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I here estimate the energy cost of changes in gene expression for several thousand genes in the yeast Saccharomyces
cerevisiae. A doubling of gene expression, as it occurs in a gene duplication event, is significantly selected against
for all genes for which expression data is available. It carries a median selective disadvantage of s . 10�5, several times
greater than the selection coefficient s 5 1.47 3 10�7 below which genetic drift dominates a mutant’s fate. When con-
sidered separately, increases in messenger RNA expression or protein expression by more than a factor 2 also have sig-
nificant energy costs for most genes. This means that the evolution of transcription and translation rates is not an
evolutionarily neutral process. They are under active selection opposing them. My estimates are based on genome-scale
information of gene expression in the yeast S. cerevisiae as well as information on the energy cost of biosynthesizing amino
acids and nucleotides.

Introduction

Two major kinds of genetic change can affect rates at
which genes are expressed.Thefirst ismutation in regulatory
regions that affects either transcription or translational effi-
ciency. The second is gene duplication. If a gene duplication
creates identical copies of a gene and its regulatory region,
then the initial effect of the duplication is effectively a dou-
bling in gene expression. Both kinds of genetic change play
major roles in biological evolution. For example, a growing
number of genome-scale expression studies reveal that
substantial genetic variation in messenger RNA (mRNA)
expressionlevelsexistswithinpopulations,amongpopulations,
and among closely related species (Oleksiak, Churchill, and
Crawford 2002; Townsend, Cavalieri, and Hartl 2003; Fay
et al. 2004; Wittkopp, Haerum, and Clark 2004). Similarly,
genome sequence analysis has shown that single-gene dupli-
cations occur at substantial rates in eukaryotic genomes
(Lynch and Conery 2000; Gu et al. 2002). Between 30%
and 50% of a eukaryotic genome’s gene content consists
of duplicated genes (Rubin et al. 2000; Conant and Wagner
2002). These observations underscore the evolutionary
importance of single-gene duplication and the ensuing
expression changes.

Increases in gene expression incur energy costs. The
central question I pose here is whether these costs are sub-
stantial enough to affect the reproduction rate of organisms
where rapid cell division is important for evolutionary per-
sistence—most notably microbes. To be sure, rapid cell
division in a nutrient-rich environment is only one among
multiple factors influencing a microbe’s success in surviv-
ing and reproducing in the wild. Other factors include sur-
viving starvation, drastic temperature fluctuations, and
osmotic shocks. Nonetheless, the evolutionary importance
of rapid cell division is indicated by codon usage patterns
that allow rapid protein synthesis when nutrients are abun-
dant (Sharp and Li 1986; Akashi and Gojobori 2002).

Maximizing the energy available to cells for biosyn-
theses, growth, and division is essential for rapid cell divi-
sion. This is vividly illustrated by recent work that analyzes
how the input into a metabolic reaction network and the
output produced by the network can affect cell growth

(Ibarra, Edwards, and Palsson 2002; Segre, Vitkup, and
Church 2002). However, we currently do not know whether
gene expression changes in most genes would affect a cell’s
energy budget substantially enough to change cell division
rates. For one thing, the question is almost impossible to
address experimentally. One reason is that an experimental
manipulation of gene expression may well carry energy
costs, but the changed concentration of a gene product
may also affect important biological processes. The two
effects are very difficult to disentangle. A second reason
is that tiny differences in growth rates, of the order of
10�7, much smaller than can be measured in the laboratory,
can affect the fate of mutants in microbes with large pop-
ulation sizes (Hartl and Clark 1997).

I here estimate the cost of changing RNA and protein
expression relative to the total energycost of gene expression
in the eukaryotic microbe Saccharomyces cerevisiae. In
order to do so, I use information on the energy cost (in acti-
vated phosphate bonds, ;P) of synthesizing the nucleotide
buildingblocksofmRNAand theaminoacidbuildingblocks
of proteins, aswell as genome-scale informationon the abun-
dances and decay rates of mRNA and proteins. I relate these
cost estimates to a critical selection coefficient s, estimated
from the amount of nucleotide polymorphisms in the closest
wild relativeofS. cerevisiae (Johnsonet al. 2004).The fateof
mutations that change the energy budget by an amount
smaller than thiscriticals isdominatedbygeneticdrift. I show
that the doubling of both protein and RNA expression, as
might be caused by a gene duplication, carries energy costs
much higher than s for all yeast genes for which expression
data is available.Most assumptions Imake in these estimates
areconservative, such that improveddatawill likelyshowthe
actual energy costs of gene expression to be higher thanwhat
my results suggest. If true in general formicrobes, thismeans
that substantialchanges inmRNAandproteinsynthesis rates,
as well as gene duplications, can only go to fixation in a pop-
ulation when they provide an advantage sufficiently great to
override these costs.

Results
Estimation of Energy Costs and the ‘‘Median Gene’’

I here estimate the cost s of expressing any one yeast
gene at experimentally observed levels as a fraction of the
total energy consumed in yeast gene expression. The energy
currency I use is the activated (high-energy) phosphate
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bond (;P). This expression cost can be partitioned into two
components. The first of them is the energy needed to syn-
thesize the ribonucleotide building blocks of a gene’s
mRNA and the amino acids for the gene’s protein product.
I determine this cost for growth on a minimal medium with
glucose as sole carbon source under respiratory and fermen-
tative conditions, using the DNA sequence of yeast genes
and known precursor biosynthesis pathways (Neidhardt,
Ingraham, and Schaechter 1990; Stryer 1995). The building
block cost for mRNA includes the nucleotides for an
untranslated region and a polyA tail with empirically
observed lengths (Hurowitz and Brown 2004). The second
cost component is the polymerization cost needed to make
an mRNA molecule and a protein from their respective
building blocks. This cost is small for mRNA because
the RNA precursors are already activated molecules. In
contrast, it is large for proteins because of the cost of charg-
ing transfer RNA (tRNAs) with amino acids and because of
substantial elongation costs during translation (Stryer
1995). These two cost components are combined in the fol-
lowing way to estimate the energy cost per unit time of
expressing a yeast gene at observed rates. If sR is the rate
at which a mRNA molecule is synthesized per second, R is
the number of molecules of this mRNA in the cell, and dR is
the decay constant of this molecule (in s�1), then the tem-
poral change in the mRNA concentration R, dR/dt, is given
by dR/dt5 sR� dRR. In steady state, that is, when dR/dt5 0,
one can calculate the synthesis rate sR from the mRNA
concentration and the decay constant dS. Both have been
measured for thousands of yeast genes (Wang et al.
2002; Arava et al. 2003), so that one can establish their
distribution. If CR is the energy cost of synthesizing one
specific mRNA molecule, then the per-second synthesis
cost of synthesizing this mRNA to maintain the experimen-
tally observed level in the cell is simply sRCR 5 RdRCR

(;P s�1). For proteins, with completely analogous notation,
the synthesis cost calculates as sPCP 5 PdPCP (;P s�1).
The overall cost is then the sum of the two, RdRCR1 PdPCP

(;P s�1). The expression cost for all protein-coding
genes is simply the sum of the expression costs for individ-
ual genes.

For the purpose of illustration, the following simple cal-
culation applies these considerations to a hypothetical aver-
age (median)gene.The listednumericalvalues arecalculated
from published information on yeast genes and their expres-
sion (Wang et al. 2002; Arava et al. 2003; Ghaemmaghami
et al. 2003; Huh et al. 2003). The median length of a yeast
RNA molecule is 1,474 nucleotides, and the median cost
of precursor synthesis per nucleotide (derived from the base
composition of yeast-coding regions) is 49.3 ;P. With a
median mRNA abundance of R 5 1.2 mRNA molecules
per cell and a median mRNA decay constant of dR 5 5.6 3
10�4 s�1, the mRNA synthesis costs calculates as 49.3 3
1,474 3 1.2 3 (5.6 3 10�4) 5 48.8 ;P per second and
cell. This is a fraction 48.8/1.34 3 107 5 3.6 3 10�6 of
the total RNA synthesis cost per second. The median length
ofayeastprotein is385aminoacids,withacombinedbiosyn-
thesis and polymerization cost of 30.3 ;P per amino acid.
The median abundance is 2,460 protein molecules per cell.
No currently available data allows a meaningful estimate
of themedianproteinhalf-life,butaproteinofanintermediate

half-life (seebelow)of10h(decayconstantdP51.92310�5

s�1) yields anoverall synthesis cost of 30.3338532,4603
(1.92 3 10�5)5 551 ;P s�1.

The Relative Energy Investment into RNA and Protein

Quantitative information on all the cost components
I listed above (R, dR, CR, P, dP, CP) can be derived for
thousandsofgenes frompublicly available information,with
one exception: no unbiased, systematic, and reliable meas-
urements are available for the decay constants (dP) or, equiv-
alently, the half-lives (s1/2 5 (loge 2)/dp) of most proteins.
Using the N-end rule, yeast proteins can be engineered to
have a half-life between 2 min and greater than 20 h (Var-
shavsky 1996). However, large-scale estimates of half-lives
existonly forproteins isolated fromtwo-dimensionalelectro-
phoresis experiments, which are high-abundance proteins
with long half-lives (Gygi et al. 1999; Pratt et al. 2002).

I pursued two approaches to get meaningful expression
cost estimates despite this lack of systematic information. I
call the first the ribosomal occupancy (RO) approach. It uses
estimated protein synthesis rates sP based on the empirically
observed number of ribosomes attached to a mRNA (Arava
et al. 2003). From this estimate and from known protein
abundance, one can infer dP and use it to estimate costs
in themanner outlined above. However, these observed pro-
tein synthesis rates have not yet been independently con-
firmed and have to be taken with much caution. Thus, I
also pursue a second approach based on the HL of abundant
proteins. It rests on the observation that the vast majority of
protein synthesis activity in any cell goes towards high-
abundance proteins, because the distribution of protein
abundances is highly skewed. For instance, if one considers
as highly abundant those proteins with a higher than median
abundance (2,460 copies per cell), then more than 95% of
protein molecules in a cell fall into the high-abundance class
(Ghaemmaghami et al. 2003). In other words, if one were to
choose a proteinmolecule from a cell at random, therewould
be a greater than 95%chance that the chosen protein exists in
more than 2,460 copies per cell. Proteins above the median
abundance can be readily extracted from two-dimensional
electrophoretic gels (Gygi et al. 1999) and their half-life
determined. Such proteins overwhelmingly tend to have
long half-lives (Gygi et al. 1999; Pratt et al. 2002). These
considerations suggest that the total energy cost of protein
synthesis is approximated by the cost of the synthesis of pro-
teins of long half-lives. In a systematic effort to estimate the
half-lives of more than 50 yeast proteins isolated from two-
dimensional gels, Pratt et al. (2002) estimated a mean decay
constant of 0.022 h�1 (6.13 10�6 s�1), which corresponds
to a half-life of 31.51 h. Taken together, these observations
suggest that the total energy cost of protein synthesis will be
well approximated if one assumes that all proteins have the
average half-life typical of that of abundant proteins. This
assumption is the basis of the second, ‘‘HL’’ (half-life)
approach. Both the RO and half-life estimates of the total
amount of energy going into protein synthesis are within
one order of magnitude of 107 ;P s�1.

The fact that proteins occur at manifold greater abun-
dances incells than their respectivemRNAs(Ghaemmaghami
et al. 2003) suggests that a much greater amount of energy
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goes into their production than into that of mRNA. How-
ever, there are also several factors that make mRNA pro-
duction more expensive relative to that of proteins. First,
the average combined synthesis and polymerization costs
are more than 50% higher for nucleotides (49.3 ;P per
nucleotide) than for amino acids (30.3;P per amino acid).
Second, mRNAs consist of more than three times the
number of monomers than the proteins they encode. Third,
proteins, and especially proteins of greater than median
abundance tend to have much longer half-lives than
mRNA. The longer a molecule’s half-life, the smaller the
necessary synthesis rate sP (and thus the energy needed)
to sustain a given steady-state level. These factors will con-
spire to raise the mRNA synthesis costs towards those of
proteins. According to the available data, total mRNA
synthesis cost (6.69 3 105 ;P s�1) is, however, still
smaller than the total protein synthesis costs (RO: 1.553 107

;P s�1; HL: 6.22 3 106 ;P s�1).

Estimation of Selection Coefficients

To estimate the impact of expressing any one gene on
a cell’s energy budget, one would ideally want to know the
total energy consumed per growing cell and second.
Although this total energy is unknown, it is clear that gene
expression accounts for the majority of it. First, 51.3% of
yeast biomass consists of RNA and proteins (Forster et al.
2003). (Most of the remaining biomass [.39%] consists of
various polymers of glucose and its relatives, specifically
glycogen, mannan, and glucan. Only 2.9% and 0.4% of
the biomass consists of lipids and DNA, respectively.)
In addition, 76.6% of the total adenosine triphosphate
(ATP) cost of polymerization is invested into RNA and pro-
tein polymerization and most of the remainder (21.8%) into
carbohydrate biosynthesis (Forster et al. 2003). Taken
together, these considerations suggest that the estimated
fractional energy cost of changing a gene’s expression is
no more than a factor two higher than the actual energy cost.
I take this uncertainty of at most a factor two into account
below.

The expression of any one gene consumes only a small
fraction of a cell’s energy budget. But how small must this
fraction be so as to be ‘‘invisible’’ to natural selection? In
a diploid organism, the magnitude of a selection coefficient
s below which genetic drift influences the fate of a genotype
more strongly than natural selection (the ‘‘critical’’ selection
coefficient) is s5 4/Ne (Hartl andClark 1997).HereNe is the
effective size of a population, and s the selective disadvant-
age (selection coefficient) caused by the energy cost of an
increase in gene expression. The effective population size
can be estimated from the nucleotide diversity p at synony-
mous sites, because the expected nucleotide diversity for
such neutral sites is equal top5Nel,wherel is themutation
rate per nucleotide site. In sum, one has s 5 4/Ne 5 4l/p.

Saccharomyces cerevisiae has long been associated
with humans, even before being used as laboratory organ-
isms (Mortimer 2000). Its recent population structure may
thus not reflect its evolutionary history. For this reason, I
chose to use diversity estimates from S. cerevisiae’s closest
wild relative, Saccharomyces paradoxus, whose sequence
divergence to S. cerevisiae is approximately 0.11 nucleo-

tide substitutions per nucleotide site in genic regions (Kellis
et al. 2003). For S. paradoxus p 5 0.003 (Johnson et al.
2004). Together with an estimated mutation rate of l 5
2.23 10�10 (Drake et al. 1998) this yields an effective pop-
ulation size estimate of Ne5 0.003/(2.23 10�10)5 1.363
107. From this estimate follows a critical selection coeffi-
cient of s 5 4l/p 5 4 3 (2.2 3 10�10)/0.003 5 2.93 3
10�7. To take into account that the fractional energy costs
I calculate here may slightly overestimate the actual frac-
tional cost (see above), I incorporate a factor one-half into
this estimate, yielding a critical s of s, (2.933 10�7)/25
1.473 10�7 (log10(s)5 �6.83), below which genetic drift
dominates a genotype’s evolution.

The Energy Cost of Gene Duplication Is Significant

Figure 1a shows a histogram of the fractional energy
costs (energy cost as a fraction of the total cost of gene
expression, under respiratory conditions) associated with
the simultaneous doubling of RNA and protein expression,
as would occur in a typical single-gene duplication. It is
crucial to appreciate the logarithmic scale of the x axis,
where every unit change indicates a change by a factor
10 in the fractional expression cost. The figure is based
on the RO approach. Figure 1b shows the same distribution,
but for the HL approach. The conclusion from both panels
is the same: For all genes considered here, the fractional
expression cost is much greater than the critical selection
coefficient of s 5 1.47 3 10�7 below which the fate of
a gene duplicate would be dominated by drift in all three
scenarios examined. It is important to realize that these
are not genes of unusually high abundance. Their products
span more than three orders of magnitude in mRNA abun-
dances (0.1 to 131 copies per cell) and more than four
orders of magnitude in protein abundances (50 to more than
106 copies per cell). Essentially, the same results as shown
for respiratory conditions in figure 1 hold for fermentative
conditions (median s 5 �4.28/�4.75; minimum s 5
�5.82/�6.17 for RO/HL, respectively). The shape of the
distributions approximates a normal distribution and in-
dicates that fractional expression costs are log-normally
distributed. The 10 genes with the highest fractional expres-
sion cost (0.0028, s, 0.01) for the RO data include seven
genes encoding glycolytic enzymes, a ribosomal protein-
coding gene (RPS8A), and a gene encoding the translation
elongation factor eEF3.

These results imply that duplicates of the 4,346 yeast
genes for which the necessary data are available would be
subject to negative selection sufficiently strong to influence
their fate, if they were expressed at the same level as the
originals. At the same time, the data show that the vast
majority of genes carry an expression cost whose effect
would be too small to detect in a laboratory evolution
experiment. For example, the median logarithm of the frac-
tional cost in figure 1a is �4.33, corresponding to a selec-
tion coefficient of s 5 4.68 3 10�5. In a large yeast cell
population consisting of equal numbers of cells with a
wild-type genotype and a genotype that grows more slowly
by a factor (1 � s), it would take t1/2 5 1/s or more than
21,000 generations to halve the population frequency of the
more slowly growing genotype.
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RNA and Protein Synthesis Rates Can Change Neutrally
Only by Small Amounts

While a gene duplication can double synthesis of both
RNA and protein products of any one gene, most regulatory
mutations may change either RNA or protein synthesis, but
not both. I thus asked in two complementary ways how
much RNA or protein synthesis could change without sub-
stantially affecting a cell’s energy budget. First, I deter-
mined the distribution of selection coefficients associated
with a doubling of mRNA expression levels. The results
are very similar to those obtained above for a joint doubling
of mRNA and protein levels. That is, in the vast majority of

genes, a doubling of mRNA expression incurs energy costs
sufficiently large for natural selection to counteract. Specif-
ically, under respiratory conditions the median selection
coefficient counteracting a doubling in mRNA expression
is greater than 10�6 (1.97 3 10�6/2.9 3 10�6 for RO/HL)
and more than one order of magnitude greater than the crit-
ical selection coefficient of s5 1.473 10�7. For more than
99% of genes, the selection coefficient associated with a
doubling of mRNA synthesis is greater than the critical
selection coefficient (4,319 of 4,346 genes for RO, 4,340
of 4,346 genes for LH). Second, I asked for each gene by
what factor mRNA expression can maximally increase such

FIG. 1.—Distribution of the fractional energy cost of simultaneously doubling messenger RNA (mRNA) and protein expression of a gene. (a)
Ribosomal occupancy approximation. (b) Long half-life approximation. Note the logarithmic scale on the horizontal axis. The arrow points to the frac-
tional cost below which a change is effectively neutral. The black curve shows a fit to a normal distribution.
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that the associated energy cost is less than s5 1.473 10�7

and determined the distribution of this ‘‘neutral factorial
change’’ (fig. 2a,b). Again, as a rule with some exceptions,
it is small: its median is less than 0.1, that is, the mRNA
synthesis rate can change by less than 10% without incur-
ring significant energy costs (median/maximum 0.07/3.4
for RO, 0.05/2.3 for HL).

Similar to this analysis for mRNA gene expression, I
determined the distribution of energy costs associated with
changing protein synthesis. The median selection coeffi-
cients associated with doubling protein synthesis are greater
than for mRNA expression change (3.89 3 10�5 for RO;
9.153 10�6 for HL). The smallest selection coefficients are
greater than the critical s5 1.473 10�7 (s5 5.823 10�7/
1.75 3 10�7 for RO/LH). The neutral factorial change in
protein synthesis is also smaller than for mRNA, with a
median smaller than 0.02 and a maximum smaller than
one (median/maximum: 0.0038/0.25 for RO; 0.016/0.84
for HL). This means that a change in protein synthesis rate
exceeding 2% incurs significant energy costs for more than
half of all genes. In other words, protein synthesis rates are
energetically substantially more constrained than mRNA
synthesis rates. This is also evident from figure 2c, which
plots the maximally permissible neutral change for mRNA
synthesis versus that for protein synthesis. The straight line
indicates equality. The figure shows, as one might expect,
that the neutral factorial changes in mRNA and protein
expression are correlated (Spearman s 5 0.53; P ,
10�10). However, there is also substantial scatter in this cor-
relation (r2 5 0.07). This scatter indicates substantial var-
iation in degradation rates (sR, sP), gene lengths, and
synthesis costs of building blocks, all of which also influ-
ence the neutral factorial change in synthesis rates. mRNA
and protein synthesis rates are similarly constrained also
under fermentative conditions (median neutral factorial
change in mRNA expression 0.09/0.06 for RO/HL; in pro-
tein expression 0.0033/0.013 for RO/HL).

Discussion

The results above show that increases in mRNA and
protein synthesis in yeast are constrained through the
energy costs they incur. The simultaneous doubling of
mRNA and protein synthesis, which accompanies many
gene duplications, causes a reduction in a cell’s energy
budget (and thus reduced growth) that is at least severalfold
higher than the critical selection coefficient s 5 1.47 3
10�7, below which a genotype’s evolution is dominated
by genetic drift. Even when considered separately, mRNA
and protein synthesis can increase on average by no more
than 10% without causing significant energy costs. This
holds under both respiratory and fermentative conditions.
It may seem surprising until one considers that even single
amino acid substitutions in a protein may cause significant
changes in energy costs due to the different biosynthesis
costs of different amino acids (Akashi and Gojobori 2002).

Caveats

Because these results rely on genome scale but still
incomplete information, they require estimates of some

important quantities. Importantly, most of these estimates
are conservative: They provide lower bounds on energy
costs. Actual costs may well be higher for many genes.

The quantity least well characterized on a genome-
wide scale is protein half-life. With regard to it, I take
two complementary approaches. The first approach indi-
rectly estimates protein synthesis rates from protein abun-
dances and experimentally observed ribosomal occupancies
(Arava et al. 2003). The second approach takes advantage
of the observation that overall energy investment into pro-
tein synthesis is overwhelmingly dominated by proteins
with high abundance and assumes that all proteins have
a turnover rate identical to the average rate of abundant pro-
teins (Pratt et al. 2002). Both approaches yield very similar
results for the distribution of fractional energy costs of gene
expression—the main focus of this work. However, the sec-
ond approach may greatly underestimate the cost of
expressing proteins of intermediate and low abundance.
The reason is that many lowly expressed proteins may have
a half-life much shorter than the half-life typical of highly
expressed proteins. In consequence, their expression at
observed levels (Ghaemmaghami et al. 2003) will consume
more energy than estimated here. In other words, changing
the expression level of these proteins will be even more
costly than what I estimated.

A second source of uncertainty arises from missing
expression information for some 40% of yeast genes. I here
assumed that the distribution of expression costs for these
genes is similar to that of the genes whose abundances
have been measured. However, many genes may not be
expressed at all in any one experimental condition. If so,
my estimate of the total energy investment into gene expres-
sion will be an overestimate. Thus, the fractional energy
invested into the expression of any one gene will be an
underestimate. That is, again, gene expression will be even
more costly than what is shown here by me.

A third caveat pertains to gene duplications. I have
neglected the energy cost caused by the additional DNA
introduced through a single-gene duplication. Is this energy
cost comparable to that incurred by the additional gene
expression? No. It is much smaller. This is evident from
the fact alone that DNA constitutes only 0.4% of yeast bio-
mass, whereas proteins and RNA constitute more than 50%
(Forster et al. 2003). (Replication time delays caused by
additional DNA may be a problem in prokaryotes with
one origin of replication but less so in eukaryotes which
have multiple origins of replication.)

The Influence of Population Parameters

I purposedly separated the analysis of gene expression
costs in that of a fractional energy cost and that of a critical
selective coefficient s. While the total gene expression cost
in any one physiological state may vary little among
individuals in a species, critical selection coefficients—
coefficients s below which a mutation’s fate is dominated
by genetic drift—depend on the (effective) population size
Ne of a population. (In large populations, selection against a
mutation with increased gene expression may be weak
[small s] and still eliminate the mutation.) Estimates of
Ne in turn, rely on other parameters such as the number
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FIG. 2.—Fractional changes in mRNA expression that are effectively neutral in (a) the ribosomal occupancy (RO) and (b) the long half-life (LH)
estimate of protein synthesis costs. If C is the cost of synthesizing a gene product (mRNA), if T is the total (genome-wide) RNA and protein synthesis cost
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of nucleotide polymorphisms and the mutation rate. Several
caveats follow. First, nucleotide polymorphisms may be
under the influence of selection. I minimized the likely
influence of selection by using only data from silent (syn-
onymous) nucleotide polymorphisms. If, however, some
synonymous sites were under negative or positive selection,
the nucleotide diversity p at synonymous sites would
underestimate the number of neutral polymorphisms to
be expected. This would make my estimate of the critical
s, s 5 4 l/p, too large and my conclusions conservative
because p for neutral sites should actually be greater than
the available estimate. (The opposite would hold for
balancing selection, but such selection is rather unusual
even for amino acid replacement sites.) Second, the muta-
tion rate estimate l is derived from laboratory populations.
Such estimates have been criticized as too high for other
microbes (Ochman, Elwyn, and Moran 1999). If so, then
s should be even smaller than what I estimated and gene
expression increases would be even costlier than it appears
in my analysis.

A third consideration is that the relation p5 Nel I use
here is based on the assumption of random mating, whereas
yeast undergoes a significant amount of selfing. Pertinent
work (Nordborg and Donnelly 1997) shows that in selfing
organisms evolution by random genetic drift is accelerated,
that is, the effective population size is smaller than
in randomly mating organisms. This effect, however, is
rather moderate. Specifically, even for exclusively selfing
organisms—an extreme case—Ne is reduced only by a fac-
tor of two, meaning that s would have to be raised by the
same amount.

Finally, my estimate of Ne is based on synonymous
nucleotide polymorphism data in S. paradoxus, the closest
wild relative of S. cerevisiae. The effective population size
Ne 5 1.363 107 lies between that of prokaryotic microbes
like Escherichia coli (23 108; Hartl et al. 1994) and higher
eukaryotes like Drosophila (53 106; Ayala et al. 1993) but
is subject to revision based on improved population data.
Such a revision may well lead to an increase in Ne, consid-
ering that the current estimate is based on a local population
sample in an area only 10 km2 in size (Johnson et al. 2004).
(The population size relevant for estimating s is the global
population size, which may be much larger.) If so, even
smaller gene expression costs than I suggest here may have
evolutionary consequences.

Some of my results are highly robust to changes in
Ne. Specifically, gene duplication (or a doubling of either
mRNA synthesis or protein synthesis) would still incur sig-
nificant energy costs for most genes, even if the critical s
changed severalfold (figs. 1 and 2). In contrast, the neutral
factorial change in mRNA and protein expression depends
linearly on this selection coefficient. A halving of the effec-
tive population size would lead to a doubling of the effec-
tively neutral mRNA and protein synthesis change. In other
words, even if other organisms have an energy cost distri-

bution of gene expression similar to that of yeast, their
mRNA and protein synthesis rates may be under different
constraints. They may be less constrained, for example, in
pathogens which may suffer periodical bottlenecks—and
thus reduced Ne—before infecting a new host.

Higher Organisms

All of the above applies only to microbes. In higher
organisms, energetic constraints on gene expression may
be of minor evolutionary importance because other compo-
nents of fitness, especially behavioral components, domi-
nate. To be sure, changes in gene expression could affect
a cell’s energy budget, which could affect cell division
rates. Major changes in the timing of cell division, in turn,
can affect important events in embryonic development and
even lead to a reorganization of the embryonic body plan.
However, most changes in gene expression would affect the
timing of cell division by only a small amount because they
consume only a small fraction of a cell’s energy budget.
Nonetheless, the reduced importance of energy constraints
in higher organisms has one potentially important evolu-
tionary consequence: newly arisen regulatory mutations
that increase gene expression and gene duplication may
be able to go to fixation more easily. It has been proposed
that rates of single-gene duplication and other important
events in genome evolution increase in higher organisms
because of their lower effective population sizes (Lynch
and Conery 2003). I speculate that a reduced importance
of energy considerations in genome evolution contributes
to this increased incidence of gene duplications.

How Can Gene Expression Change on an
Evolutionary Timescale?

The observation that energy costs constrain the evolu-
tion of gene expression raises the question how substantial
gene expression changes arise on evolutionary timescales.
There are at least three scenarios, all of which may operate
at the same time. The first of them involves changes in
mRNA or protein half-life. An increase in the cellular con-
centration of a gene product can be achieved either by
increasing its synthesis or by increasing its half-life.
Whereas an increase in synthesis costs energy, a decrease
in half-life does not. From this point of view, one would
predict that changes in half-life would contribute impor-
tantly to changes in gene expression because half-lives
are energetically less constrained than synthesis rates. (This
argument neglects other costs of increasing half-lives, such
as a reduced ability to regulate gene expression dynami-
cally, in response to environmental changes. The impor-
tance of these costs is unknown.) Second, every large
population experiences a substantial influx of regulatory
mutations. Some of these mutations may increase synthesis
of some gene products and decrease synthesis of others,

(;P s�1), and if s is the selection coefficient below which the fate of a mutant is dominated by genetic drift, then the maximal fractional change fmax in the
synthesis whose fate is dominated by genetic drift is fmax5 sT/C. It is the distribution of fmax that is plotted here. (c) The neutral factorial change in mRNA
synthesis plotted against the neutral factorial change in protein expression (determined analogous to that for mRNA). Note the double-logarithmic scale,
the smaller neutral factorial change in protein expression, and the considerable scatter.
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such that the total energy consumption may remain
unchanged. On a genome-wide scale, multiple mutations
that compensate each other’s effects on the overall energy
balance may be an important mode of gene expression evo-
lution. The third and perhaps most important mechanisms
involves selection. For a mutation that causes a substantial
increase in mRNA or protein synthesis to go to fixation, the
mutation needs to have even greater fitness benefits to over-
come this effect of selection opposing it. The benefits of
increased expression are most obvious for both lowly
and highly expressed genes. In lowly expressed genes, gene
expression noise may cause a gene’s expression level to dip
below levels necessary for proper biological functions.
Increased expression or gene duplication may eliminate
these dips (Cook, Gerber, and Tapscott 1998). On the other
extreme, increased expression of genes whose products are
in particularly high demand can increase growth. This is
obvious for enzyme-coding genes or transporters, where
a higher concentration of gene product may permit higher
metabolic flux, and thus an increased rat of biosynthesis or
energy production. However, it seems to be quite a general
phenomenon: In 11 different functional classes of genes,
genes with a high codon usage bias—which indicates high
expression—have more duplicates than other genes (Papp,
Pal, and Hurst 2003). The trade-offs between costs and ben-
efits of raised gene expression are uncharted territory and
well worth exploring further.

In all of the above, it is worth remembering that the
selective disadvantage incurred by even a doubling of
expression is minute for most genes and would lead to elim-
ination only in the course of thousands of generations.
These small differences notwithstanding, the appropriate
null model for the evolution of transcription and translation
rates is not a neutral model, at least for microbes. It is a
model where natural selection opposes increases in tran-
scription and translation rates in individual genes on ener-
getic grounds.

Methods
Metabolic Costs of Amino Acid and
Nucleotide Synthesis

All nucleotides and amino acids are synthesized
from a small number of metabolic precursors through
biosynthetic pathways that are highly conserved among
free-living organisms. These precursors are important inter-
mediates in energy metabolism, such as pyruvate and 3-
phosphoglycerate. The overall cost of making one amino
acid or nucleotide is thus equal to the loss of energy that
could have been be produced if the precursor had not been
removed from energy metabolism (the ‘‘precursor cost’’)
plus the cost of making the amino acid or nucleotide from
the precursor (the ‘‘biosynthesis cost’’). I am using the acti-
vated phosphate (;P) of ATP and its relatives as the energy
unit. Under respiratory conditions, reducing equivalents in
the reduced form of nicotinamide adenine dinucleotide and
related molecules are quantitatively transformed into ATP
at stoichiometries that vary depending on where in energy
metabolism a reducing equivalent has been generated.
For reducing equivalents generated in glycolysis and the
trichloroacetic acid cycle, I use stoichiometries given in

(Stryer 1995, p. 552). For other reducing equivalents I
use an average stoichiometry of 2 ;P per one reducing
equivalent. To give one example, the precursor cost of
pyruvate under respiratory conditions is 12.5 ;P. The rea-
son is that one molecule of glucose is converted into two
molecules of pyruvate and 30 ;P. Producing one pyruvate
from glucose yields 2.5 mol of ;P. Thus, removal of one
pyruvate for the biosynthesis of an amino acid effectively
costs (30/2) � 2.5 5 12.5 ;P. Under fermentative condi-
tions, both precursor and biosynthesis costs change because
reducing equivalents are no longer converted into ;P but
instead unloaded onto terminal electron acceptors such as
acetaldehyde. To estimate energy costs under fermentative
conditions with acetaldehyde as electron acceptor, I thus
count only reactions that directly produce or consume
;P. Absolute energy costs for many amino acids and
nucleotides appear lower under fermentative conditions
because of the greater inefficiency of energy metabolism
under these conditions. The following are the precursors
necessary for amino acid and nucleotide biosyntheses,
along with their costs under respiratory/fermentative condi-
tions: pyruvate (12.5/0), 3-phosphoglycerate (14.5/1),
phosphoenolpyruvate (14.5/1), acetyl-CoA (10/0), oxa-
loacetate (13.5/1), a-ketoglutatatrate (7.5/0), ribose-5-
phosphate (27/3), and erythrose-4-phosphate (27/3).

For the biosynthesis costs of amino acids and nucleo-
tides from their precursors, I take advantage of the nearly
universal conservation of biosynthetic pathways and use
tabulated pathway and cost data from E. coli (Neidhardt,
Ingraham, and Schaechter 1990), with a stoichiometry of
2;P (0;P) per reducing equivalent under respiratory (fer-
mentative) conditions. Using the above precursor costs, the
total energy cost of amino acids and nucleotide precursors
under respiratory/fermentative conditions calculates as
follows: alanine (14.5/2), arginine (20.5, 13), asparagine
(18.5/6), aspartate (15.5/3), cysteine (26.5/13), glutamate
(9.5/2), glutamine (10.5/3), glycine (14.5/1), histidine
(29/5), isoleucine (38/14), leucine (37/4), lysine (36/12),
methionine (36.5/24), phenylalanine (61/10), proline
(14.5/7), serine (14.5/1), threonine (21.5/9), tryptophan
(75.5/14), tyrosine (59/8), valine (29/4), ATP (48.5/11),
guanosine triphosphate (48.5/11), uridine triphosphate
(51.5/15), cytidine triphosphate (49.5/13). I note parentheti-
cally that the results reported here would be essentially
unchanged (data not shown) if one took the much simpler
approach of using cost data such as that reported in Neid-
hardt, Ingraham, and Schaechter (1990) directly, only con-
sidering the number of activated phosphate bonds expended
in making a building block and ignoring the contribution of
diverting a precursor from energy metabolism.

Synthesis Costs per mRNA Molecule and Protein

The nucleotide building blocks of mRNA are already
activated molecules, and the synthesis cost of an mRNA
molecule is thus well approximated by the synthesis costs
of its constituent nucleotides. The synthesis cost of the
translated region of the mRNA can be determined by add-
ing the contributions of individual nucleotides from the
gene’s protein-coding region (obtained from the Saccharo-
myces Genome Database, http://www.yeastgenome.org/).
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The second component is the energy cost of the untrans-
lated region and the polyA tail. Although both vary to
some extent among genes, a recent genome-scale study
(Hurowitz and Brown 2004) showed that their respective
lengths are well approximated by 256 and 60 nucleotides
for most genes. Because the exact composition of the
untranslated region is unknown, I used the average nucleo-
tide composition of yeast coding regions (A:G:C:U 5
0.327:0.204:0.192:0.277) as a substitute to estimate its
energy cost. The resulting median cost for the mRNA
expression of yeast genes is 49.3 (12.3) ;P under respira-
tory (fermentative) conditions. It varies among yeast genes
between a minimum of 49.1 (11.9) ;P and a maximum of
49.7 (12.8) ;P.

As opposed to mRNA synthesis, protein synthesis car-
ries substantial costs in addition to amino acid biosynthesis.
The major additional cost components are 2 ;P for the
charging of tRNAs with amino acids, 2 ;P for translation
initiation, 2;P for each translocation of the ribosome along
the mRNA during elongation, and 1 ;P for termination
(Moldave 1985). These costs need to be added to the bio-
synthesis costs of amino acids. They yield a median cost per
amino acid for the protein expression of yeast genes of
30.3 (10.6);P under respiratory (fermentative) conditions.
Among yeast genes, this per-amino-acid-cost varies
between 22.1 (7.4) and 40.5 (15.1);P, a range that is much
narrower than that between the ‘‘cheapest’’ amino acid and
costliest amino acids. In these calculations, I excluded some
minor cost components, such as energy costs of proofread-
ing and the cost of ribosomal scanning of the mRNA to find
the start codon because the precise energy requirements
for these processes are unknown (Moldave 1985). To the
extent that these processes affect most genes to an equal
extent, I note that they will not affect my conclusions
because I am focusing not on the absolute amount of energy
invested in the expression of any one gene but on the
proportion of this energy relative to the total gene ex-
pression cost.

mRNA and Protein Synthesis Costs per Unit Time

All calculations assume prolonged exponential cell
growth, where mRNA and protein synthesis rate have
reached a steady-state characteristic for this growth phase
and where new protein and mRNA synthesis is fed by
newly synthesized monomers and not through salvage
pathways using recycled components. To estimate mRNA
synthesis cost I used published data on mRNA abundances
R and decay rates dR (Wang et al. 2002, Arava et al. 2003;
http://genome-www.stanford.edu/yeast_translation/supple-
ment.shtml) for 4,379 yeast genes that are expressed in
exponentially growing cells. The respective data in-
clude mRNAs with a wide range of abundances (0.1 to
130 mRNA copies per cell) and decay rates (2.46 3
10�5 to 4.54 3 10�3 s�1). For each of these genes, I deter-
mined the expression cost per second as RdRCR, where CR

is the energy cost (in ;P) of producing the mRNA of the
gene. The total cost of producing the mRNAs of these genes
is obtained by adding up the individual cost. This cost, how-
ever, is still an underestimate of the total RNA expression
cost of a cell. First, the available data does not contain infor-

mation about the expression state of all 6,300 genes. Some
of the remaining genes may not have been expressed under
the experimental conditions, whereas the expression of
others may not have been detected for technical reasons.
In addition, mRNA accounts only for 5% (1/20th) of the
total RNA of a cell (Ju, Morrow, and Warner 1990), the
rest being expressed from RNA-coding genes such as those
for tRNAs and ribosomal RNAs. I conservatively assumed
that the expression ranges and decay rates of the remaining
genes have a similar distribution to those in the available
data and extrapolated to the total cost by multiplying with
a factor (20 3 6,300/4,379) 5 28.77.

To estimate protein synthesis cost, I took two
approaches necessitated by the absence of direct informa-
tion about most protein HLs. The RO approach uses data on
observed mRNA abundances and number of ribosomes per
mRNA for 5,670 yeast genes to estimate protein synthesis
rates (Arava et al. 2003). The second, LH approach uses
information on the abundance of 3,570 yeast proteins in
exponentially growing cells (Ghaemmaghami et al. 2003;
Huh et al. 2003; http://yeastgfp.ucsf.edu) and assumes that
all proteins have a decay constant equal to that of the aver-
age decay constant of long-lived proteins (6.1 3 10�6 s�1;
Pratt et al. 2002). (This approach will underestimate the
synthesis cost for short-lived proteins, which means that
the fractional cost of changing their expression will be even
higher than what I estimate here.) Analogous to mRNA
synthesis costs, protein synthesis costs are again calculated
as PdPCP, and I extrapolated to the total synthesis costs by
assuming that the distribution of synthesis costs of proteins
for which empirical data is available is representative of
all proteins. All data I use here have been obtained in
derivatives of the yeast strain S288C.

Gene expression costs are greatest in a minimal
medium where a cell needs to synthesize all amino acids
and nucleotides. My calculations of expression cost are
based on such a medium, but mRNA and protein abundance
distributions as well as information on decay rates are avail-
able only for more complex media. Because cell division
times vary by less than a factor two in these two kinds
of media (Sherman 1991), the total energy invested into
gene expression are probably no more variable than that.
However, an assignment of energy costs to individual
genes can currently not be made for this reason. This is
why I restrict myself to characterizing the distribution of
energy cost.
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