0.007, 0.005,
and <1073, respectively). In contrast, the Integrin signaling network has fewer
regulator—target pairs with more than 10, 20, or 30 alternative pathways than
expected (197, 132, and 94 such pairs; P = 0.002, 0.006, 0.005, respectively). The
c-Jun N-terminal MAPK network shows a slight underabundance of regulator—
target pairs (36 and 12 pairs, respectively) with more than 10 and 20 alternative
pathways (P = 0.019 and P = 0.04, respectively). The p38 MAPK network has
no regulator-target pairs with more than 10 pathways between them, which is
encountered only in a fraction P = 0.021 of randomized networks. For the two
transcriptional regulation networks we studied, no significant differences between
the actual networks and their randomized counterparts existed.

4. Discussion

There may be many as yet undiscovered features of biological networks that reflect
design principles of such networks, features that have been shaped by natural selec-
tion. We have focused on three such features, two of which show a consistent pattern
for a number of networks. These are the abundance of cycles and network compact-
ness, as indicated by the average length of the n longest paths in the network
(n < 15). Both of these features have received some earlier attention. For example,
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it has been noticed that the E. coli and the yeast transcriptional regulation net-
work contain many autoregulatory feedback loops, and that both the E. coli and
the yeast transcriptional regulation network contain few long linear pathways com-
pared to similar networks in other species [15, 27, 34]. However, these studies did
not answer in statistical terms whether one should be surprised by such patterns,
which might occur in all or most networks of similar size and number of regulatory
interactions. Our analysis shows that these features are of significantly different
abundance only for some biological networks.

Perhaps the most striking case is the overabundance of autoregulatory loops
in both the yeast and the FE. coli transcriptional regulation networks. This pat-
tern underscores the importance and usefulness of autoregulation, which plays an
important role in switching genes stably on, suppressing intracellular noise, and
changing response times to gene expression [12, 28, 29]. Perhaps more surprising
is the underabundance of all other cycles in signal transduction networks. Because
cycles are important for feedback in many biological systems, one might think that
they should also be abundant. However, cycles may not only provide for feedback
regulation. They may also cause complex dynamical behavior, in particular multi-
stability [9, 35]. Complex dynamics and multistability may be either beneficial or
detrimental for signal transduction. On the one hand, multistability may be essen-
tial for a cell’s adoption of a stable response to an extracellular signal. On the other
hand, too many different states or too complex dynamical behavior may interfere
with the robust functioning of a network. We speculate that the underabundance
of cycles in some signal transduction networks may reflect a purging of cycles for
this reason.

Another network feature that differs between biological and randomized net-
works is network compactness. Where the differences are statistically significant,
biological networks are generally more compact than randomized networks. In other
words, long paths are suppressed in biological networks. We emphasize that this
compactness goes beyond that found in small-world networks, which need not be
more compact than random networks with a Poisson distribution of the number of
interactions per node [37]. What is the reason for this pattern? Both signal trans-
duction and transcriptional regulation networks need to respond to stimuli outside
the cell. The rate at which information propagates through a network may be impor-
tant for a rapid response, which would best be achieved by keeping pathways short.
While this line of reasoning provides a rationale for the observed compactness, we
realize that it is no proof, which could only come from appropriate experiments.

Our results also show that a network feature with a striking deviation from a
random organization in one organism or network need not show the same deviation
elsewhere. One case in point are the differences between the compactness of the
transcriptional regulation networks of yeast and F. coli. In contrast to the E. coli
network, the yeast network is no more compact than expected by chance alone.
We do not know the reason for this discrepancy, although the profound differences
in transcriptional regulation between prokaryotes and eukaryotes may be partly
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responsible. A second example is the overabundance of autoregulatory cycles in
the F. coli and yeast transcriptional regulation networks, but the lack of such an
overabundance in signal transduction networks. This may well be due to artifacts
stemming from the representation and manual curation of such networks. (Only 2
of the 15 signal transduction networks we analyzed here show any autoregulatory
cycles at all.) Third, only a minority of signal transduction networks showed statis-
tically significant deviations from random organization. This raises the possibility
that natural selection may influence some networks in ways too subtle to detect
with this statistical approach. Alternatively, the global organization of these net-
works may be only marginally affected by natural selection, which may constrain
the network only on a smaller level of organization.

The last observations point to some of the caveats of the approach we pursued
here. First, like any other approach, its results depend on the quality of the available
data. Genome-scale experiments on regulatory networks are subject to substantial
experimental error. Manually curated data on smaller networks have the advantage
that every interaction has been subject to extensive literature review, but the rep-
resentation of the data leaves space for inappropriate choices. Second, qualitative
data (“who interacts with whom”), may be too coarse to reveal much information of
biological interest. It may be necessary to incorporate quantitative information on
molecular interactions, which is very difficult to come by. The same holds for data
on only one regulatory modality, such as in the transcriptional regulation networks
we analyzed. For example, many feedback cycles involve modes of regulation differ-
ent from and in addition to transcriptional regulation, such as allosteric inhibition
of enzymes and posttranslational regulation. The final word on the abundance of
any network feature is not spoken until a network representation incorporates such
different modalities of regulation, as is the case for the signal transduction networks
we studied. All of these caveats can only be addressed with improved data. We sug-
gest that until such data becomes available, the approach we pursued here is best
suited to identify candidate features for further investigation by different means.
Cyclic structures and network compactness are such candidate features.
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